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Abstract

The exclusive photoproduction of e+e− pairs from nucleons close to the vector
meson production threshold (1.4 <

√
s < 1.8 GeV) results from two main processes:

the emission of Bethe-Heitler pairs and the photoproduction of ρ0- and ω-mesons
decaying into e+e− pairs. The Bethe-Heitler amplitudes are purely electromagnetic
and reflect mostly the nucleon magnetic structure. The γ N → e+e−N amplitudes
arising from vector meson production and decay are derived from γ N → ρ0N and
γ N → ωN amplitudes supplemented by the Vector Meson Dominance assumption.
The vector meson photoproduction amplitudes are calculated using a relativistic
and unitary coupled-channel approach to meson-nucleon scattering. They depend
sensitively on the coupling of vector fields to baryon resonances. The γ N → e+e−N

differential cross sections display interference patterns. The interference of Bethe-
Heitler pair production with vector meson e+e− decay is quite small in the domain
of validity of our model for all angles of the emitted e+e− pair. The interference
of ρ0- and ω-mesons in the e+e− channel can be large. It is constructive for the
γ p → e+e−p reaction and destructive for the γ n → e+e−n reaction. We discuss
the shape and magnitude of the e+e− pair spectra produced in the γ p → e+e−p

and γ n → e+e−n reactions as functions of the pair emission angle and of the
total center of mass energy

√
s. In the particular kinematics under consideration,

our results suggest that the vector meson contribution can be determined quite
accurately from experimental e+e− spectra by subtracting the Bethe-Heitler term
and neglecting the small interference of Bethe-Heitler pairs with vector meson e+e−

decays.
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1 Introduction

The scattering of real and virtual photons off nucleon targets is the simplest
process to study the electromagnetic structure of the nucleon and its excitation
to baryon resonances through vector fields. The link between vector fields and
photons is established by assuming the Vector Meson Dominance (VMD) of
the electromagnetic current [1,2]. We consider photon-nucleon kinematics such
that the total center of mass energy is in the mass range of low-lying baryon
resonances (1.4 <

√
s < 1.8 GeV).

Real Compton scattering, γN → γN , appears mostly sensitive to the radiative
widths (couplings) of baryon resonances and to the partial wave structure of
single- and double-pion photoproduction processes [3]. Virtual Compton scat-
tering, e−N → e−γN , offers the possibility to study photon-nucleon scattering
amplitudes induced by virtual space-like photons, γ∗N → γN . The degree of
virtuality of the incoming photon, which can be either longitudinal or trans-
verse, provides an additional variable. The e−N → e−γN cross section involves
however more than the γ∗N → γN amplitudes. The radiation of a photon from
the incoming or outgoing electron contributes largely to the cross section and
interferes with the e−N → e−γN amplitudes arising from virtual photon-
nucleon scattering. The e−p → e−γp reaction in the resonance region has been
measured recently [4]. In view of the s-channel baryon resonance contributions
to this process, it is interesting that data on the e−p → e−π0p reaction were
taken simultaneously, providing information on the coupling of the interme-
diate baryon resonances to the pion-nucleon channel [5]. The γ N → e+e−N
reaction makes it possible to explore yet another sector of photon-nucleon
scattering, the photoproduction of virtual time-like photons, γN → γ∗N . In
this case also there is an additional amplitude of electromagnetic origin: the
initial photon can radiate an e+e− pair (Bethe-Heitler pair). These processes,
the production of Bethe-Heitler pairs and the e+e− decay of time-like photons,
will in general interfere. The contribution of the γN → γ∗N transition ampli-
tude to the γ N → e+e−N reaction is of much interest. In the Vector Meson
Dominance model of the electromagnetic current, it is indeed sensitive to the
decay of low-lying baryon resonances into the vector meson nucleon channel
below the ρ0- and ω-meson threshold. The corresponding couplings are largely
unknown and of importance to study models of baryon resonances [6] and vec-
tor meson propagation in matter [7]. The contributions of ρ0- and ω-decays
to the γ N → e+e−N cross section will also display interference patterns. We
consider e+e− pair invariant masses not too far from the vector meson poles
where the Vector Meson Dominance assumption is expected to be valid and
where significant constraints arise from the γ N → ρ0N and γ N → ωN reac-
tions. We note that, just as the e−N → e−γN and e−N → e−πN processes
give information on two decay channels of the baryon resonances excited in
virtual photon-nucleon scattering, the γ N → e+e−N and π N → e+e−N reac-
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tions select different entrance channels for the excitation of these resonances.
Combined descriptions of both processes are therefore particularly invaluable
to study the coupling of baryon resonances to specific decay channels. Ex-
tending such a comparison to higher invariant masses (

√
s ≃ 2.1 GeV) might

be very relevant to study the issue of the ’missing resonances’ predicted by
constituent quark models and unobserved in the pion-nucleon channel [8].

In the spirit of the above discussion, we have studied the γ N → e+e−N
reaction in the same theoretical framework as the π N → e+e−N reaction [9].
We use the γ N → ρ0N and γ N → ωN amplitudes obtained in the unitary
coupled-channel model of Ref. [7] to calculate the γ N → e+e−N amplitudes
resulting from vector meson decays. We take the same prescription as in Ref.
[9] for the Vector Meson Dominance of the electromagnetic current associated
with the outgoing time-like photon.

There are at present no experimental data to compare our predicted cross sec-
tions to. Early attempts to measure the photoproduction of electron-positron
pairs from proton targets at MAMI (Mainz), using tagged photons with energy
ranging from 536 to 820 MeV, failed to obtain statistically significant results
for e+e− pair invariant masses beyond 200 MeV [10,11]. Data on the photo-
production of e+e− pairs from deuterium and nuclear targets (carbon, iron,
lead) were recently taken at JLab with the CLAS detector [12]. The labora-
tory photon energy varies from 0.9 until about 3 GeV. These data are in the
process of being analyzed. As the γ n → e+e−n reaction has a much lower
cross section than the γ p → e+e−p reaction, the γ d → e+e−X process should
be dominated by γ p → e+e−p in specific regions of phase space (correspond-
ing to the largest e+e− pair invariant masses) and hence provide a first test of
our theoretical model.

We discuss the various amplitudes contributing to the γ N → e+e−N processes
in Section 2. The calculation of the γ p → e+e−p and γ n → e+e−n cross
sections is described in Section 3. Some intermediate steps of our derivations
are explained in the appendix. Our numerical results on both reactions are
displayed and commented upon in Section 4. We stress interference phenomena
and show how they depend on the initial photon energy and on the emission
angle and invariant mass of the e+e− pair. We conclude by a few remarks in
Section 5.
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2 The Bethe-Heitler and vector meson photoproduction ampli-

tudes contributing to the γ N → e+e−N reactions

The γ N → e+e−N cross section is obtained by summing the amplitudes for
the direct and crossed Bethe-Heitler terms and for the photoproduction of
ρ0- and ω-mesons decaying subsequently into e+e− pairs. This is represented
graphically in Fig.1.
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Fig. 1. Bethe-Heitler and vector meson decay contributions to the γ N → e+e−N

amplitude.

The differential cross section for the γ N → e+e−N reaction is therefore in
general the sum of three terms associated with the Bethe-Heitler process, the
vector meson e+e− decay and their interference respectively.

The amplitudes displayed in Fig. 1 are calculated in the center of mass refe-
rence frame. We use the same notations as in Ref. [9]. We denote the 4-
momenta of the incident photon and nucleon by q and p and the 4-momenta
of the outgoing electron, positron and nucleon by p−, p+ and p̄ respectively.
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The invariant mass of the e+e− pair is defined as me+e−= |q̄|=
√

(p− + p+)2.

The total center of mass energy
√

s is related to the total 4-momentum w =
p + q = p + q by

√
s =

√
w2. The magnitudes of the initial and final nucleon

3-momenta as functions of
√

s, q2 and the nucleon mass MN are given by

|~p | =

√
s

2

[

1 − M2
N

s

]

, |~p| =

√
s

2

[

1 − 2
M2

N + q2

s
+

(M2
N − q2)2

s2

]
1

2 . (1)

The differential cross section for the γN → e+e−N reaction in the center of
mass reference frame reads

[

dσ

dq2

]

γN→e+e−N
=

M2
N

32π2s

|~p |
|~p |

∫ d3~p+

(2π)3

me

p0
+

∫ d3~p−
(2π)3

me

p0
−

(2π)4 δ4(q − p+− p−)

∑

λγ ,λ,λ,λ+,λ−

|MγN→e+e−N(q, λγ, p, λ; p+, λ+, p−, λ−, p, λ)| 2 , (2)

where me denotes the electron mass.

The reaction matrix element Mγ N→e+e−N is written as a sum of the Bethe-
Heitler amplitudes, MBH , and amplitudes describing e+e− pair production via
virtual ρ0- and ω-mesons. The latter factorize into vector meson production
and e+e− decay amplitudes. We have

Mγ N→e+e−N (q, λγ, p, λ; p+, λ+, p−, λ−, p, λ)

= MBH
γ N→e+e−N(q, λγ, p, λ; p+, λ+, p−, λ−, p, λ)

+Mµ
γ N→ρ0N(q, λγ, p, λ; q, p, λ) Mρ0→e+e−,µ (q ; p+, λ+, p−, λ−)

+Mµ
γ N→ω N(q, λγ, p, λ; q, p, λ)Mω→e+e−,µ (q ; p+, λ+, p−, λ−) , (3)

where the functional dependence on 4-momenta and polarization variables is
made explicit.

The Bethe-Heitler amplitudes are sensitive to the electromagnetic structure
of the target nucleon. They can be expressed in terms of the Dirac and Pauli
form factors F1(t) and F2(t) where t is defined as t ≡ (p − p)2. In view of
the kinematics involved in the present calculation (1.4 <

√
s < 1.8 GeV), our

results will be sensitive to low values of t (|t| < 1 GeV2). Furthermore the
Bethe-Heitler process depends very dominantly on the particular combination
F1(t) + F2(t), i.e. on the magnetic form factor GM(t). In the kinematic range
of interest, GM(t) has been measured accurately for both the proton and the
neutron [13] and can be very well approximated by a dipole form.
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We use for the Dirac and Pauli form factors the parametrization,

F
(p)
1 (t) =

4 M2
p − µp t

(1 − t/0.71 [GeV−2])2

1

4 M2
p − t

,

F
(p)
2 (t) =

µp − 1

(1 − t/0.71 [GeV−2])2

4 M2
p

4 M2
p − t

,

F
(n)
1 (t) =

−(µn + 1 + t/2M2
n)

(1 − t/0.71 [GeV−2])2

t

4 M2
n − t

,

F
(n)
2 (t) =

µn + (t/4M2
n)(1 + t/2M2

n)

(1 − t/0.71 [GeV−2])2

4 M2
n

4 M2
n − t

, (4)

with µp = 2.793 and µn = −1.913. The corresponding proton and neutron
electric and magnetic form factors read

G
(p)
E (t) =

1

(1 − t/0.71 [GeV−2])2
,

G
(p)
M (t) =

µp

(1 − t/0.71 [GeV−2])2
,

G
(n)
E (t) =

(1 + t/2M2
n)

(1 − t/0.71 [GeV−2])2

−t

4 M2
n

,

G
(n)
M (t) =

µn

(1 − t/0.71 [GeV−2])2
. (5)

The Bethe-Heitler amplitudes factorize into the pair emission process by the
incident photon and the target nucleon electromagnetic current transition ma-
trix element and read [14]

MBH
γ N→e+e−N(q, λγ, p, λ; p+, λ+, p−, λ−, p, λ) =

e3

t
εµ(q, λγ)

ū(p−, λ−) {γµ −/q + /p− + me

−2 q · p−
γν + γν /q − /p+ + me

−2 q · p+

γµ} v(p+, λ+)

ū(p, λ) {γνF
(N)
1 (t) − i

2MN

F
(N)
2 (t) σνα(p − p)α}u(p, λ). (6)

The vector meson photoproduction amplitudes entering Eq. (3), Mµ
γ N→ρ0N

and Mµ
γ N→ωN , are calculated in the framework of the relativistic and unitary

coupled-channel approach to meson-nucleon scattering of Ref. [7]. This des-
cription aims at a comprehensive description of data on pion-nucleon elastic
and inelastic scattering and on meson photoproduction off nucleons in the en-
ergy window 1.4 <

√
s < 1.8 GeV. It involves the πN , π∆, ρN , ωN , KΛ, KΣ,
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ηN and γN channels. The fundamental fields are the mesons, the photon, the
nucleon and the ∆-resonance (i.e. the baryons belonging to the octet and de-
cuplet ground states). The meson-baryon scattering amplitudes are computed
by solving coupled-channel Bethe-Salpeter equations. The Bethe-Salpeter ker-
nel is constructed from an effective, quasi-local meson-meson-baryon-baryon
Lagrangian among the fundamental fields. The coupling constants entering the
effective Lagrangian are parameters which are adjusted to reproduce the data.
In view of the kinematics, only s-wave scattering in the ρN and ωN channels
is included, restricting πN and π∆ scattering to s- and d-waves. The pion-
nucleon resonances in the S11, S31, D13 and D33 partial waves are generated
dynamically by coupled-channel interactions [7]. These states correspond to
the nucleon resonances N*3/2−1/2(1520), N*1/2−1/2(1535) and N*1/2−1/2(1650)
and to the ∆1/2−3/2(1620) and ∆3/2−3/2(1700) isobars. In order to describe
photon-nucleon and pion-nucleon data consistently, a generalized Vector Me-
son Dominance is introduced to relate amplitudes involving photons to am-
plitudes involving vector mesons. This prescription to extrapolate from real
photons to vector mesons on the mass-shell is required to include the data
on pion photoproduction multipole amplitudes which provide essential con-
straints on the effective Lagrangian parameters [7].

The γ N → ρN and γ N → ωN amplitudes in the generalized Vector Domi-
nance approach of Ref. [7] are represented diagrammatically in Fig. 2.

N

V

γ (q)

(p)

V

N (p)(p)

γ (q)

N (p)

(q)ρ(q) ω

N

ο

Fig. 2. Vector meson photoproduction amplitudes in the generalized Vector Domi-
nance approach of Ref. [7].

The photon induced vector meson production amplitudes are determined by
the V N → V ′N scattering amplitudes with V or V ′ = (ρ0, ω). The invariant
transition matrix elements for the V N → V ′N processes are given by

〈V ′j(q) N(p)| T |V i(q) N(p)〉 = (2π)4 δ4(q + p − q − p)

×u(p) ǫ†µ
V ′ (q) T i,j

(V N→V ′N)µν ǫν
V (q) u(p), (7)
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where T i,j
(V N→V ′N)µν is a function of the three kinematic variables w, q and q.

Following the procedure of Ref. [9], we decompose the scattering amplitudes
into isospin invariant components using the projectors defined in [15]. We get

〈[V ′(q) N(p)]I | T |[V (q) N(p)]I〉 = (2π)4 δ4(q + p − q − p)

×u(p) ǫ†µV ′(q) T
(I)

(V N→V ′N)µν ǫν
V (q) u(p). (8)

The eigenstates of the [V N ] system with total isospin I=1/2 and I=3/2 are
related to the charge states of interest by

|ρ(0)p〉 = +
√

1
3
|[ρN ]I=1/2〉 +

√

2
3
|[ρN ]I=3/2〉 ,

|ρ(0)n〉 = −
√

1
3
|[ρN ]I=1/2〉 +

√

2
3
|[ρN ]I=3/2〉 ,

|ω p〉 = |[ω N ]I=1/2〉 = |ω n〉 . (9)

The vector-meson nucleon scattering amplitudes T
(I)
(V N→V ′N) µν(q, q; w) are de-

composed further into components of total angular momentum using the re-
lativistic projection operators introduced in Ref. [15]. Because our model is
restricted to s-wave vector-meson nucleon final states, this expansion takes the
simple form,

T
(I)
(V N→V ′N) µν(q, q; w) =

∑

J=1/2,3/2

P (J)
µν M

(I,J)
V N→V ′ N (s),

P (1/2)
µν = Vµ P− Vν , P (3/2)

µν =
(

gµν −
wµ wν

w2

)

P+ − Vµ P− Vν , (10)

where wµ = qµ + pµ = q̄µ + p̄µ and

Vµ =
1√
3

(

γµ − wµ

w2
/w
)

, P± =
1

2

(

1 ± /w√
w2

)

. (11)

The invariant amplitudes M
(IJ)
V N→V ′N(

√
s) relevant for s-wave vector meson

nucleon scattering are given and discussed in [7].

Following the approach of Ref. [7], the photon induced vector meson produc-
tion amplitudes are related to the vector meson scattering amplitudes by the
generalized Vector Meson Dominance assumption,
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T µν
(γ p→V p) = |e|

[

T µα
(ω p→V p)(q̄, q; w) Γαν,+

ω (q, w)

+ T µα
(ρ0 p→V p)(q̄, q; w) Γαν,+

ρ (q, w)
]

,

T µν
(γ n→V n) = |e|

[

T µα
(ω n→V n)(q̄, q; w) Γαν,+

ω (q, w)

−T µα
(ρ0 n→V n)(q̄, q; w) Γαν,+

ρ (q, w)
]

, (12)

where the positive parity transition tensor Γµν,+
ω(ρ) is constructed to achieve

consistency with electromagnetic gauge invariance and reads

Γµν,+
ω(ρ) (q, w) =

g
(+)
ω(ρ),1

Mω

P+

((

/q − w · q
w2

/w
)

gµν − qµ
(

γν − wν

w2
/w
))

+
g

(+)
ω(ρ),2

Mω

P+

(w · q√
w2

gµν − qµ wν

√
w2

)

. (13)

The coupling constants g
(+)
ω(ρ),i are determined by a fit to meson photoproduc-

tion data [7]. Their values are

g
(+)
ω,1 = 0.083, g

(+)
ρ,1 = 0.469, g

(+)
ω,2 = 0.000, g

(+)
ρ,2 = 0.241. (14)

The vector meson photoproduction cross sections are fully described by the
dimensionless and invariant amplitudes [7]

M
(Jh)
γ p→ρ0 p =

√

N
(ω+)
Jh M

(J)
ω p→ρ0 p +

√

N
(ρ+)
Jh M

(J)
ρ0 p→ρ0 p ,

M
(Jh)
γ n→ρ0 n =

√

N
(ω+)
Jh M

(J)
ω n→ρ0 n +

√

N
(ρ+)
Jh M

(J)
ρ0 n→ρ0 n , (15)

and similar expressions for γ p → ω p and γ n → ω n, in which h is the heli-
city projection and the normalization factors are specific combinations of the
coupling constants dependent on the kinematics 1

√

N
(ω(ρ)+)
1

2

1

2

=
|e|
Mω

|~p |√
6

(

2
(√

s − MN

)

g
(+)
ω(ρ),1 +

(√
s + MN

)

g
(+)
ω(ρ),2

)

,

√

N
(ω(ρ)+)
3

2

1

2

=
|e|
Mω

|~p |√
24

(

−
(√

s − MN

)

g
(+)
ω(ρ),1 +

(√
s + MN

)

g
(+)
ω(ρ),2

)

,

√

N
(ω(ρ)+)
3

2

3

2

=
|e|
Mω

|~p |√
8

((√
s − MN

)

g
(+)
ω(ρ),1 +

(√
s + MN

)

g
(+)
ω(ρ),2

)

, (16)

1 Note that the normalization factors N introduced here differ from corresponding
terms used in [7] by a factor s1/4.
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with
√

s = |~p |+
√

M2
N + ~p2. Since the amplitudes introduced in (15) determine

the dilepton photoproduction cross sections, we display them in Fig. 3.
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To derive γ N → e+e−N amplitudes from Eq. (15), we follow the same pres-
cription as in Ref. [9]. We assume that the coupling of massive photons (ma-
terializing into e+e− pairs) to vector mesons is given by the Lagrangian

Lint
γV =

fρ

2 M2
ρ

F µν ρ0
µν +

fω

2 M2
ω

F µν ωµν , (17)

where the photon and vector meson field tensors are defined by

F µν = ∂µAν − ∂νAµ , V µν = ∂µV ν − ∂νV µ. (18)

In Eq. (17), fρ and fω are dimensional coupling constants. Their magnitude
can be determined from the e+e− partial decay widths of the ρ- and ω-mesons
to be [16]

|fρ| = 0.036 GeV2 , |fω| = 0.011 GeV2. (19)

The relative sign of fρ and fω is fixed by vector meson photoproduction am-
plitudes [7]. With our sign conventions, fρ and fω are both positive.

We emphasize that the interaction Lagrangian (17) provides a satisfactory
phenomenological description of the coupling of time-like photons to vec-
tor mesons [1] but does not give any contribution to the processes involving
real photons. Implementing the Vector Meson Dominance assumption in the
description of photoproduction processes required therefore the more general
structure exhibited in Eq. (12). Our calculation of the γ N → e+e−N reaction
is consequently valid for lepton pair masses sufficiently close to the vector me-
son masses, where the dilepton production cross section is dominated by the
vector meson pole terms. It is important to remark that this range of applica-
bility is compatible with the restriction to s-wave scattering for the ρ0N - and
ωN -channels in the work of Ref. [7]. This restriction means indeed that this
approach applies to final states where the time-like photon has little relative
motion with respect to the nucleon, i. e. to the e+e− pairs with the largest
invariant masses allowed by the reaction kinematics.
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3 Calculation of the γ p → e+e−p and γ n → e+e−n cross sections

Using the Bethe-Heitler and vector meson amplitudes described in the previous
section, we can proceed to the calculation of differential cross sections for the
γ p → e+e−p and γ n → e+e−n reactions.

The e+e− pair produced in the final state is characterized by the electron and
positron 3-momenta ~p− and ~p+. The reduction of these six variables with the
aim of exhibiting the physics of interest in the γ N → e+e−N reactions is an
important issue.

If the leptonic phase space is fully integrated out, the interference terms be-
tween the Bethe-Heitler and vector meson amplitudes cancel. This is a conse-
quence of Furry’s theorem [17] which states that Feynman diagrams containing
a closed fermion loop with an odd number of photon vertices do not contribute
to physical processes because the two orientations of the loop lead to identical
terms of opposite sign. The fully integrated dilepton mass spectra, dσ/dm2

e+e− ,
are therefore the incoherent sums of Bethe-Heitler pair and vector meson pro-
duction processes. In view of the smallness of the cross sections it is likely
that these mass spectra will be the first measurements available close to the
vector meson production threshold. Because the Bethe-Heitler cross section
can be calculated accurately, they provide access to the vector meson pro-
duction terms and in particular to the ρ0-ω interference in the e+e− channel.
This interference pattern is the quantity of interest to study the excitation of
baryon resonances through vector fields. We remark that the incoherent sum
of Bethe-Heitler and vector meson contributions in the γ N → e+e−N reac-
tion is symmetric under the exchange of the electron and positron momenta.
It can be determined experimentally by measuring this process without distin-
guishing the positron and the electron in the final state as emphasized in Ref.
[18]. Another technique, used many years ago at DESY [19] for high energy
incident photons scattered diffractively, is to detect e+e− pairs symmetrically
around the beam axis.

The interference of Bethe-Heitler pairs with e+e− pairs produced by the decay
of vector mesons reflects in asymmetries [20,21]. They are defined by subdi-
viding the lepton pair phase space into two hemispheres. Let us consider first
the rest frame of the produced e+e− pair. We call forward and backward elec-
trons those characterized by cos (~p−, ~q ) > 0 and cos (~p−, ~q ) < 0 respectively.
If the e+e− pair is moving, the ~p−.~q product can be generalized naturally by
the Lorentz invariant quantity 1

2
q (p+ − p−). We can then project the cross

section onto the forward and backward hemispheres using the θ functions,
θ [+q (p+ − p−)] and θ [−q (p+ − p−)]. We refer to these projections as σ+ and
σ−. The backward hemisphere is clearly obtained from the forward hemisphere
by interchanging the electron and positron momenta. We choose as angular

12



variable the scattering angle θ of the lepton pair (or equivalently the Mandel-
stam variable t = (q̄ − q)2). This variable will prove very useful to distinguish
pairs arising from Bethe-Heitler and vector meson production processes.

The sum of the doubly differential cross sections

[

d σsym

d q2 d t

]

γ N→e+e−N
=
[

d σ+

d q2 d t

]

γ N→e+e−N
+
[

d σ−

d q2 d t

]

γ N→e+e−N
, (20)

is symmetric for the interchange of the electron and positron momenta and
contains no interference of Bethe-Heitler pairs with e+e− pairs from vector
meson decays. This interference is given by the difference

[

d σasym

d q2 d t

]

γ N→e+e−N
=
[

d σ+

d q2 d t

]

γ N→e+e−N
−
[

d σ−

d q2 d t

]

γ N→e+e−N
, (21)

expressing the property that it is antisymmetric under the interchange of
the electron and positron momenta as a consequence of the opposite charge
conjugation parity of the Bethe-Heitler and vector meson decay amplitudes
[20,21]. This effect was used to measure the quantum interference of Bethe-
Heitler pairs and e+e− pairs from vector meson decays at high energy, using a
two-arm spectrometer with right and left arms positioned at different angles
with respect to the beam direction [22].

In the center of mass reference frame, the differential cross sections for the
γ p → e+e−p reaction projected onto the forward and backward hemispheres
are given by

[

d σ±

d q2 d cos θ

]

γ p→e+e−p
=

M2
p

64 π2s

|~p |
|~p |

∫ d3~p+

(2π)3

me

p0
+

∫ d3~p−
(2π)3

me

p0
−

×
∑

λ,λ,λγ ,λ+,λ−

|Mγ p→e+e−p| 2θ [ ± q · (p+ − p−)] (2π)4 δ4(q − p+ − p−). (22)

The relation between the covariant double differential cross sections of Eqs.
(20, 21) and the angular distributions (22) reads simply

d σ±

d q̄2d t
=

1

2 |~p | |~p |
d σ±

d q̄2d cos θ
. (23)

Performing the integrations over the lepton phase space and summing over
initial and final polarizations, we obtain
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[

d σ±

d q2 d cos θ

]

γ p→e+e−p
=

α

π2

M2
p

64 s

|~p |
|~p |

√

1 − 4 m2
e

q2

(

|e|2
t2

CBH

+
∑

V,V ′J,J ′,h

fV

M2
V

fV ′

M2
V ′

C
(JJ ′, h)
VM M

(Jh)
γ p→V p SV (q̄2) M

†(J ′h)
γ p→V ′ p S†

V ′(q̄2)

±
∑

V,J,h

|e| fV

M2
V t

C(Jh)
asym

(

M
†(Jh)
γ p→V p S†

V (q̄2) + M
(Jh)
γ p→V p SV (q̄2)

)

)

, (24)

where the symbols SV stand for the vector meson propagators,

Sρ(q
2) ≡ 1

q2 − M2
ρ + iΓρ(q2) Mρ

, Sω(q2) ≡ 1

q2 − M2
ω + iΓω Mω

, (25)

with the energy-dependent ρ-width given by

Γρ(q
2) = Γρ

Mρ
√

q2

(

q2 − 4 m2
π

M2
ρ − 4 m2

π

)
3

2

. (26)

Γρ and Γω denote the widths at the peak of the ρ and ω resonances. The

invariant production amplitudes M
(Jh)
γ p→V p were introduced and discussed in

the previous section. The set of dimensionless functions CBH, CVM and Casym

are of kinematical origin and do not contain any dynamical information but
the electromagnetic form factors of the proton. Their derivation is discussed
in the Appendix.

The coefficient CBH represents the Bethe-Heitler pair production mechanism
in accordance with the early work of Drell and Walecka [14] and reads

CBH =
|e|2 |F (p)

1 (t) + F
(p)
2 (t)|2

M2
p (q̄2 − t)2

(

(q̄2)2 + t2
)

(

t − 2 t arcth

√

1 − 4 m2
e

q̄2

)

− 4
|e|2 (|F (p)

1 (t)|2 − t
4 M2

p

|F (p)
2 (t)|2)

M2
p (q̄2 − t)4

(

(M4
p t + s t (−q̄2 + s + t)

+M2
p

(

(q̄2)2 − (q̄2 + 2 s) t
)

)

(

(q̄2)2 + t2
)

arcth

√

1 − 4 m2
e

q̄2

+ 2
|e|2 (|F (p)

1 (t)|2 − t
4 M2

p

|F (p)
2 (t)|2)

M2
p (q̄2 − t)4

(

(q̄2)2 (M2
p − s) (M2

p + q̄2 − s) t

+q̄2
(

6 M4
p + 3 M2

p (q̄2 − 4 s) + (q̄2 − 3 s) (q̄2 − 2 s)
)

t2

+
(

M4
p − 2 (q̄2)2 + 5 q̄2 s + s2 − M2

p (5 q̄2 + 2 s)
)

t3

+M2
p (q̄2)4 + (q̄2 + s) t4

)

+ O
(

m2
e

)

. (27)
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The coefficients C
(JJ ′, h)
VM contain the contribution of the square of the sum of

the vector meson photoproduction amplitudes to the lepton pair production
cross section. As suggested by Eq. (24), there are many terms reflecting inter-
ference effects among amplitudes with different total angular momenta J and
J ′ in the vector meson-nucleon channel as well as the interfering ρ0p → e+ e−p
and ωp → e+ e−p final states. We have

C
( 1

2

1

2
, 1
2
)

VM =
(Mp +

√
s )2 − q̄2

144 M2
p q̄2 s2

(

q̄2 + 2 m2
e

)

(

M4
p + (q̄2)2

+10 q̄2 s + s2 − 2 M2
p (q̄2 + s2)

)

,

C
( 3

2

3

2
, 1
2
)

VM =
(Mp +

√
s )2 − q̄2

36 M2
p (s − M2

p )2 s2 q̄2

(

q̄2 + 2 m2
e

)

(

M8
p − 2 M6

p (q̄2 + 2 s)

−2 M2
p s2

(

(q̄2) (q̄2 + 8 s) + 2 s2 − 3 (q · q̄) (q̄2 + 2 s)
)

+s2
(

12 (q · q̄)2 + (q̄2)2 + 7 q̄2 s2 + s2 − 6 (q · q̄) (q̄2 + s2)
)

+M4
p

(

(q̄2)2 + (−6 q · q̄ + 11 q̄2) s2 + 6 s2
)

)

,

C
( 3

2

3

2
, 3
2
)

VM =
(Mp +

√
s )2 − q̄2

12 M2
p (s − M2

p )2 s q̄2

(

q̄2 + 2 m2
e

)

(

M4
p (2 q · q̄ + q̄2)

−2
(

2 (q · q̄) (M2
p + q · q̄) + (M2

p − q · q̄) q̄2
)

s

+(2 q · q̄ + q̄2) s2 − 2 M2
p (q · q̄) q̄2

)

,

C
( 1

2

3

2
, 1
2
)

VM =
(Mp +

√
s )2 − q̄2

72 M2
p (s − M2

p )2 s2 q̄2

(

q̄2 + 2 m2
e

)

(

− M4
p (M2

p − q̄2)2

+2 M2
p

(

2 M4
p + M2

p (6 q · q̄ − 4 q̄2) + q̄2 (−6 q · q̄ + q̄2)
)

s

−
(

6 (M2
p + 2 q · q̄)2 − 2 (5 M2

p + 6 q · q̄) q̄2 + (q̄2)2
)

s2

+4 (M2
p + 3 q · q̄ − q̄2) s3 − s4

)

. (28)

The dependence on the center of mass scattering angle θ is contained in the
q · q̄ product according to

q · q̄ = p
√

q̄2 + p̄2 − p p̄ cos θ . (29)

The kinematical functions C
(JJ ′,h)
VM are symmetric under the exchange of the

indices J and J ′. Properly averaged over the scattering angle θ, they vanish
identically for J 6= J ′.
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The coefficient functions C(Jh)
asym characterize the kinematics of the interference

among the vector meson and the Bethe-Heitler terms. They read

C
( 1

2

1

2
)

asym =
|e|F1(t)

8
√

6 M2
p (s − M2

p ) (q̄2 − t)3 s

(

− M6
p t2 (3 q̄2 + t)

−2 M5
p

√
s t
(

− 2 (q̄2)2 + q̄2 t + t2
)

+2 M3
p

√
s (q̄2 − t)

(

(q̄2)3 − q̄2 (q̄2 + 4 s) t − 2 s t2
)

+M4
p t
(

− 2 (q̄2)2 (q̄2 − 2 s) + q̄2 (q̄2 + 7 s) t + (q̄2 + s) t2
)

−Mp

√
s (q̄2 − t)

(

(q̄2)3 (q̄2 − 2 t) − 2 s2 t2

+q̄2 (q̄2 − 2 s) t (2 s + t)
)

+ s2 t
(

− 3 (q̄2)3 − t2 (s + t)

+2 (q̄2)2 (2 s + t) + q̄2 t (s + 2 t)
)

+ M2
p s
(

(q̄2)3 (2 q̄2 − t)

+(t − 5 q̄2) t2 (s + t) + (q̄2)2 t (−8 s + 3 t)
)

)

+
|e|F2(t)

32
√

6 M3
p (

√
s + Mp) (q̄2 − t)3 s

(

2 M6
p t2 (3 q̄2 + t)

+4 M5
p

√
s t2

(

3 q̄2 + t
)

+ M4
p t2

(

q̄2 (q̄2 − 6 s) − 2 (q̄2 + s) t

+t2
)

+ 4 M3
p

√
s t
(

(q̄2)3 − q̄2 (q̄2 + 6 s) t − (q̄2 + 2 s) t2

+t3
)

+ M2
p

(

− 2 (q̄2)5 + (q̄2)3 (3 q̄2 + 10 s) t

−q̄2 ((q̄2)2 + 16 q̄2 s + 6 s2) t2 + ((q̄2)2 + 2 q̄2 s − 2 s2) t3

−(q̄2 − 4 s) t4
)

+ 2 Mp

√
s t
(

− 3 (q̄2)4

+2 s2 t2 − (q̄2)2 t (8 s + t) + (q̄2)3 (4 s + 5 t)

+q̄2 t (6 s2 + 4 s t − t2)
)

+ s t
(

− 2 (q̄2)4 − (q̄2)2 t (5 s + t)

+(q̄2)3 (2 s + 3 t) − t2 (−2 s2 + s t + t2)

+q̄2 t (6 s2 + 4 s t + t2)
)

)

+ O
(

m0
e

)

, (30)

C
( 3

2

1

2
)

asym =
|e|F1(t)

4
√

6 M2
p (s − M2

p )2 (q̄2 − t)3 s

(

− M8
p t2

(

3 q̄2 + t
)

+M7
p

√
s t
(

− 2 (q̄2)2 + q̄2 t + t2
)

−M5
p

√
s (q̄2 − t) ((q̄2)3 − 2 q̄2 (2 q̄2 + 3 s) t + 3 (q̄2 − s) t2)

+M3
p

√
s (q̄2 − t) ((q̄2)3 (2 q̄2 + s) − 2 q̄2 (2 (q̄2)2

+3 q̄2 s + 3 s2) t + (2 q̄2 − s) (q̄2 + 3 s) t2)

+M6
p t (−2 (q̄2)2 (q̄2 + s) + q̄2 (q̄2 + 13 s) t
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+(q̄2 + 5 s) t2) + M2
p s2 ((q̄2)4 + (q̄2)2 (q̄2 − 6 s) t

−5 q̄2 (2 q̄2 − 3 s) t2 + (4 q̄2 + 7 s) t3 + 4 t4)

−M4
p s ((q̄2)4 − 4 (q̄2)3 t − 2 (q̄2)2 t (3 s + t)

+3 q̄2 t2 (7 s + t) + t3 (9 s + 2 t)) − s3 t (3 (q̄2)3

+2 t2 (s + t) + 2 q̄2 t (2 s + t) − (q̄2)2 (2 s + 7 t))

+Mp s3/2 (q̄2 − t) ((q̄2)4 − 5 (q̄2)3 t + s2 t2

+(q̄2)2 t (2 s + 7 t) + q̄2 t (2 s2 − 2 s t − 3 t2))

)

+
|e|F2(t) (Mp +

√
s)

16
√

6 M3
p (s − M2

p )2 (q̄2 − t)3 s

(

2 M8
p t2 (3 q̄2 + t)

−2 M5
p

√
s (q̄2 − t) t ((q̄2)2 − 8 q̄2 t − 2 t2)

−M3
p

√
s (q̄2 − t) (2 (q̄2)4 − (q̄2)2 (13 q̄2 + 4 s) t

+8 q̄2 (q̄2 + 4 s) t2 + (3 q̄2 + 8 s) t3) + M4
p (−2 (q̄2)5

+(q̄2)3 (3 q̄2 + 2 s) t − q̄2 ((q̄2)2 + 19 q̄2 s

−36 s2) t2 + ((q̄2)2 + 14 q̄2 s + 12 s2) t3 − (q̄2 − 3 s) t4)

+M6
p t2 ((q̄2)2 + t (−8 s + t) − 2 q̄2 (12 s + t))

+Mp s3/2 (q̄2 − t) t (7 (q̄2)3 + 4 t2 (s + t)

−2 (q̄2)2 (s + 11 t) + q̄2 t (16 s + 11 t))

+s2 t (−2 (q̄2)4 + t2 (2 s + t) (s + 2 t)

+2 q̄2 t (s + t) (3 s + 2 t) + 2 (q̄2)3 (s + 6 t)

−(q̄2)2 t (17 s + 16 t)) + M2
p s (−2 (q̄2)5 + (q̄2)4 t

+(q̄2)2 t2 (35 s + t) + (q̄2)3 t (−4 s + 3 t)

−q̄2 t2 (2 s + t) (12 s + 5 t) + t3 (−8 s2 − 9 s t + 2 t2))

)

+O
(

m2
e

)

, (31)

C
( 3

2

3

2
)

asym =
|e|F1(t)

4
√

2 M2
p (s − M2

p )2 (q̄2 − t)2 s1/2

×
(

− M3
p − M2

p

√
s + Mp s +

√
s (−q̄2 + s + t)

)

(

(M4
p t (2 q̄2 + t) + s t ((−q̄2) (q̄2 − 2 s) + (q̄2 + s) t)

+M2
p ((q̄2)3 − q̄2 (q̄2 + 4 s) t − 2 s t2))

)

+
|e|F2(t) (Mp +

√
s)

16
√

2 M3
p (s − M2

p )2 (q̄2 − t)2 s1/2

(

2 M4
p

√
s t2 (2 q̄2 + t)
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−2 M5
p t ((q̄2)2 + q̄2 t + t2) + M2

p

√
s t (4 (q̄2)3 − q̄2 (3 q̄2 + 8 s) t

−2 (q̄2 + 2 s) t2 + t3) + M3
p (−2 (q̄2)4 + (q̄2)2 (q̄2 + 4 s) t

+4 q̄2 s t2 + (q̄2 + 4 s) t3) + Mp s t ((q̄2)3 − 2 (q̄2)2 s

+q̄2 t (−2 s + t) − 2 t2 (s + t)) + s3/2 t2 (−3 (q̄2)2

+2 q̄2 (2 s + t) + t (2 s + t))

)

+ O
(

m2
e

)

. (32)

The derivation of the cross section in the other iospin channel, γ n → e+e−n,
is completely similar, with the obvious replacement of Mγ p→ρ0p and Mγ p→ω p

by Mγ n→ρ0n and Mγ n→ω n and of F
(p)
1,2 by F

(n)
1,2 .

4 Numerical results

We begin the presentation of our numerical results by displaying e+e− pair
spectra where the leptonic phase space is fully integrated. As discussed earlier,
there is no interference between Bethe-Heitler and vector meson decay ampli-
tudes in that situation. We show first spectra at

√
s=1.75 and 1.65 GeV, i.e.

just above and just below the ω-meson production threshold. These results
are presented in Fig. 4 for the γ p → e+e−p reaction and in Fig. 5 for the
γ n → e+e−n reaction. To unravel the dynamics of the dilepton production
process, we display separately the Bethe-Heitler and vector meson decay con-
tributions to the cross sections and the decomposition of the vector meson
decay cross sections into the ρ, ω and ρ-ω interference terms for the two pos-
sible spin channels (J=1/2 and J=3/2).

We consider first the differential cross sections dσ/dm2
e+e− above threshold at√

s=1.75 GeV. We see that they are dominated by the vector meson contribu-
tion in the region of interest (0.7 < m 2

e+e− < 0.8 GeV), with cross sections of
the order of a few nbarn per GeV2. The pattern for proton and neutron targets
is quite different. The origin of this effect is the quantum interference between
ρ- and ω-meson e+e− decays. This interference is constructive for proton tar-
gets and destructive for neutron targets, particularly in the J=3/2 channel.
This feature can be understood from the opposite signs of the γ p → ωp and
γ n → ωn amplitudes in the (J,h)=(3/2,3/2) channel displayed in Fig. 3. We
note also that the γ N → ωN amplitudes are mostly real at threshold while
the γ N → ρN amplitudes have large imaginary parts, indicating a significant
relative phase between them in these kinematics. Even though the underly-
ing dynamics is quite different, the interference pattern obtained just above
threshold for proton targets is quite similar to the corresponding shape deter-
mined from the data of Ref. [19] in the diffractive regime.
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Fig. 4. Integrated spectra for the γ p → e+e−p reaction at
√

s=1.75 and 1.65 GeV
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Fig. 5. Same as Fig. 4 for the γ n → e+e−n reaction.

19



Close but below threshold, at
√

s=1.65 GeV, the contributions of the Bethe-
Heitler and vector meson production processes to the differential cross sections
become comparable. All experimental studies of the vector meson photopro-
duction amplitudes below threshold in the dilepton channel will therefore re-
quire a careful subtraction of the Bethe-Heitler contribution. Below the ω-
meson production threshold, the ρ-meson production and decay into e+e−

pairs dominates the vector meson contribution. The γ N → e+e−N reaction is
therefore a very useful tool to study ρ-meson photoproduction below thresh-
old. In this regime the γ N → ρN process is indeed very hard to extract
from the γ N → π+π−N cross section because of the large contribution of
the γ N → ∆ π reaction. We observe again that the ρ − ω interference is
constructive for proton targets and destructive for neutron targets.

We display in Fig. 6 the integrated spectra for the γ p → e+e−p and γ n →
e+e−n reactions at

√
s=1.55 GeV. This particular center of mass energy is

of much interest because the amplitudes depend sensitively on the presence
of two resonances whose coupling to vector mesons is poorly known, the
N*3/2−1/2(1520) and the N*1/2−1/2(1535) (see Fig. 3). The Bethe-Heitler pairs
are dominant for all pair invariant masses. The ρ−ω interference is large and
intricate. It leads to particularly small cross sections for neutron targets.
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Fig. 6. Integrated spectra for the γ p → e+e−p and γ n → e+e−n reactions at√
s=1.55 GeV together with their different components.
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In Fig. 7 and 8, we show the
√

s dependence of dσ/dm2
e+e− for given values

of the e+e− pair invariant mass, me+e−=0.55 GeV and 0.65 GeV. We recall
that our model is valid for values of me+e− not too far from (

√
s - MN). It

is nevertheless interesting to draw the cross sections over a large range of
energies to see the relative behaviours of the Bethe-Heitler and vector meson
cross sections, keeping the above restriction in mind.
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We present now results for the symmetric and asymmetric cross sections de-
fined by Eq. (24). We display them first integrated over the e+e− pair scat-
tering angle in Figs. 9 and 10 at

√
s=1.75 and 1.65 GeV for the γ p → e+e−p

and the γ n → e+e−n reactions respectively. The symmetric part is the total
cross section and hence the sum of the Bethe-Heitler and vector meson cross
sections shown in Figs. 4 and 5. The antisymmetric part reflects the inter-
ference of the Bethe-Heitler and vector meson pairs. The comparison of the
symmetric and antisymmetric cross sections calls first for a general remark:
the antisymmetric cross section is much smaller (by more than two orders of
magnitude in the mass range of interest) than the symmetric cross section.
The asymmetric cross section consists of terms reflecting the interference of
Bethe-Heitler pairs with ρ-meson and ω-meson decay pairs respectively. We
see from Figs. 9 and 10 that the Bethe-Heitler ρ-meson interference is the
dominant contribution, except for pairs arising from the decay of ω-mesons
produced on the mass-shell slightly above threshold.

To gain understanding of these results, we show in Figs. 11 and 12 the angular
dependence of the Bethe-Heitler, vector meson and interference contributions.
The angle θ is the emission angle of the e+e− pair in the center of mass frame.
Figs. 11 and 12 indicate that the pairs originating from Bethe-Heitler processes
and vector meson decays are produced in very different regions of phase-space.
The Bethe-Heitler pairs are emitted at forward angles while e+e− pairs from
vector meson decays are produced isotropically in the center of mass (recall
that we consider only s-wave vector meson-nucleon channels). The Bethe-
Heitler spectra peak strongly at low e+e− pair invariant masses, while vector
meson decay is enhanced by the proximity of the poles for large e+e− pair
masses. Consequently the quantum interference between the two processes is
very small and most significant at small angles where the Bethe-Heitler cross
section is very large.
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Fig. 11. Angular dependence of the Bethe-Heitler, vector meson and interference
contributions to the γ p → e+e−p cross section at
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The angle θ is the emission angle of the e+e− pair in the center of mass frame.
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Fig. 12. Same as Fig. 11 for the γ n → e+e−n reaction.
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5 Concluding remarks

We have studied the γ p → e+e−p and γ n → e+e−n cross sections close
to the vector meson production threshold (1.4 <

√
s < 1.8 GeV). We have

calculated the Bethe-Heitler and the vector meson decay contributions as well
as their quantum interference. The Bethe-Heitler term is well-known and very
accurately determined. The ρ- and ω-meson decay contributions are computed
using the relativistic and unitary coupled-channel approach to meson-nucleon
scattering of Ref. [7], supplemented with the Vector Dominance assumption
(17) for the time-like photon in the final state. This calculation was performed
in exactly the same theoretical framework as our earlier study of the π N →
e+e−N reaction [9].

The γ N → e+e−N processes involve two kinds of quantum interferences, the
Bethe-Heitler-vector meson and the ρ-ω interferences. We found the Bethe-
Heitler-vector meson interference to be small because the two processes po-
pulate very different regions of phase space. The ρ-ω interferences are large.
They are constructive for the γ p → e+e−p cross section and destructive for
the γ n → e+e−n process.

Our work shows that the γ p → e+e−p and γ n → e+e−n reactions below
the ω-meson threshold are very sensitive to the coupling of low-lying baryon
resonances to the ρ-meson field. The γ p → e+e−p due to the e+e− decay of
vector mesons in this regime can be determined from the total cross section, as
the Bethe-Heitler term can be calculated and subtracted while its interference
with vector meson pairs can be neglected. Data on the γ p → e+e−p process
close and below threshold would be therefore most useful to provide constraints
on the coupling of low-lying baryon resonances to the ρ-meson field. These
couplings are difficult to determine from other reactions and play a major role
in the dynamics of vector meson propagation in nuclear matter.
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7 Appendix

In this appendix we provide some details on the derivation of the analytical
results (27, 29, 30, 31, 32) displayed in Section 3. First we give an explicit
definition for the coefficient CBH characterizing the differential Bethe-Heitler
cross section

CBH(s, t, q̄2) = −m2
e Nµν

BH(p̄, p) 〈EBH
µν 〉(q̄, q) ,

Nµν
BH(p̄, p) = tr

[(

|e|F (p)
1 (t) γµ +

i |e|
2 Mp

F
(p)
2 (t) σµα (p̄ − p)α

) /p + Mp

2 Mp

×
(

|e|F (p)
1 (t) γν − i |e|

2 Mp

F
(p)
2 (t) σνβ (p̄ − p)β

) /̄p + Mp

2 Mp

]

,

Eµν
BH(p+, p−, q) = tr

[/p− + me

2 me

Lµα(p+, p−, q)
/p+ − me

2 me

γ0 L†,ν
α(p+, p−, q) γ0

]

,

Lµν(p+, p−, q) = γµ
1

/q − /p+ − me

γν + γν
1

/p− − /q − me

γµ , (33)

where we introduced the phase-space average 〈..〉 of any Lorentz tensor Eµ1,...,µn

〈Eµ1...µn
〉(q̄, q) =

π

m2
e

√

√

√

√

q̄2

q̄2 − m2
e

∫ d3~p+

(2π)3

me

p0
+

∫ d3~p−
(2π)3

me

p0
−

×θ[q · (p+ − p−)] Eµ1...µn
(p+, p−, q) (2π)4 δ4(q − p+ − p−). (34)

The phase-space average is normalized by 〈1〉(q̄, q) = 1. In order to derive an
analytic expression for CBH(s, t, q̄2) it is advantageous to evaluate the phase-
space average of the tensor EBH

µν (p+, p−, q) as introduced in (34) first. In a
second step we contract the result with the tensor Nµν

BH(p̄, p). The calculation
is streamlined considerably by using the identity

〈Eµν〉(q̄, q) = 〈Eαβ Tαβ〉Tµν(q̄, q) +
∑

i,j

〈Eαβ Lαβ
ij 〉L(ij)

µν (q̄, q) , (35)

where we introduced a set of orthogonal Lorentz tensors

Tµν(q̄, q) = gµν −
q̄µ q̄ν

q̄2
− Xµ Xν , Xµ = i

qµ q̄2 − q̄µ (q̄ · q)√
q̄2 (q̄ · q) ,

Lµν
11 (q̄, q) =

q̄µ q̄µ

q̄2
, Lµν

22 (q̄, q) = Xµ Xν ,

Lµν
12 (q̄, q) =

q̄µ

√
q̄2

Xν , Lµν
21 (q̄, q) = Xµ

q̄µ

√
q̄2

. (36)
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By means of (35,36) the evaluation of the Bethe-Heitler differential cross sec-
tion (24, 27) reduces to straightforward, though somewhat tedious algebra.
The phase-space average can be performed in the center-of-mass frame of the
lepton pair. The only integration to be performed anew is the one over the
angle defined by the incoming photon and outgoing lepton three-momenta,
i.e. 0 < cos(~q, ~p−) < 1. This follows since all other scalar products of the
available 4-momenta, q̄, p̄, q, and p are determined uniquely by s, t, q̄2 and the
mass parameters.

The computation of the functions C
(JJ ′, h)
VM , characterizing the contributions of

the photo-induced vector meson production amplitudes, is analogous once we
have introduced the definition

∑

h

C
(JJ ′,h)
VM (s, t, q̄2)

√

N
(V )
Jh

√

N
(V ′)
J ′h = −m2

e Nµν
JV,J ′V ′(p̄, p) 〈EVM

µν 〉(q̄, q) ,

Nαβ
JV,J ′V ′ = tr

[ /̄p + Mp

2 Mp

P (J)
αν (w) Γν

V, µ(q, w)

×/p + Mp

2 Mp

γ0 Γ†ν̄
V ′, µ(q, w) P

(†J ′)
βν̄ (w) γ0

]

,

Eµν
VM = tr

[/p− + me

2 me

γµ /p+ − me

2 me

γν
]

, (37)

where the normalization factors are given in Eq. (16). The factorization of the
normalization factors implied by the (l.h.s) of (37) is not obvious but can be
shown by an explicit calculation. This formulation leads, after some algebra,
to the analytic expressions (29).

Most tedious is the derivation of the expressions (30-32), characterizing the
interference of the Bethe-Heitler pairs with those produced by the decay of
the vector mesons. We write

∑

h

C(Jh)
asym

√

N
(V )
Jh = −m2

e Nαβ,µ
V J 〈Easym

αβ,µ 〉 ,

Eαβ,µ
asym = tr

[/p− + me

2 me

γα /p+ − me

2 me

γ0 L†,β
µ(p+, p−, q) γ0

]

,

Nαβ,µ
V J = tr

[ /̄p + Mp

2 Mp

(

|e|F (p)
1 (t) γβ +

i |e|
2 Mp

F
(p)
2 (t) σββ̄ (p̄ − p)β̄

)

×/p + Mp

2 Mp

γ0 Γ†ν̄
V, µ(q, w) P

(†J)
αν̄ (w) γ0

]

, (38)

where the consistency of the definition (38) can again be checked by an explicit
calculation. The evaluation of the phase-space average in (38) is performed
using a generalization of (35). The results are the coefficients (30-32).
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