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ABSTRACT

We present and compare two methods for the reconstruction of the solar coronal magnetic field, assumed to be force-free, from photospheric
boundary data. Both methods rely on a well posed mathematical boundary value problem and are of the Grad-Rubin type, i.e., the couple (B, α)
is computed iteratively. They do differ from each other on the one hand by the way they address the zero-divergence of B issue, and on the
other hand by the scheme they use for computing α at each iteration. The comparison of the two methods is done by numerically computing
two examples of nonlinear force-free fields associated to large scale strong electric current distributions, whose exact forms can be otherwise
determined semi-analytically. In particular, the second solution has a large nonlinearity even in the weak field region – a feature which is not
present in the actual magnetograms, but is interesting to consider as it does allow to push the methods to the limits of their range of validity. The
best results obtained with those methods give a relative vector error smaller than 0.01. For the latter extreme case, our results show that higher
resolution reconstructions with bounded convergence improve the approximated solution, which may be of some interest for the treatment of
the data of future magnetographs.
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1. Introduction

It is well known that a large part of the low solar corona is
dominated by the magnetic field B which is created inside the
sun by a dynamo process and then emerges into the atmo-
sphere. This magnetic field plays an important role in most
structures and phenomena observed at various wavelengths
such as prominences, small and large scale eruptive events, and
continuous heating of the plasma, and therefore it is impor-
tant to understand its three-dimensional properties in order to
elaborate efficient theoretical models. Unfortunately, the mag-
netic field is difficult to measure locally in the hot and tenu-
ous corona. But this can be done at the level of the cooler and
denser photosphere, and several instruments with high resolu-
tion vector magnetographs are currently available (THEMIS,
Imaging Vector Magnetograph (IVM), the Advanced Stokes
Polarimeter (ASP)), or will be shortly available (SOLIS, and
future programmed missions such as SOLAR-B, SOLAR-
ORBITER, Solar Dynamics Observatory (SDO)). This has lead
solar physicists to develop an approach which consists in re-
constructing the coronal magnetic field from boundary data
given on the photosphere.

The problem then consists in solving the set of equilibrium
equations of magnetohydrodynamics (MHD) for given bound-
ary conditions. Actually, some more specific assumptions are

usually added for making the problem tractable, and what is
really considered is a model in which the field is taken, e.g.,
to be potential, linearly or nonlinearly force-free, or to obey
linear magnetohydrostatics. In particular, the nonlinear force-
free case has been the subject of much work, which has lead to
the appearance of many conceptually different methods of re-
construction: Grad-Rubin like methods (Sakurai 1981; Amari
et al. 1997, 1999; Wheatland 2004), based on a scheme origi-
nally proposed by Grad & Rubin (1958), MHD methods (Mikic
& McClymont 1994), Stress-Relax method (Roumeliotis 1996;
Valori et al. 2005), Relaxation methods (Chodura & Schluter
1981; Wiegelmann & Neukirch 2003), Optimisation meth-
ods (Wheatland et al. 2000; Wiegelmann & Neukirch 2003),
Boundary Element method (Yan & Sakurai 2000), and Vertical
Integration method (VIM) (Wu et al. 1990; Cuperman et al.
1991; Demoulin et al. 1992). It is important to note that, al-
though the three components of the magnetic field are mea-
sured on the sun surface, only part of this information – e.g.,
the normal components of the force-free field B and of the elec-
tric current – can be imposed on the boundary in order to get a
well set boundary value problem (BVP) for the mixed elliptic-
hyperbolic system obeyed by B and the force-free function α
(Aly 1989; Amari et al. 1998, 1997; Low 2005). Although
regularization procedures have been successfully developed in
the linear force-free case (Amari et al. 1998) for the ill-posed
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formulation associated to VIM (Wu et al. 1990; Cuperman
et al. 1991; Demoulin et al. 1992), the corresponding non-linear
case still remains non-regularised. It should also be noticed that
is is important for each method to distinguish between the con-
tinuous BVP it does start with and the discrete BVP which is
actually solved on a computer.

In this paper, we are interested in the reconstruction prob-
lem for a nonlinear force-free field by two methods of the Grad-
Rubin type that we call XTRAPOL and FEMQ, respectively.
For them, rigorous existence and partial uniqueness have been
proved (Bineau 1972; Boulmezaoud & Amari 2000), and they
are then based on a well posed BVP. We would like in par-
ticular to address several remaining issues concerning the dis-
crete problem. The first important one is the treatment of the
well known div B = 0 constraint, which still represents a seri-
ous challenge in the development of numerical MHD schemes.
A possible approach is to work with a vector potential A as-
sociated to the magnetic field B with a staggered mesh such
that the approximate solution lies in the functional space that
is in the kernel of the div operator. This is the approach fol-
lowed in Amari et al. (1999), where we first introduced the code
XTRAPOL based on a finite difference scheme. A different ap-
proach avoiding the introduction of A consists in working in a
functional space corresponding to div � 0 Q1 finite elements,
and to minimize div B in the least square sense for the associ-
ated curl−div system corresponding to the elliptic Biot-Savart
problem. It is adopted in the second method, FEMQ, presented
here. The second issue concerns the computation of the force-
free function α (which is constant along the field lines) at each
iteration. This is done by following the characteristics (field
lines) in XTRAPOL, or by solving an hyperbolic linear system
in FEMQ.

To compare these two methods we consider the well known
particular class of force-free fieds derived in Low & Lou (1991)
(referred to hereafter as LowLou solution) and generate two
particular solutions corresponding to two sets of parameters.
Those solutions are associated to a large scale strong enough
electric current distribution. The second solution is introduced
to push the methods to the limits of their range of validity since
the nonlinearities are on a large scale including weak field re-
gion. It is worth noticing that the boundary conditions pro-
vided by the LowLou solution differs from actual data in the
sense that they generally lead to a distribution of α with a sup-
port of the order of or larger than that of Bn, while in general
vector magnetograms show electric currents more concentrated
than Bn. This remark implies that since in Amari et al. (1999)
Bn = 0 and α = 0 on the numerical boundaries other than
{z = 0}, one has to choose a large box and to reduce as well
the error estimates to a smaller inner box. While α � 0 on
5 boundaries for the LowLou solutions, no connection from
those boundaries to strong field region could be found for the
approximated solution, because α is constant along field lines.
In the present paper we introduce a method to deal with non
zero Bn and α on all boundaries for XTRAPOL, which implies
some technical approach to achieve continuity of the vector po-
tential on the edge of the computational box.

Finally we would like to inform the reader that an interest-
ing comparison study of several other reconstruction methods

on the same exact solutions, using the same error diagnostics
have been independently performed in Schrijver et al. (2005).
It is worth noting however that the computations performed in
Schrijver et al. (2005) with an implementation of XTRAPOL
that does not address the above issues of Bn � 0 and α � 0
on the five outer boundaries,( as well as other issues presented
in the next sections), may not be suited for test cases such as
those considered in the present paper. This is however not the
case for solar magnetogram like data of an isolated active re-
gion placed in a large box with no magnetic flux outside, and
for which from multiwavelength observations, there is appar-
ently no magnetic connection with other active regions out of
the field of view, as done in Bleybel et al. (2002); Régnier et al.
(2002); Régnier & Amari (2004). Furthermore it is important
to note that in order to be meaningful, the two methods pre-
sented in the present paper are compared with the correspond-
ing LowLou solution, for exactly the same boundary conditions
applied on the five outer boundaries even for the second test
case (unlike in Schrijver et al. (2005) where various type of
boundary conditions have been considered for this case). It is
indeed well known that the mixed elliptic-hyperbollic nature
of the force-free equations requires boundary conditions that
strongly affect the nature of the solution inside the domain, es-
pecially in the case of a relatively small box. Therefore, com-
paring the figures obtained in this paper with those obtained in
Schrijver et al. (2005) is rigourously meaningful for the first
test case only.

The paper is organized as follows. We first introduce in
Sect. 2.1 the BVP that is to be solved and the general Grad-
Rubin scheme which is the ground of our methods. In Sects. 3
and 4, respectively, we present XTRAPOL and FEMQ. The
two particular solutions used to compare those methods are
then presented in Sect. 5, while comparison results as well
as dependency on the numerical resolution are presented in
Sect. 6. Section 7 gather some concluding remarks.

2. Mathematical framework

2.1. The boundary value problem

In the model we consider in this paper, the corona and the pho-
tosphere are represented by the half-space Ω = {z > 0} and the
plane ∂Ω = {z = 0}, respectively. Ω is assumed to be filled up
with a low beta slightly resistive and viscous plasma embed-
ded in a magnetic field B which is taken to be force-free and to
decrease sufficiently fast to zero at infinity. Therefore, it does
obey the equations

∇ × B = αB, (1)

∇ · B = 0. (2)

It results at once from Eqs. (1) and (2) that the function α sat-
isfies the constraint

B · ∇α = 0 (3)

which merely states that α keeps a constant value along any
field line.

The set of Eqs. (1) and (2) has a mixed elliptic-hyperbolic
structure. Basically, it can be decomposed into an elliptic part
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for B (at α given), and an hyperbolic one for α (at B given),
associated with Eq. (3). To solve for the elliptic part, one should
give the normal component Bn of the magnetic field on ∂Ω,
while to solve for the hyperbolic one, Eq. (3) indicates that the
value of α should be given on the part ∂Ω+ of ∂Ω where Bn >
0, say. This leads us to consider the BVP first introduced by
Grad & Rubin (1958). It consists of Eqs. (1)−(3) along with
the boundary conditions

Bn|∂Ω = b0, (4)

α|∂Ω+ = α0, (5)

where b0 and α0 are two given regular functions, and the
asymptotic condition

lim
|r|→∞

|B| = 0. (6)

In the numerical practice, we need to consider instead of the up-
per half-space the bounded domain Ωb = [x0, x1] × [y0, y1] ×
[z0, z1]. Then the asymptotic condition (6) is no longer use-
ful and the boundary conditions (4)−(5) are imposed on the
whole ∂Ωb.

2.2. Principle of the Grad-Rubin method

In the Grad-Rubin method, the BVP above is solved iteratively,
with its elliptic and hyperbolic parts being solved successively
at each step. More precisely, we look for a sequence (B(n), α(n))
solution of – BVP-GR hereafter –

B(n).∇α(n) = 0 in Ωb, (7)

α(n)|∂Ω+b = α0, (8)

and

∇ × B(n+1) = α(n)B(n) in Ωb, (9)

∇ · B(n+1) = 0 in Ωb, (10)

B(n+1)
z |∂Ωb = b0. (11)

The iteration process is initialized by choosing for B(0) the
unique solution of

∇ × B(0) = 0 in Ωb, (12)

B(0)
z |∂Ωb = b0. (13)

2.3. Some mathematical results

We next recall some general results on the BVP set either in Ω
or in Ωb:

– For the unbounded domain Ω = {z > 0} no existence theo-
rem has yet been proven. However, it seems quite likely that
there is always a solution, at least when α is choosen not too
large, a guess which is reinforced by the proof of existence
recently given in Kaiser et al. (2000) for the case where the
problem is set in an exterior domain – e.g., the exterior of a
sphere – rather than in a half-space.

– For the bounded domain Ωb and α0 not too large, an ex-
istence theorem has been proved (Bineau 1972) for the
solutions in a Hölder functional space (set of functions

sufficiently regular and whose derivatives are also regu-
lar enough, (Brezis 1983)) under the additional assumption
that B has a simple magnetic topology (this means in partic-
ular that B should not vanish in Ω). This theorem has been
extended to more general spaces ((α, B) ∈ L∞ × H1(Ωb)),
which allows for solutions admitting null points and sepa-
ratrix surfaces (Boulmezaoud & Amari 2000).

– When α0 is not too large, uniqueness and continuity of the
solutions with respect to the boundary conditions have been
shown to occur in the bounded domain Ωb (Bineau 1972)
under the topological condition quoted aboved.

It is worth noticing that these results are established by proving
the convergence of the Grad-Rubin procedure – an important
point for grounding safely the two numerical methods that we
present now.

3. Finite differences-characteristics approach:
XTRAPOL

This approach has been presented in Amari et al. (1999).
Therefore we just recall the basics of the approximation, giving
details only for the improvements we have introduced.

3.1. Introduction of the potential vector

To address the div B = 0 constraint, XTRAPOL uses a vector-
potential formulation with a particular gauge defined by

B = ∇ × A in Ωb, (14)

∇ · A = 0 in Ωb, (15)

∇t · At = 0 on ∂Ωb, (16)

where the subscript t in ξt stands for the trace (when it exists)
of the tangential component on the boundary of the operator or
the field ξ. As noted in Amari et al. (1999), this gauge implies
that

∂nAn = 0 on ∂Ωb, (17)

where ∂n f = n̂ · ∇ f .

3.2. BVP for A: BVP-A

In the vector potential formulation, the iteration on B translates
into an iteration on A. A(n+1) is a vector field belonging to the
space [C2(Ωb) ∪ C1(∂Ωb)]3 which solves BVP-A defined by

−∆A(n+1) = α(n)∇ × A(n) in Ωb , (18)

A(n+1)
t = ∇⊥t χ on ∂Ωb, (19)

∂nA(n+1)
n = 0 on ∂Ωb, (20)

where χ is a function whose existence – up to an additive con-
stant – is an immediate consequence of Eq. (16). This BVP is
discretized using finite differences on a non uniform staggered
Cartesian mesh. This implies that the discretized operator curlh

is in the kernel of divh, whence divh B = 0 up to round off
errors.

As remarqued in Amari et al. (1999), the vector poten-
tial is uniquely determined in the chosen gauge at each step.
However, the proof that

∀n ≥ 1, A(n) satisfies ∇ · A(n) = 0 in Ωb
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rests on the condition that ∇ · (α(n)∇ × A(n)) = 0. Although
commutativity of the various operators is analytically fullfilled
(which leads to ∇× A(n).∇α(n) = 0 in Ωb), in general vanishing
of∇·(α(n)∇×A(n)) is not exactly obtained numerically due to the
interpolation of the products of terms which are not collocated.
Therefore, we introduce a first “divergence cleaning” step by
setting

Ĵ
(n)
= J (n) + ∇P(n), (21)

where

J (n) = α(n)∇ × A(n). (22)

Imposing ∇ · Ĵn
= 0 then leads to the BVP for P(n)

−∆P(n) = ∇ · J (n) in Ωb , (23)

∂nPn = 0 on ∂Ωb. (24)

This step allows to get ∇ · A = 0 to a high level of accuracy,
10−9 compared to 10−2 in Amari et al. (1999).

3.3. Normal component of B
Next we consider the problem of the determination of the func-
tion χ appearing in Eq. (19). Clearly, it has to be a solution to

−∆tχ = b0 on ∂Ωb, (25)

but we need also a boundary condition to get it. To discuss this
point, we write ∂Ωb =

⋃
(1≤i≤6) Γi, with Γi denoting its six plane

faces, convening that Γ1 = {z = z0}.
In Amari et al. (1999), we imposed ∂nχ = 0 on ∂Γ1, which

was possible because we had Bn = 0 for 2 ≤ i ≤ 6 (the
general constraint

∫
Ωb

Bn ds = 0 resulting from div B = 0 re-

duces indeed in that case to
∫
Γ1

Bn ds = 0, which is just the
compatibility condition for the homogeneous Neumann prob-
lem for χ on Γ1). With the assumptions made in this Paper,
Bn � 0 on each face Γi in general, and a Neumann condi-
tion on χ cannot be set on each ∂Γi, for 1 ≤ i ≤ 6, since∫
Γi

Bn ds � 0, for 1 ≤ i ≤ 6. The whole boundary ∂Ωb

must be treated as a unique domain on which χ is a solution
to a BVP which consists of Eq. (25) and a boundary condi-
tion implying that At = ∇⊥t χ is the trace of a vector poten-
tial satisfying some continuity conditions on the twelve edges
ei, j = Γi

⋂
Γ j, for 1 ≤ (i, j) ≤ 6. This implies imposing

in the Lipschitzian domains (Buffa & Ciarlet 2001) continu-
ity on χ and some compatibility conditions on the derivatives
on each edge expressing the continuity of A. We achieve those
conditions numerically on our mesh up to 10−11−10−13 for the
numerical resolutions considered in this Paper.

3.4. BVP for α: BVP-α

Unlike in Amari et al. (1999) where we introduced a two-level
iteration procedure for imposing α on the boundary of the do-
main, we keep here only the inner Grad-Rubin iteration loop.
Using our vector potential formulation, Eqs. (7) and (8) may be
rewritten as

∇ × A(n).∇α(n) = 0 in Ωb, (26)

α(n)|∂Ω+b = α0. (27)

As remarqued above, unlike in Amari et al. (1999), no iteration
loop is introduced for imposing a fraction of α.

The characteristics (X; s) is a solution of (Amari et al.
1999)

X′ = B(X), (28)

X(0) = q, (29)

for q given inΩb (the prime symbol standing for differentiation
with respect to the parameter that runs along the characteris-
tics). Then for any node qh ∈ Ωb at which α is defined, one
gets αh as

α(qh) = α0(X∂Ω+b (qh)), (30)

where X∂Ω+b (qh) = X(qh, s∂Ω+b ) is the intersection of {X(q; s) :
s < 0} with ∂Ω+b . Since α0 is known at nodes that do not in
general coincide with X∂Ω+b (qh), we use an interpolation from
its four nearest neighbors.

Unlike in Amari et al. (1999), α is not defined on the cell
faces but rather on the cell vertices. From our experience on re-
constructing coronal magnetic fields from actual vector magne-
tograph data (Bleybel et al. 2002; Régnier et al. 2002; Régnier
& Amari 2004), we found that using one of the two methods
of Amari et al. (1999) (with interpolation inside the domain
while going backwards along the characteristics) has a smooth-
ing effect which may reduce accuracy on data varying on a
small scale. We therefore use a high order Adams-Bashford in-
tegration scheme with adaptive step size, which also allows us
to capture the ending point of the characteristics defining the
limits of the computational box. This method turns out to be
slightly slower than the two ones used in Amari et al. (1999),
but much better accuracy is obtained.

We have improved our convergence criterion compared to
Amari et al. (1999) where the Grad-Rubin iteration loop was
fixed to 4, while the outer iteration loop (which imposes a frac-
tion of α0 on the boundary) was fixed to 20. We now use the
following convergence criterion for the sequence of Bn:

|| B(n+1) − B(n) ||L2(Ωb)

|| B(n) ||L2(Ωb)

< ε , (31)

with ε = 10−6.
As it will be shown in Sect. 6, a total number of iterations of

about 30−50 is sufficient to achieve convergence in most of the
cases. Moreover, the stopping criteria is robust independently
of the data put as boundary conditions. Thus it is not neces-
sary to introduce the outer iteration loop of Amari et al. (1999),
which leads to a total number of iterations of 80.

4. Finite elements approach: FEMQ

We consider now a second approach to BVP-GR. We present
successively the steps for obtaining, respectively, α and B.

4.1. BVP for α

The method of characteristics presented above has some draw-
backs: It requires a certain level of smoothness of the field B,
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Fig. 1. Distributions of Bz and α on the plane {z = 0} for the particular force-free solution FF1 (see text). α is not too small and varies on a
larger scale than Bz.

Fig. 2. Distributions of Bz and α on the plane {z = 0} for the particular force-free solution FF2 (see text). This solution corresponds to an
extreme test case in which Bz is much more concentrated than α. This corresponds to large electric currents on a large scale, a feature actually
rarely observed on vector magnetograms.

and, while being very accurate from the computational point of
view, it can be very time consuming. Certainly, it could be par-
allelized (this is formally possible, unlike for BVP-A), but this
would require some effort since the basic integration scheme
for following backwards a characteristics can be sequentially
only. A (non-obvious) solution could be to perform a domain
decomposition ofΩb in P cubic domainsΩP

b where P is also the
number of processors. One then computes α in each ΩP

b , which
must however have precise knowledge of the global quantity B
in Ωb, and not only its restriction to ΩP

b since going along a
characteristics is not an operation local to ΩP

b but a global one.

For those reasons, we consider an algorithm in which α is
the solution of the linear hyperbolic system

B(n) · ∇α(n) + ε(n)α(n) = 0, in Ωb, (32)

α(n)|∂Ω+b = α0, (33)

where (ε(n))n≥0 is a decreasing sequence of strictly positive real
numbers tending towards zero (Boulmezaoud & Amari 2001).
It is worth noticing that we could also add on the RHS of
Eq. (32) the term ε(n−1)α(n−1), the limits of the sequences of so-
lutions satisfying also (assuming its convergence) Bl · ∇αl = 0.
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The BVP above is solved by a Q1 Finite Elements dis-
cretization, using the functional space Wh = {u ∈ H1(Ωb)3 :
u |K∈ Pk(K), ∀K ∈ Tk}, where Tk is the triangulation of the do-
main (here hexahedraes) – see Brezis (1983) for a definition of
the functional spaces. The discretized problem then reduces to

a1(α(n)
h , vh) = l1(vh) ∀vh ∈ Wh, (34)

where

a1(α, v) = (B(n) · ∇α + ε(n)α, v) −
∫
∂Ω+

αvb0 dω, (35)

l1(v) = −
∫
∂Ω+

α0vb0 dω. (36)

In these expressions, (u, v) stands for the scalar product
in H1(Ωb)3. We are thus lead to a non-symmetric linear sys-
tem, that we solve using an iterative method (BICGSTAB).

4.2. BVP for B

Instead of introducing a vector potential as in the previous sec-
tion, we compute here B(n+1) = b(n+1)+B(0) at each iteration by
solving the curl − div system

∇ × b(n+1) = α(n)B(n) + ∇p(n), (37)

∇ · b(n+1) = 0, (38)

b(n+1) · n̂ = 0. (39)

As the function P in the previous section, the unknown p(n) is
introduced to make the RHS of Eq. (37) divergence-free, and it
is a solution to the BVP

∆p(n) = −∇ · (α(n)B(n)) = ε(n)α(n) in Ωb, (40)

p(n) = 0 on ∂Ωb. (41)

Existence of a solution to the original BVP for (B, α) as the
limit of sequences of BVP above is shown in Boulmezaoud &
Amari (2000).

The first BVP (curl−div system) is solved by using a finite
elements discretization on non divergence-free finite elements,
which amounts to consider the equivalent system

• ∀w ∈ V :

(∇ × b(n+1),∇ × w) + (∇ · b(n+1),∇ · w) = (α(n)B(n),∇w), (42)

• ∀φ ∈ H1
0 :

(∇p(n),∇φ) = −(α(n)B(n),∇φ). (43)

The first problem (which actually minimizes the div B term
in the variational formulation) is solved using the finite ele-
ments subspace Vh ⊂ V defined by Vh = {u ∈ C0(Ω̄b)3; u |k
is affine,∀k; u(M j) · n̂ = 0 ,∀M j ∈ ∂Ωb}, with Ωb discretized by
a triangulation consisting of hexaedres. With a basis {uh} of Vh

one then solves

a2(b(n+1), uh) = (α(n)B(n),∇ × uh) ∀uh ∈ Vh, (44)

with the bilinear form a2 defined by

a2(u, u) = (∇ × u,∇ × u) + (∇ · u,∇ · u). (45)

Fig. 3. Convergence properties of the method XTRAPOL applied to
case FF1 with numerical resolution of 643. The rate of convergence
of the sequences is close to exponential. The norm of the solution has
reached its asymptotic value in about 15 iterations.

Fig. 4. Convergence properties of the method FEMQ applied to
case FF1 with numerical resolution of 643. The rate of convergence of
the sequences is close to exponential as for XTRAPOL, and the norm
of the solution has reached its asymptotic value in about 15 iterations.

We thus end up with a linear algebraic system with a unique
solution b(n+1).

Equation (43) is a Dirichlet elliptic problem. It is solved
as a Poisson equation with an iterative solver. As in the finite
differences-characteristics method, the sequences of BVPs are
solved until convergence is reached, with convergence being
defined in the L2 sense by Eq. (31).
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Fig. 5. Comparison of some field lines of the configurations corresponding to the case FF1 (panel a)) obtained with XTRAPOL (panel b)) and
FEMQ (panel c)) for the same numerical resolution of 643.

Fig. 6. Distribution of α on the plane {z = 0} for the particular force-free solution FF1 (left panel of Fig. 1), and the approximated solutions
obtained with XTRAPOL (left panel) and with FEMQ (right panel) at the same numerical resolution of 643.

5. Test cases

In this section, we introduce the exact solutions used later on to
test and compare the two different approaches described above.
To get them, we first consider the force-free field first derived
in Low & Lou (1991) which is axisymmetric about some axis
and has a singularity corresponding to a point source. With the
same notations as in Amari et al. (1999), it writes in spherical
coordinates

Br =
1

r2 sin θ
∂A
∂θ
, (46)

Bθ = − 1
r sin θ

∂A
∂r
, (47)

Bφ =
1

r sin θ
Q, (48)

where

A =
P(cos θ)

rn
, (49)

and

Q = aA1+ 1
n , (50)

with n an odd integer and a a real constant. P is then a solution
to the boundary value problem

(1 − cos2 θ)
d2P

d(cos θ)2
+ n(n + 1)P + a2 1 + n

n
P1+ 2

n = 0, (51)

P(−1) = P(1) = 0, (52)

and it can be shown to be uniquely determined if its number m
of nodes is imposed a priori – i.e., P = P(n,m).

Next we rewrite the field in the coordinates

X = x cosΦ − (z + L) sinΦ, (53)

Y = y , (54)

Z = x sinΦ + (z + L) cosΦ, (55)
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Fig. 7. Distribution of α on the plane {z = 0.1587} for the particular
force-free solution FF1 (top panel), and the approximated solutions
obtained with XTRAPOL (middle panel) and with FEMQ (bottom
panel) at the same numerical resolution of 643.

Table 1. Various error diagnostics (see text for definition) for com-
parison of XTRAPOL and FEMQ in the case of boundary data corre-
sponding to FF1 and for a numerical resolution of 643. The values of
the diagnostics for the reference case FF1 are displayed. The value of
a norm of div B is also given since this is a key difference in the two
approaches.

Model VC CS NVE MVE || div B ||L∞
XTRAPOL 0.9999 0.9999 0.0208 0.0162 0.53 × 10−14

FEMQ 0.9999 0.9999 0.0097 0.0109 0.056

Table 2. Various error diagnostics (see text for definition) for com-
parison of XTRAPOL and FEMQ in the case of boundary data cor-
responding to FF2 and a numerical resolution of 643. The value of a
norm of div B is also given since this is a key difference in the two
approaches.

Model VC CS NVE MVE || div B ||L∞
XTRAPOL 0.9923 0.6981 0.2684 1.5444 0.44 × 10−14

FEMQ 0.9927 0.6369 0.2631 1.0626 0.09

Table 3. Various error diagnostics (see text for definition) for
XTRAPOL in the case of the reconstruction at the resolution of 1283

of boundary data corresponding to FF1.

Model VC CS NVE MVE || div B ||L∞
XTRAPOL 1283 0.99999 0.99999 0.0043 0.0058 0.15 × 10−13

Table 4. Various error diagnostics (see text for definition) for compar-
ison of XTRAPOL in the case of the reconstruction of boundary data
corresponding to FF2 for the three numerical resolutions 643-1283-
1923, showing the benefit of increasing the resolution.

Model VC CS NVE MVE || div B ||L∞
XTRAPOL (643) 0.9923 0.6981 0.2684 1.5444 0.44 × 10−14

XTRAPOL (1283) 0.9989 0.7630 0.1491 1.0331 0.14 × 10−13

XTRAPOL (1923) 0.9995 0.8326 0.0998 0.7443 0.17 × 10−13

where L > 0 and Φ are given constants (the singular point is
thus located at (0, 0,−L)). Restricting our attention to the part
of space where Z > 0, we thus get in a half-space Ω a force-
free field B without singularity which is fully determined by
fixing the quadruplet (n,m, L,Φ). Unlike in Amari et al. (1999)
where a unique test solution was built up, we consider here two
solutions (referred to as FF1 and FF2 hereafter) corresponding
to two different ranges of nonlinearity. They are defined by the
choices FF1 := (n = 1,m = 1, L = .3,Φ = π/4) and FF2 :=
(n = 3,m = 1, L = .3,Φ = 4π/5), and their distributions of Bz

and α on {z = 0} are shown in Figs. 1 and 2, respectively.
These two solutions allow us to target two ranges of the-

oretical electric current distributions. Indeed, both the current
intensity and the length scale of variation of α compared to
that of Bz are larger for FF2 than for FF, as seen in Figs. 1
and 2. FF2 thus represents an extreme test for the reconstruc-
tion methods.
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Fig. 8. Convergence properties of the method XTRAPOL applied to
the extreme nonlinear case FF2 with numerical resolution of 643. The
rate of convergence of the sequences is close to exponential up to
about 10−4 and decreases up to 10−5, while the norm of the solution
has reached its asymptotical value in about 15 iterations. Further de-
crease of the rate of convergence is difficult to achieve.

Fig. 9. Convergence properties of the method FEMQ applied to
case FF2 with numerical resolution of 643.

It is worth noting that although useful to compare the two
reconstruction approaches, FF1 and FF2 exhibit a particular
feature that is not often observed in photospheric vector mag-
netograms: the support of α is of the order of or larger than
that of Bz while in general vector magnetograms reveal elec-
tric currents that are concentrated on a scale smaller than that
of Bz. This represents a justification for testing on those solu-
tions reconstruction approaches which allow for arbitrary non-
zero distributions of Bn and particularly of α on all boundaries,

Fig. 10. Comparison of some field lines of the configurations cor-
responding to the case FF2 (panel a)) obtained with XTRAPOL
(panel b)) and FEMQ (panel c)) for the same numerical resolution
of 643.

which was not the case in the method proposed in Amari et al.
(1999), where we imposed Bn = 0 and α = 0 on Γi, ∀i ∈ (2, 6).

Finally it is important to notice that for both solutions above
derived by the semi-analytical approach, there always remains
a residual non-zero flux unbalance associated to a non-zero
residual in div B. This residual depends on the numerical reso-
lution used to derive the solutions and is found to be 1.5× 10−2
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Fig. 11. Distribution of α on the plane {z = 0} for the particular force-free solution FF2 (Fig. 2), and the approximated solutions obtained with
XTRAPOL (left panel) and with FEMQ (right panel) at the resolution of 643.

for FF1 and 1.3 × 10−2 for FF2 for a resolution of (643). This
unbalance problem always exists in data resulting from magne-
tograms for which flux-unbalances are often found to be even
much larger. These small residual values do not represent a ma-
jor issue, but should be added as a small source of errors, in par-
ticular for the first reconstruction approach XTRAPOL. As it
will be seen in the next section, the latter keeps indeed div B to
tiny machine round off errors, much below the residual values.

6. Results

6.1. Diagnostics

The error diagnostics used for the comparison of the two ap-
proaches are identical to those defined in Schrijver et al. (2005).
Let u and u be two vectors, and N be the number of computa-
tional nodes. Then we introduce:

– The vector correlation

VC(u, u) =

∑N
i=1 ui · ui√∑N

i=1 | ui |2
√∑N

i=1 | ui |2
· (56)

– The Cauchy-Schwartz correlation

CS (u, u) =
1
N

N∑
i=1

| ui · ui |
| ui || ui | · (57)

– The Normalized Vector Error

NVE(u, u) =

∑N
i=1 | ui − ui |∑N

i=1 | ui |
· (58)

– The Mean Vector Error

MVE(u, u) =
1
N

N∑
i=1

| ui − ui |
| ui | · (59)

The various quantities above are evaluated for u equal to an
exact solution – either FF1 or FF2 – and u equal to a numeri-
cal solution – obtained either with XTRAPOL or FEMQ. One
clearly gets as reference values

VC(u, u) = CS (u, u) = 1, (60)

NVE(u, u) = MVE(u, u) = 0. (61)

As another measure of the quality of the solution we also found
important to report estimates of div B, as well as estimates
of α through few horizontal cuts. Those complementary in-
direct diagnostics are particularly important for formulations
that do not correspond to well posed boundary value problem,
because of overspecification of boundary conditions or con-
straints. Although the two formulations presented in this paper
are well posed, we found useful to present such diagnostics.

We now describe the main results of our numerics. It is
worth noticing that they have been obtained by running the
codes on a single APPLE G5 desktop computer – a supercom-
puter is not needed.

6.2. XTRAPOL vs. FEMQ

To compare the two methods, we consider the two cases FF1
and FF2 reconstructed with the same numerical resolution
of 643 nodes.

6.2.1. case FF1

Figure 3 shows the convergence properties of XTRAPOL
with its rate of convergence in logarithmic scale, and the
L2(Ωb) norm of the solution at each iteration, which is equiv-
alent to the square root of the magnetic energy in non dimen-
sional units. The rate of convergence is almost exponential even
for this finite large scale distribution of α. Our convergence cri-
terion ε = 10−6 is relatively strong since the magnetic energy
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Fig. 12. Distribution of α on the plane {z = 0.1587} for the particu-
lar force-free solution FF2 (top left panel), and the approximated so-
lutions obtained with XTRAPOL (top right panel) and with FEMQ
(bottom left panel) at the resolution of (643). The small ripples on the
bottom panel confirm that the numerical errors are slightly larger for
FEMQ than for XTRAPOL.

Fig. 13. Convergence properties of the method XTRAPOL applied to
the extreme nonlinear case FF2 with three different numerical resolu-
tions (643, 1283 and 1923). The rate of convergence of the sequences is
close to exponential up to about 10−4 and then oscillates at all resolu-
tion. Increasing numerical resolution does not improve the behaviour
of this quantity. The norm of the solution (related to the magnetic en-
ergy) reaches rapidly its asymptotic limit which seems to be indepen-
dent of the resolution. The number just below each curve indicates the
relative L∞ norm of the Lorentz force reached at the end of iterations,
which show that increasing resolution leads to a better force-free final
state.

(actually || B(n) ||) has already reached its asymptotic value at
about iteration 15.

Figure 4 shows the evolution of the same quantities for the
finite elements discretization FEMQ. Clearly, the same features
do appear.

Figure 5 shows a qualitative comparison of some field lines
(having the same footpoints positions) of the nonlinear so-
lutions after convergence has been reached with XTRAPOL
and FEMQ.

A more quantitative comparison performed using the er-
ror diagnostics defined in the previous subsection is shown in
Table 1. It appears that the largest errors obtained for NVE
and MVE are in the limit of a few percents, with slightly
smaller errors for FEMQ whose solution reaches however a
larger value for the divergence of B.

Two cuts of α respectively at the bottom boundary (Fig. 6)
and slightly above in the domain (Fig. 7), show that the er-
rors are relatively small for α in ∂Ω− (which is not imposed
as a boundary condition). This confirms that XTRAPOL and
FEMQ perform almost equally well.

6.2.2. case FF2

For this extreme case which is nonlinear on a large length scale,
one can see in Fig. 8 the convergence properties of XTRAPOL.
In this case the norm || B ||L2 (and then the magnetic energy)
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Fig. 14. Distribution of α on the plane {z = 0.} for the particular force-free solution FF2 (see text) obtained with XTRAPOL at three numerical
resolutions: 643-1283-1923.

has reached quickly its asymptotical value (iteration 10) inside
the region of exponential decrease of the rate of convergence
(up to iteration 15). The rate of convergence decreases up to
about 10−5. However, unlike for FF1, beyond 10−5 it is more
difficult to decrease the rate of convergence in order to achieve
our strong convergence criteria (at this resolution) of 10−6. As
seen in Fig. 9 this kind of behaviour is even worse for FEMQ
since convergence up to 10−4 is even slower and not exponen-
tial (unlike for XTRAPOL), and after more than 60 iteration
the rate of convergence seems to saturate around a value that
does not reach 10−5. It is worth noting that added to the os-
cillations observed in the rate of convergence for FEMQ we
found that the number of iterations used to reach the solu-
tion of the linear system associated to the computation of α
with FEMQ suffers some other oscillations. This behaviour
is not observed with XTRAPOL for which α is computed by
following the characteristics. Although for both methods the
norm || B ||L2 converges rapidly towards its asymptotical value,
the corresponding two solutions reached after 50 iterations for

XTRAPOL and 60 iterations for FEMQ exhibit a difference of
about 7 × 10−4 for this norm.

Let us however look at the configurations obtained after the
rate of convergence is below 10−5 for XTRAPOL and 10−4

for FEMQ. Figure 10 shows some field lines of the configu-
rations obtained with XTRAPOL and FEMQ. It appears that
the matching with the exact solution FF2 is not as good as it
was in the case FF1 at this resolution of 643. More quantitative
measures of the errors are given in Table 2. They do clearly
show that FEMQ and XTRAPOL perform almost equally for
the reconstruction of this extreme case apart for the divergence
of B, although the field lines of the two configurations obtained
with both methods seem generally to agree, they show some
differences. Those relative differences may be related to those
previously observed in the norm || B ||L2 of each solution as
well as those in the divergence of B clearly related to the way
each approach addresses the div B = 0 issue. It is moreover
worth noticing that due to the oscillations in the computation
step of α (for solving the non symmetric linear system), and
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Fig. 15. Distribution of α around the plane {z = 0.1587} for the particular force-free solution FF2 (see text) obtained with XTRAPOL at three
numerical resolutions: 643-1283-1923.

the larger and non exponentially decreasing rate of convergence
for FEMQ (even in the down to the 10−4 phase), this method ap-
pears to be slower than XTRAPOL for this extreme case FF2.
This should however not be taken as a strong drawback since
although the computations presented in this Paper were per-
formed on a single processor machine, the fact that FEMQ used
a linear system solver for computing α implies that this method
requires much less effort to run on a parallel computer.

As for the case FF1 it is instructive to visualise the errors on
α obtained at two heights after reconstructing equilibrium FF2
by the two methods (Figs. 11 and 12). One clearly sees that the
mismatch, although not too large at the bottom boundary, is not
small around z = 0.15.

6.3. Dependance on the numerical resolution:
XTRAPOL

We now consider the effect of increasing the numerical reso-
lution of the reconstruction calculation. Since we have shown

in the previous section that XTRAPOL performs faster than
FEMQ and with a smaller rate of convergence for the case FF2,
as well as for sake of computational time, we consider the
effect of increasing the numerical resolution on the method
XTRAPOL only. It is clear from Table 3 that increasing the
numerical resolution to 128 × 128 × 128 for the nonlinear
case FF1 improves the already relatively good results obtained
with XTRAPOL at the resolution 643.

When the numerical resolution is increased (643-1283-
1923), the convergence diagnostics shown in Fig. 13 show that
the rate of convergence still decreases fastly up to below 10−4,
but then oscillates for the case FF2, while || B ||L2 (square root
of the magnetic energy) always converges rapidly towards a
constant value independent of the numerical resolution.

However Table 4 shows a clear improvement of the er-
ror diagnostics for the solution obtained after XTRAPOL has
reached its minimim rate of convergence. Similar improve-
ments appear in the comparisons of the cuts of α at two heights
for the reconstructed solution and the exact solution FF2
(Figs. 14 and 15), which shows better matching, and in the
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Fig. 16. Comparison of some field lines of the configurations corresponding to the case FF2 (panel a)) reconstructed with the model XTRAPOL
at three numerical resolutions: 643 (panel b)), 1283 (panel c)), and 1923 (panel d)).

comparison of some field lines in Fig. 16. This confirms the
conclusion from convergence diagnostics (||B ||L2 ) that increas-
ing numerical resolution leads to a better approach of a some-
how unique approximated solution, although the rate of con-
vergence remains bounded.

7. Discussion and conclusion

In this paper we have considered two methods for reconstruct-
ing a force-free magnetic field in a bounded domain Ωb from
the given values of its normal component Bn on the bound-
ary and of α on the part of this boundary where Bn > 0. Both
methods have in common to rely on a well posed mathemat-
ical BVP and to belong to the class of iterative Grad-Rubin
methods (Grad & Rubin 1958), in which two sequences of
BVP are solved for B and α, respectively. However, they ad-
dress two separate issues in different ways. The first one is the
way the div B = 0 constraint is solved. In the first method
called XTRAPOL (first introduced in Amari et al. (1999)) a
vector potential formulation allows to achieve this constraint

to round off machine errors, since B is defined in the ker-
nel of the discretized operator divh. On the contrary, the sec-
ond method called FEMQ uses non-zero divergence finite ele-
ments, and a variational formulation of the curl − div system
which minimizes the divergence of B. The second difference
lies in the way the BVP for α is solved. In the current version
of XTRAPOL α is solved using a high order accurate char-
acteristics scheme, while in FEMQ a global linear algebraic
system associated with an hyperbolic BVP is solved. Further
improvements of XTRAPOL with respect to its orignal ver-
sion have been presented: introduction of a Poisson solver to
achieve div A = 0 to a high level of accuracy, and possibility
to handle arbitrary non-zero distributions of Bn and α on the
whole boundary of the domain (in Amari et al. (1999), it was
assumed that Bn = 0 and α = 0 on the faces of the domain, but
the lower one).

To test and compare these methods, we have considered the
particular semi-analytic exact solution derived in Low & Lou
(1991). We have generated two solutions FF1 and FF2, corre-
sponding to different distributions of b0 and α0 on the bound-
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ary. For both solutions, α0 is not small. FF2 actually represents
an extreme nonlinear case in which α0 is even larger, and on a
scale much larger than the distribution of Bn (it is also larger
for FF1). FF2 may be considered as a theoretical challenge to
push the methods to their limits.

Our results show that for the case FF1, XTRAPOL and
FEMQ perform relatively well for reconstructing the equilib-
rium at the numerical resolution of 643, with a slight advantage
for XTRAPOL. The methods converge rapidly: the rate of con-
vergence is close to exponential up to our strong limit criterion
of 10−6. However, for the extreme case FF2, FEMQ appears
to have more difficulties to achieve fast convergence even up
to 10−4. For XTRAPOL, the convergence is exponential up to
a rate of convergence of 10−4, still decreases up to 10−5 and
then oscillates, while the norm of the solution (related to the
magnetic energy of the solution) clearly converges rapidly. The
error diagnotics remain finite for both methods, with a larger
value of the divergence of B for FEMQ which attempts to min-
imise this quantity while for XTRAPOL div B = 0 is achieved
to machine errors. Although FEMQ was found to be slower
than XTRAPOL for the step of computation of α, in partic-
ular for the extreme case FF2, this should not be taken as a
strong drawback. Indeed the fact that FEMQ uses a linear sys-
tem solver for computing α implies that this method requires
much less effort to run on a parallel computer. However we
have not addressed this issue in scope of this Paper, in which
we have presented only computations performed on a desktop
single processor machine.

Increasing the resolution from 643 to 1283 and 1923 con-
firms that the norm of the approximated solution converges
rapidly towards a unique constant value, and that the error di-
agnostics improve, but are still finite, while the rate of conver-
gence keeps the same kind of behaviour.

Due to the existence of vector magnetic field ground mea-
surements and the arrival of several solar space missions with
onboard vector magnetographs, the reconstruction of the solar
magnetic field from photospheric boundary data becomes an
important valuable effort for the solar community. The results
we have presented here may have some interest for this task.
The first constraint on a reconstruction method is that it should
be associated to a well posed boundary value problem. This is
the case for the two methods we have presented here. Another
constraint is that the methods should be able to tackle solar like
flux and electric current distribution, implying in particular a
knowledge of the limits of these methods for treating large
electric currents. Since this issue could be addressed only on
exact force-free solutions, we have considered one of the few
known solutions (Low & Lou 1991). However, although this
solution (FF2) represents a good challenge, it contains an awk-
ward feature that is rarely present in true vector magnetograms:
the length scale associated to the large value distribution of α is
much larger than that of Bn while in the vector magnetograms
that we have considered, we found a distribution of α more
concentrated than that of Bn (Bleybel et al. 2002; Régnier et al.
2002; Régnier & Amari 2004). Therefore our conclusions on

the behaviour of our methods in this case (FF2) should be ex-
trapolated to actual solar data with care. However, our numer-
ical results could still give some feedback to solar data, since
we have shown than increasing numerical resolution leads to
improvement of the error diagnostics and fitting of the approxi-
mated solution. This result, although limited, may imply that in
order to handle some of the active region current distributions,
high enough resolution vector magnetographs should be nec-
essary – which may be considered after all as a “Lapallissade”
conclusion!
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