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Abstract. Magnetic compensation of gravity forces, similar to the space conditions of 

“microgravity”, needs the production of a uniform magnetic force field. We derive here a 

basic mathematical result that shows the impossibility to establish exact gravity 

compensation in a finite volume. The imperfection of compensation can be, however, 

quantified and a relation is derived between homogeneity accuracy and compensation 

volume in a cylindrical symmetry. We study how the use of inserts made of saturated 

ferromagnetic materials can modify the homogeneity of magnetic force field. In order to 

illustrate this result, an iron insert has been numerically calculated for the particular case 

of gravity compensation of H2 in a 10 T superconducting coil. An experimental test has 

been carried out on a H2 vapour bubble very close to its gas-liquid critical point. Near the 

critical point the gas-liquid interfacial tension is vanishing, then any bubble deformation 

from the ideal spherical shape reveals the non-homogeneities in the magnetic 

compensation force.  



PACS numbers: 85.70.Rp, 84.71.Ba, 64.60.Fr, 68.03-g 
 
 
 

1 Introduction 

Magnetic compensation of gravity forces (“magnetic levitation”) finds one of its most 

useful applications in recreating some feature of space conditions where weightlessness 

conditions or “microgravity” prevail. Nowadays, it is not uncommon in biology and 

fluids physics to levitate organic substances, liquids and solids [1- 3]. Another example 

can be found in aerospace where studying the behavior of cryopropellants under variable 

acceleration, including the weightlessness situation, has been envisaged [4]. If it is 

relatively easy to compensate gravity at the center of mass of a solid body, the same 

problem with a mixture of gas, liquid and solid materials is much more difficult. Indeed, 

the magnetic force density must exhibit the same degree of homogeneity than the earth 

gravity field. 

The principle of magnetic levitation in static magnetic field is based on the compensation 

of gravity by applying to a pure material a magnetic volumic force directed antiparallel to 

the gravity force. The material can exhibit different phases (gas, liquid, solid) but with 

the same specific magnetic susceptibility. In practice, this condition limits the use of this 

technique to the different phases of a pure substance. The phases can be at coexistence or 

not, at equilibrium or not. 

If a small volume V of material under the magnetic field H
�

 is considered, this magnetic 

force mF
�

 is given by:  

( )2
0 grad2

1 HVF mm

��
µχ=   (1) 



where 0µ is the magnetic permeability of vacuum and mχ the magnetic susceptibility of 

the material.  

To produce a force that can compensate gravity, a vector field )(grad 2BG
��

=  is needed, 

where HB
��

0µ=  is the applied magnetic flux density. The following values of G , G ~ 

2800 T2/m, 1000 T²/m and 2000 T²/m are necessary to achieve respectively the 

compensation in Water, Hydrogen (H2) and Deuterium. High B value and high spatial 

variation of B are then needed to reach these G values with a good homogeneity in a 

useful volume of at least several mm3. These conditions can be obtained near the ends of 

superconducting magnets or hybrids coils [1-3, 5-6] or, as suggested and tested in [7], in 

associating ferromagnetic materials with superconducting coils.  

This paper is organized as follows. In the first part, important theoretical results 

concerning the vector field )(grad 2B
�

 are presented. Then, in order to modify the 

magnetic force field homogeneity preexisting in a solenoid, a model of particular 

ferromagnetic insert is derived. In the last section, some experimental results about the 

shape of a H2 bubble very near its critical point obtained with and without insert are 

presented.  

 

2 Some properties of the vector field )(grad 2B
�

 

Although there has been till now many applications in science and technology of 

magnetic forces, no particular studies of magnetic vector force field has been performed 

so far. In this section, some mathematical and physical properties of the vector field 

)(grad 2B
�

are introduced. 



2.1 Theorem: of the impossibility to create a uniform vector field )(grad 2B
�

 

The aim of the demonstration is to prove the followings: if B
�

 defines a magnetic flux 

density, the vector )(grad 2B cannot be at the same time constant and non zero. 

Here the space vector 3ℜ  is considered, with the basis formed by the unit vectors 

{ }zyx uuu
���

,, , in which B
�

 can be written 
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If cB
�=)(grad

2
, where c

�
is a constant vector, then 0))(grad(div

2
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The following equivalence can be written 
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Calculations give 
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With a circular permutation of indices, expressions of 
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obtained. 

Then, using the fact that B is harmonic, (4) gives: 
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A sum of positive terms equal to zero imposes that each term of this sum is null. Then the 

fact that 2B
�

 is uniform also implies 0)(grad 2
��

=B . 

 

 Therefore a perfect uniform compensation of gravity cannot be performed in a finite 

volume. However, gravity can be non uniformly compensated in a given volume if some 

deviations to weightlessness are accepted. The necessary conditions between the accepted 

variations and the experimental variables are detailed below. 

 

2.2 Relationship between the important variables 

In this section, a relation is established between the magnetic flux density, the magnetic 

force, the size of the area under compensation, the radial and vertical homogeneities of 

the force. The method is described below. It defines the performances of the magnetic 

levitation technique. 

Let us define 
X

BXG �

���
)(grad)( 2= with X  a vector of 3ℜ . A useful variable for the 

magnetic levitation problem is the vector ε� , « relative error vector of gravity  

compensation » defined by the relation: 

0

)0()(
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where r
�

 is the coordinates vector of one close point of 0
�� =r , with 0)0( GG =

��
. 

Previous works on two-dimensional structures invariant by translation have established  

the relation between 0G , the radius of the area R, the horizontal and vertical 

homogeneities )( xx uR
��εε =  and )( yy uR

��εε = , and the norm of the magnetic flux 

density vector B [8]. A relationship has been previously established starting from the 

formalism using the complex magnetic potential [5]; it was then generalized with any 

two-dimensional problem invariant by translation, in any point where the vectors B
�

 and 

)(grad 2B
�

are either parallel or perpendicular 
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A close relation can be found between B, 0G , R, rε  and zε  for the axisymmetric 

geometries where )( rr uR
��εε =  defines the radial homogeneity and )( zz uR

��εε =  the 

vertical one. This relation was courteously communicated to the authors [9]. The 

demonstration is based on a series expansion of the components of the magnetic flux 

density. Thereafter we make the assumption that the exact compensation of the gravity 

force, for material concerned, takes place at the origin point O with the axis Oz taken as 

vertical. 

For a general three-dimensional case, we have: 
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In the reference frame ( )zr uuuO
���

,,, θ  and given the symmetry conditions for this kind of 

geometries B
�

 can be written: 

( ) ( ) zzrr uzrBuzrBB
���

,, +=         . (10) 

In the neighbourhood of point O, the coordinates of the magnetic flux density can be 

written with an expansion of order 2: 
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In vacuum, in a space free of currents, the magnetic flux density B
�

 satisfies 0)(rot =B  

and 0)(div =B , which yields: 
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second order: 
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Since 

( ) ( )( )zzrr BBBBG gradgrad2 +=  (17) 

At the first order, we get the following expression for G : 
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The radial and vertical homogeneities at the surface of a spherical domain of radius R are 

then obtained: 
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As 00 α=B  and 100 2 αα=G , one finally obtains a relationship between the magnetic 

flux density 0B , the magnetic force 0G , the size R of the area and the radial and vertical 

homogeneities of the force εr and εz for an axisymmetric system: 
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This relation is very important in practice, as it determines the size of the compensated 

volume for a given material with the allowed inhomogeneities εr and εz.  



 

3 Calculation of a ferromagnetic insert for compensation in H2 

 

3.1 Context 

In order to lower the unavoidable force field inhomogeneities, or increase the working 

volume at given homogeneity, the use of a magnetic insert inside a regular coil is a 

simple and powerful means. To illustrate this point, we calculate in the following a 

ferromagnetic insert made of pure iron to modify the magnetic force field created by a 

superconducting (NbTi) solenoid. This coil can reach 8 T at 4.2 K and 10 T when cooled 

down at 2.17 K. The useful parameters of the superconducting solenoid are given in 

Table I. 

 

Tab. I. Parameters of the superconducting solenoid 

Inner diameter (mm) 89.5  

Outer diameter (mm) 186  

Total height (mm) 200  

Critical current at 2.17 K (A) 72  

 

Let us define Zu as the position of the center of the levitation area from the coil centre. 

Several working areas can be considered if the current in the coil makes possible to reach 

the required value of G. Thereafter, we will only focus on two different working areas: 

we define the so-called Lmax case which corresponds to the position Zu where G is 



maximum, and the so-called Lequal case which corresponds to the position Zu where 

rε = zε . 

 

We will consider in the following only inserts with a simple shape easy to manufacture. 

The aim is to obtain homogeneity as low as possible in the Lequal case.  

 

3.2 Insert calculation 

The numerical calculation of this insert was carried out by using the RADIA software 

[10]. The ferromagnetic parts are modelled by using a relaxation method; a formulation 

of Biot and Savart type is used for the superconducting parts. The ferromagnetic insert is 

meshed and the magnetization of each elementary volume is supposed to be parallel with 

the field lines. The total magnetic field, sum of the magnetic field produced by each 

element and the field of the coil is finally calculated. The process is then reiterated until 

the difference between the magnetic field values calculated for two successive iterations 

is lower than a preliminary fixed tolerance. This method has the disadvantage of using 

mesh calculations that produce discontinuities of the magnetic field through the 

boundaries of each element. However, as the magnetic force is computed outside the 

magnetic materials and outside the field sources, the influence of the discontinuities is 

much reduced.   

Nevertheless, a sufficient precision for the calculation of the magnetic flux density is 

necessary to evaluate )(grad 2B
�

. In the following calculations, a regular mesh of 

40*40*40 elements and a convergence criteria of 10-4 on calculated fields were used. 



Refining these both parameters did not really improve the precision of the results (<0.1%) 

whereas the time of calculation was considerably increased. 

A parametrical study of the dimensions of the insert leads to a hollow cylinder made of 

iron (magnetic saturation of 2.16 T). Its geometrical characteristics are listed in Table II. 

 

Tab. II. Dimensions of the insert. The bottom of the insert is placed at 50 mm over the 

coil centre. The insert centre is located at 70 mm over the coil centre. 

 

Position (mm) 50  

Outer radius (mm) 44.5  

Height (mm) 40  

Inner radius (mm) 28  

 

Without insert, in the Lmax case, the levitation can be carried out at Zu = 85 mm from the 

coil centre with a current density J = 188 A/mm². In the Lequal case, Zu = 90.8 mm with 

189.3 A/mm². With insert, the calculations show that it is necessary to increase the 

current circulating in the coil to perform the levitation. Indeed, in the Lmax case, levitation 

is obtained at Zu = 57.6 mm with a current density of 194.1 A/mm2 to reach the value of 

1000 T²/m; in the Lequal case, Zu = + 62.3 mm and J = 195 A/mm². These parameters are 

summarized in Table III. Figures 1 and 2 show the influence of the insert on the 

components of the vector )(grad 2B
�

 for the Lequal and Lmax cases. 
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Fig. 1.: Lequal case  with insert (J = 195 A/mm², Zu = 62.3 mm) and without insert (J = 

189.3 A/mm², Zu = 90.8 mm). (a) Variation of the radial component of the vector 

)(grad 2B
�

in T²/m. (b) Variation of the vertical component of the vector )(grad 2B
�

in T²/m 

on the vertical axis as a function of the distance from the coil centre. 

 

 
 

�10 �5 0 5 10

�75

�50

�25

0

25

50

75

 
 
 

With insert 

Without insert 

r (mm) 

T²/m 

(a) 

 

 
 

30 40 50 60 70 80 90 100
�1000

�900

�800

�700

�600

�500

�400

 
 
 

(b) 

z (mm) 

With insert 

Without insert 

T²/m 

 

Fig. 2. Lmax case  with insert (J = 194.1 A/mm², Zu = 57.6 mm) and without insert (J = 

188 A/mm², Zu = 85 mm). (a) Variation of the radial component of the vector )(grad 2B
�

in 

T²/m. (b) Variation of the vertical component of the vector )(grad 2B
�

in T²/m on the 

vertical axis as a function of the distance from the coil centre.  

 



Figures 3 and 4 represent the radial and vertical homogeneities of the gravity 

compensation respectively for Lequal and Lmax cases without and with insert. Spacing of 

contour lines clearly shows the influence of the insert on the residual force field. Indeed 

each line corresponds to a variation of 0.25%.  

 

 

 

 

Fig. 3. Lequal case: Contour plots of the radial homogeneity εr (a) and of the vertical 

homogeneity εz (b) in a window containing the working area without insert (Zu = 90.8 

mm). Contour plots of the radial homogeneity εr (c) and of the vertical homogeneity εz (d) 

in a window containing the working area with insert (Zu = 62.3 mm).  

(d) 

(b) 
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 Fig. 4. Lmax case : Contour plots of the radial homogeneity εr (a) and of the vertical 

homogeneity εz (b) in a window containing the working area without insert (Zu = 85 mm). 

Contour plots of the radial homogeneity εr (c) and of the vertical homogeneity εz (d) in a 

window containing the working area with insert (Zu = 57.6 mm).  
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Tab. III. Comparison of the levitation area location and of the required current density 

value needed to perform levitation with and without insert for both cases Lequal and Lmax. 

 

 Lequal Lmax 

 Without insert With insert Without insert With insert 

J (A/mm²) 189.3 195 188 194.1 

I (A) 64.3 66.3 63.9 66 

Zu (mm) 90.8 62.3 85 57.6 

 

 

Table IV. shows the comparison between the numerically calculated values of the 

magnetic flux density and the order of magnitude of the magnetic flux density derived 

from formula (21). 

 

Tab. IV. Comparison of the calculation of the average magnetic flux density in the 

levitation area by using formula (21) and using numerical simulation for G=1000 T²/m 

and R=4 mm 

 Lequal  Lmax  

 Without insert With insert Without insert With insert 

(%)rε  2.9 1.6 3.6 2.1 

(%)zε  2.9 1.6 0.6 0.7 

Bsimulation (T) 6.2 8.0 6.6 8.3 



Bformula (T) 5.9 7.9 6.2 7.8 

 

In the Lequal case, Table IV and Figure 3 point out that insert improves vertical and radial 

homogeneities. In the Lmax case, only radial homogeneity is greatly improved by the 

insert.   

Note the good correlation between the evaluation of B using formula (21) and the Radia 

calculation that checks the pertinence of the numerical evaluation. 

 

4 Experimental results 

In this section, experimental results are presented for three cases dealing with the 

behaviour of the liquid / gas phases at equilibrium coexistence. The phases are separated 

by an interface whose shape is very dependent on the amplitude of the different forces in 

presence. These forces are of capillary, gravity and magnetic origin.  In order to reveal 

the residual magnetic and gravity forces, we will reduce as much as possible the capillary 

forces.  

For this purpose, a closed H2 sample is prepared at critical density, such as varying 

temperature enables the fluid to remain on the saturation line till its end point, the critical 

point. Below the critical point temperature Tc, the fluid shows up as two gas-liquid 

phases. Above Tc, the fluid is homogeneous, it is a gas at liquid density, a so-called 

“supercritical” fluid.  

The vicinity of the critical point is accompanied by a number of important anomalies that 

will be used to detect the magnetic forces inhomogeneities. In particular, the gas-liquid 

surface tension σ goes to zero according to the power law σ ~ (1-T/Tc)
1.26

  [4]. Therefore, 



the capillary pressure (σ/R), which maintains spherical the gas bubble (radius R), will 

also go to zero. When going near the critical point under magnetic compensation of 

gravity, the shape of the bubble can then be deformed from an ideal sphere even by 

minute forces. The gas-liquid interface therefore tends to follow the force field lines and 

its shape will visualize the local force field inhomogeneities in a spectacular manner. 

We will consider first the interface shape without magnetic field. Second, we present 

results under compensation without insert in the Lmax case and, finally, consider 

compensation with insert in the Lequal case.  



4.1 Test facility 

 

Fig. 5. Sketch of the experimental setup  

 

The test facility (Fig. 5) consists in a superconductive solenoid immersed into a helium 

bath. The cell used was made of a copper cavity of 2 mm thickness and 8 mm in diameter 

closed by two sapphire windows of 24 mm in diameter and 2 mm thickness that permit 

direct observation (Fig. 6). These windows are fixed on the copper cavity with screws. 

Indium seals ensure the sealing of the cell. Observation of the levitation phenomena is 

performed with an endoscope and a CCD camera.  
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Fig. 6. A photograph of the 8 mm cell 

 

The following operations are performed in order to compensate the gravity and levitate 

the hydrogen in the cell. (i) The system « cell + vacuum vessel » is placed into the 

cryostat; (ii) the vacuum vessel is pumped to about 10-6 mbar; (iii) the solenoid and the 

vacuum vessel are cooled down to 2.17K; (iv) the cell is heated to about 20K; (v) gaseous 

H2 is slowly introduced into the cell by the capillary; (vi) when a sufficient quantity is 

condensed in the cell, heating of the valve is stopped so that an ice plug clogs up the 

capillary. (vii) the temperature of the cell is controlled; (viii) the current in the solenoid is 

increased to the required value to compensate gravity . 

In the following, we will observe and analyse the shape of the vapour bubble. The 

photographs correspond to a front view of the cell.  
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4.2 Bubble interface without magnetic field 

 

Figure 7 shows an example of the liquid / gas interface that can be observed in the cell (8 

mm diameter) under earth gravity, at T = 20 K (T-Tc = -13 K). Here the magnetic field is 

switched off. The liquid is located in the bottom and the gas at the top, surrounded by a 

gravity-thinned wetting layer. The shape of the meniscus corresponds to the competition 

between gravity forces, which tend to flatten the interface, and the capillary pressure, 

which tend to make the bubble spherical. 

 

Fig. 7. Picture of the interface in a 8mm diameter cell  

without magnetic field at T-Tc = -13 K.  

 

4.3 Levitation without insert in the Lmax case 

The following Figure 8 shows a picture of the cell at the same temperature T = 20 K (T-

Tc = -13 K) under compensation of gravity. 
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Fig. 8. Picture of the interface in a 8 mm cell  

with magnetic field at T-Tc = -13 K. (Lmax case) 

 

Compensation is observed at Zu = 85 mm and I = 63.9 A, which is in good agreement 

with the results of the calculation as reported in Table III. In the case of this experiment, 

performed far from the critical point, the surface tension forces dominate the residual 

magnetic forces. Consequently, the bubble shape is perfectly circular, as it would have 

been in actual weightlessness conditions. The bubble is close to a wall because of the 

radial centripetal forces. These forces make unstable the position where the vapour phase 

is on the coil symmetry axis. 

 

(a) 
 

(b) 
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Fig. 9. Bubble shape close to Tc when a 8 mm diameter cell is used without insert. (a) T-

Tc = -500 mK. (b) T-Tc = -20 mK. (c) T-Tc = -10 mK. (Lmax case) 

 

Much closer to Tc [Figures 9(a), 9(b) and 9(c)], at T-Tc = -500 mK, -20 mK and -10 mK, 

a progressive deformation of the liquid / gas interface from the spherical shape is 

observed. The deformations are the hall-mark of the magnetic residual forces. The radial 

components of the magnetic forces "push" the liquid towards the centre of the cell. It can 

easily be thus concluded that gravity is not homogeneously compensated. These results 

agree with the data of [4].  

 

4.4 Levitation with insert in the Lequal case 

 

In accord with the calculation of Table III, we have observed the gravity compensation at 

Zu = 62 mm (62.3 mm expected) and for a current of I = 65.4 A. 

 

 

 

 
( a ) 

  
( b )  



 

 

 

Fig. 10. Bubble shape close to Tc when a 8 mm diameter cell is used with insert. 

(a) T-Tc = -500 mK. (b) T-Tc = -20 mK. (c) T-Tc = -10 mK. (d) T-Tc = -5 mK. (Lequal 

case). 

 

Figures 10(a), 10(b) and 10(c) show the bubble shape with gravity compensation with 

insert. In this case where rε = zε , the interface tends to keep a circular shape when the 

critical point is neared, which means that the residual forces are less important than 

without insert. At T-Tc = -5 mK [Fig 10(d)], the deformation becomes important; 

however the liquid phase is still in contact with the walls.  

 

5 Conclusions and perspectives 

 

From mathematical arguments it thus comes out that is impossible to rigorously 

compensate gravity in a finished volume. The use of volumic magnetic forces is thus an 

 
( c ) 

 

( d ) 



approximate technique to achieve gravity compensation. It is possible, however, to draw 

a relationship between the size of the volume to compensate, the residual 

inhomogeneities of the magnetic force field, the magnetic force value and the magnetic 

flux density in the levitation volume. This relationship highlights the fact that the 

homogeneity of the magnetic force and the dimensions of the levitation area are two 

parameters to take into account in any magnetic compensation device. 

It appears that, in a classical coil, the force field homogeneity can be improved by the use 

of a ferromagnetic insert. Such an insert, after having been numerically calculated in the 

particular case of H2 levitation in a 10 T superconducting coil, has been tested by 

observing the deviation from a sphere of the H2 vapour phase very close to the critical 

point, where the surface tension goes to zero.  

The results presented in this paper thus give a pertinent way to quickly evaluate the 

parameters of a given levitation problem. They allow the understanding of the intrinsic 

relationship between these parameters and the limits of the magnetic levitation technique 

to be quantitatively determined. 

The experimental results presented in this paper are very encouraging and validate at the 

same time the methodology used to calculate the insert and the relevance of the 

association between a superconductive magnet and a ferromagnetic material in the 

levitation problems. Following this first stage, many prospects are thus open. In 

particular, it can be envisaged to develop new designs of insert and to use high critical 

temperature superconductors or materials with high saturation magnetic flux density at 

low temperature. 
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