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1) Introduction  
 

 Very powerful RF cavities are now being developed for future large-scale particle 
accelerators using niobium superconductor. Today’s prototype cavities operate in RF 
surface magnetic fields of up to 180 mT. This is the result of a successful worldwide 
technology development effort over the last decades. 

 
The basic model for Q-slope in SRF cavities, i.e. the reduction of the cavity quality 

factor with increasing operating electric and magnetic fields, is the so-called thermal 
feedback model. The exponential dependence of the BCS surface resistance on 
temperature, in feedback with the dependence of the RF power dissipation on the surface 
resistance ultimately leads to thermal runaway (thermal quench) of the RF exposed 
surface. Before investigating further the high field surface resistance it is important to 
understand better the basic Q slope (or surface resistance increase with applied RF field 
amplitude) due to thermal feedback.  

 
The main purpose of this note is to compare calculations of Q-slope on the basis of the 

BCS resistance and the thermal feedback model with experimental data from cavities. 
The discussion encompasses a wide variety of cavities from DESY, CEA-Saclay, J-Lab 
and Fermilab. This comparison also includes the non-linear correction to the BCS 
resistance as recently proposed by A. Gurevich. 
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2) The Thermal Feedback Model 
 

Although very small, some non-negligible heating occurs when superconducting RF 
cavities are operated at low temperature. The heat generated in the small (nΩ) surface 
resistance is conducted through the niobium bulk and evacuated by the liquid helium. In 
TM01 mode cavities most of the heat is generated in a several cm wide strip around the 
equator area of the cavity, where the magnetic field (and thus the surface current) is 
highest. The peak field area is large enough to allow for a one-dimensional representation 
of the thermal problem (see Fig. 0). The temperature profile across the niobium bulk and  

the temperature drop across the niobium-helium interface can be calculated exactly from 
the steady state heat balance equation (Eq. 1) and the temperature dependent thermal 
properties, conductivity κ and Kapitza conductance hKap. The thermal diffusivity (cp/κ) of 
high purity niobium at low temperature is of the order of 0.01 m2/sec, which, given mm 
thick walls result in a msec thermal equilibrium time. RF pulses are typically of that 
length (or longer) and therefore the process is reasonably well described as in steady 
state. 
 

The following briefly summarizes the thermal feedback model. A more detailed 
discussion can be found in [1]. The steady state heat balance equation (Eq.1) consists of 
conduction and generation terms. The delta-function in the generation term reflects the 
fact that the RF heating is concentrated in a very thin layer. The RF power dissipated per 
unit area in the cavity depends on the RF magnetic field amplitude HRF and the 
(temperature dependent) RF surface resistance Rs(T) as given in Eq. 2. The equation 
assumes that the loss is due to the RF shielding currents only and neglects the 
contribution by electric surface fields.  
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Figure 0: Schematic of thermal model on 
an a FNAL 3rd harmonic cavity prototype.
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The solution of Eq. 1 depends on the surface temperatures on both sides of the niobium 

sheet. The temperature on the RF exposed side, Tm, drives the surface resistance, while 
the temperature on the helium side, Ts, determines the Kapitza conductance. They can be 
derived exactly from the boundary conditions (Eqs. 3 & 4). 
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Eqs. (3) & (4) can be solved for Tm and Ts, for a given HRF, T0 and Rs (Tm,HRF,..). In the 
remainder of this discussion we will use the exact, numerical solutions of Eqs. (3)&(4). 
Appendix 2, however, also discusses the issues related to an analytical model, which is 
often (and should not be) used in other, similar publications.  

 
The strong temperature dependence of the BCS resistance is at the core of the thermal 

feedback. According to this model the increase of the surface resistance with field is the 
result of a feedback process during which the surface temperature increases due to RF 
heating while the RF heating increases with surface temperature. The feedback is strong 
because of the exponential dependence of the BCS surface resistance on temperature. In 
this process the cavity surface temperature ultimately runs away and the thermal model 
therefore could, in the absence of other limitations (such as the critical magnetic field), 
also predict the magnetic field at which the cavity quenches. The quench field due to 
thermal feedback is typically referred to as “thermal quench field” (as opposed to the 
critical field). 
 
 
3) RF Surface Resistance 
 

The RF surface resistance is still subject of intense research. Some surface resistance 
contributions are better known than others. Eq. 5 lists the contributions that are more or 
less known. They are the BCS resistance (Rs,BCS), the residual resistance (Rres), the surface 
resistance due to field enhancement on grain edges (Rs,FE), the surface resistance due to 
trapped magnetic flux (Rs,Btrap). The main parameters on which they depend are also 
listed.   
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The BCS RF surface resistance is the result of the interaction between the RF fields 
(penetrating λ deep into the surface) and the thermally activated electrons above the 
energy gap in the superconductor. A widely used, simplified version of the linear BCS 
resistance is as given in Eq. (6), where the gap parameter α is the superconducting energy 
gap, ∆, normalized on kBTc. The more fundamental equation, which, in the clean limit, 
depends on the gap energy (∆~3 meV) and ξ and λ  the coherence length and penetration 
depth (both ~40 nm), is discussed in [1]. The material parameters ∆, ξ, λ vary strongly 
throughout the penetration depth of the superconductor due to the presence of metallic 
oxides and defects on the surface and along grain boundaries. Therefore, in the absence 
of exact parameter profiles of the material in the cavities, the linear BCS surface 
resistance is typically written in the simpler form as in Eq. 6 with the understanding that 
the parameters A(ω) and α are actually averages of the fundamental parameters (∆, ξ, λ ) 
over λ. 
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As discussed in further detail in [1], Eq. 6 gives the linear BCS surface resistance, i.e. 

the BCS contribution at fields much lower than the critical field. At fields approaching 
the critical field, distortions of the electronic band structure in the superconductor occur, 
leading to additional quasi-particle excitation above the gap and increased BCS loss. The 
first critical field correction term to BCS according to [1] is: 
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where C is a constant that can be calculated from material parameters and is of order 
unity in Nb at ~ 2 K. C as introduced in [1] is approximately given in Eq. 8 (this 
approximation is not valid for T→0, for instance). C increases above one at lower 
temperature and with higher frequency. The larger C becomes the less valid the first 
order development in Eq. 7 becomes. The term µ0Hc is the thermodynamic critical field 
(~180 mT). The highest field reached in cavities to-date is very close to it[2], suggesting 
that it could also be the RF critical field (the most optimistic projections invoke the so-
called superheating field which is ~20% above Hc in Nb).  
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The BCS resistance, which is strongly temperature dependent, can be derived from Q 

measurements in the cavity at different temperatures. The fit of the temperature 
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dependence of the surface resistance allows to separate temperature dependent (BCS) and 
independent (residual,..) surface resistance contributions. This procedure is easiest (and 
usually applied) at low field. At high fields the low and high field BCS contributions 
need to be disentangled, adding difficulty to the procedure.  
 
 
4) General Discussion of the Thermal Feedback Model 
 

As discussed in further detail in [1], some general trends of the thermal feedback model 
can be derived. The general characteristics are a useful guide to a better understanding of 
the “thermal” Q-slope. For instance, a simplified implementation of the thermal feedback 
model can be used to calculate the thermal breakdown field. For that purpose the basic 
equations of the model are simplified (as discussed further in Appendix 2) to provide an 
expression for HRF(T): 
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After inserting the linear BCS resistance (neglecting all other surface resistance 
contributions including the residual resistance) as stated in Eq. 6 one obtains: 
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As discussed in [1] the above expression goes through a maximum with the 

exponential rise of the surface resistance reducing the equilibrium surface heat 
dissipation at surface temperatures beyond the maximum. The region of surface 
temperature at which HRF

2 is below the maximum is that where the surface heating is less 
than could be transported to the helium in the steady state. The maximum RF field and 
the maximum allowable surface temperature can be found from Eq. 10. The surface 
temperature at which the RF field peaks is typically ~0.3 K above bath temperature in 
TESLA type bulk Nb cavities. 

 
The peak surface temperature can also be calculated from the derivative of Eq. 10 

d(HRF
2)/dT=0. As shown in [1] the approximate solution for the peak temperature is 

Tmax~T0+T0
2/(αTc). This result shows that the maximum overheating is, in first 

approximation, independent of the material properties and only a function of the gap 
parameter and the bath temperature. For the bath temperature of 1.8 K, Tmax becomes 1.97 
K, 0.17 K above T0. This illustrates how little overheating is actually needed to thermally 
quench the cavity. This fact explains why the heat balance equation (Eq. 1) of the thermal 
feedback model can often be simplified for approximate solutions using constant thermal 
properties. The maximum temperature can also be used to estimate the Q-drop at the 
thermal quench field from the ratio of the surface resistances at T0 and Tmax. If one 
neglects the residual resistance and takes into account only the linear term of the BCS 
resistance the ratio becomes e.    
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Appendix 2 compares an analytical with the numerical (exact) implementation of the 

thermal feedback model. More can be learned about the thermal feedback there.  
 
 
5) Comparison of Thermal Feedback Model with Cavity Data  
 

The following presents a comparison of model and experimental data. The model 
implementation used in this comparison is a numerical model that solves exactly Eq.3&4. 
The thermal feedback model used the residual and the linear BCS surface resistances 
measured in the cavities at low field (the BCS fit parameters α and ∆ as well as Rs,res are 
listed together with the data in Table 1). Model calculations were performed with and 
without the non-linear correction (Eq. 7&8) to the BCS resistance. The material 
properties (thermal conductivity and Kapitza conductance) were calculated with the 
functional implementations discussed in appendix 1 ((A1-6) & (A1-7)). The thermal 
parameters calculated at the bath temperature are listed together with the calculation 
results as well as in Table 1. Note that the different cavities were often tested at different 
bath temperatures. Also note that the model implementation here assumes uniform 
surface properties and does therefore not include the “hot” or “weak” spots that most 
likely exists in a real cavity. 

 
The most important criterion the experimental data needed to satisfy for this 

comparison is that they needed to have as little Q slope as possible, such as to reduce as 
much as possible the surface resistance to the basic residual and BCS components. This 
condition should obviously improve the agreement between data and model, with the 
model using only BCS (and residual) resistance. All the cavity experimental results 
discussed here were chosen with this criterion in mind. Most cavities were reduced size 
prototypes, with the only exception being the DESY AC70, which is a full-length 9-cell 
TESLA cavity. The Saclay and DESY cavities were electro-polished, while the J-Lab and 
FNAL cavities were BCP etched. The J-Lab cavities and the Saclay cavity C115 were 
also post-purified (heat treated at ~1400°C in the presence of Ti to increase RRR). The 
thermal conductivity function was not modified to account for the increased RRR. The 
data obtained before and after the low temperature (~120°C, 50 hrs) bake are presented. 
Essentially all Q measurements were performed in the CW (=steady state) mode. 

 
Table 1 summarizes the experimental and model parameters used in the comparison. 

The thermal parameters given in the table were calculated at the bath temperature (see 
appendix 1 for the material parameter functions). The parameters for the linear BCS and 
residual resistance were derived from fits of measurements of the surface resistance as 
function of temperature at low power. In this procedure the residual resistance is the 
value to which the Rs(T) data tend at very low temperature, where the BCS resistance 
vanishes. The parameter for the nonlinear contribution C(T.ω) was calculated with Eq. 8 
with the respective ∆ obtained from the fits of the low power linear BCS resistance data. 
The material parameters ξ and λ were assumed to be 40 nm. 
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Table 1: Summary table for data vs model comparison. Parameters for the model calculations: 
Linear (∆/kBTc, A(ω), Eq. 6) and non-linear BCS resistance (C (T0,ω), Eq. 7&8), thermal 
conductivity (κ, Eq. A1-6) and Kapitza conductance (hKap, Eq. A1-7). Data out(inside) parentheses 
are for before(after) the low temperature bake. * assumed values. 

 C-103 C-115 D-AC70 F-3C-1 J-LLSC J-OCSC 
T0 (K) 1.44 1.6 2 (1.9) 1.8 2.0 1.4 
G (Ω) 283 283 270 291 282 273 
d (mm) 2.6 2.6 2.6 2.6 2.6 2.6 
κ(T0)  (W/K/m) 6.1 7.6 11.22 9.9 12.7 5.8 
hKap(T0) (W/K/m2) 1090 1780 3956 3080 5021 956 
RRR * 300 300 300 300 300 300 
Rres (nΩ) 3.2 (4.2) 1 (2) -10 (5.2) 10 17 (9.4) 3.6 (5) 
Rbcs,lin(T0) (nΩ) 0.5 (0.3) 1.7 (1.05) 24 (4.3) 40 31 (20) 3.9 (5.1) 
∆/kBTc 2 (2.05) 1.97 (1.93) 1.53 (1.94) 1.92 2.1 (1.94) 2.09 (2.15) 
A(ω) (10-5 Ω) 2.76(2.13) 2.5 (1.2) 0.597(1.058) 14.8 4.4 (1.7) 4.46 (2.38) 
Tc (K) * 9.2 9.2 9.2 9.2 9.2 9.2 
ω/2π (GHz) 1.3 1.3 1.3 3.9 1.5 1.5 
C (T0,ω) 4.5 (4.5) 3.6 (3.4) 1.5 (2.5) 2.9 2.6 (2.2) 5.2 (5.5) 
µ0Hc (mT) * 180 180 180 180 180 180 

 
 
Figure 1 compares the model results with the state of the art electro-polished TESLA 

single cell cavity C-103, manufactured and tested at CEA/Saclay [3]. After baking this 
cavity is among the best ever tested, reaching surface fields consistent with a 40 MV/m 
average accelerating gradient. As becomes clear in this comparison the thermal feedback 
model under-estimates the Q slope in the cavities, even after baking. This discrepancy 
remains even after taking into account the non-linear BCS component (Eqs. (7)&(8)). 
Furthermore, even strongly reduced thermal properties do not result in a better 
agreement. Could this be an indication for an additional surface resistance contribution? 

 
Also of interest is that the steep slope at ultimate fields in the non-baked case appears to 

clearly depart from the Q characteristic that the thermal feedback models predict. The 
slope is almost exponential and cannot be fitted with any n as in HRF

n. Figure 2 shows a 
similar situation as in Figure 1, except that it is for a different cavity (CEA/Saclay–C-
115). Differently from C-103, the data can be fitted with the model including the non-
linear BCS contribution (while it cannot when using only the linear BCS resistance). As 
before in the case of C-103 the ultimate Q-slope before baking cannot be fitted with any 
BCS resistance implementation.  

 



 P. Bauer et al. 

4/20/2005    Q-Slope Models vs Data for bulk Nb SRF Cavities  8

1.0E+09

1.0E+10

1.0E+11

0 20 40 60 80 100 120 140 160 180 200

Peak RF field (mT)

Q
ua

lit
y 

fa
ct

or
 - 

TE
SL

A
 s

in
gl

e-
ce

ll

numerical
k=6.1, h=1090

CEA C103 1.44K   
before/after bake

with non-linear correction 
(C=4.5, Hc=180mT)

 
Figure 1: Comparison of measured and predicted quality factor of a CEA/Saclay single cell TESLA 
cavity (C 103) before and after baking. Experimental data were obtained at 1.44 K. 
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Figure 2: Comparison of measured and predicted quality factor of a CEA/Saclay single cell TESLA 
cavity (C 115) before and after baking. Experimental data were obtained at 1.6 K. 

 
Among the best DESY cavities is AC70, a 9-cell TESLA cavity. The comparison 

between experimental data and those obtained with the thermal feedback model is shown 
in Figure 3. The comparison shows that the thermal feedback model with linear BCS 
resistance only, underestimates the data before and after baking for most fields. The 
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inclusion of the non-linear contribution yields a better agreement between data and 
model. The non-linear model in fact overestimates the Q-slope in the mid-to-high field 
region. An increased thermal conductivity could in part reduce the discrepancy. This 
would produce a case that is very similar to the Saclay C 115 case discussed above. 
Again, as with C-103 and C-115, the ultimate Q slope of AC70 before quenching of 
before (but also after) baking is not well described by the thermal feedback model. 

 
The results obtained on a high-performance, low-loss J-Lab CEBAF type (1.5 GHz) 

single-cell cavity (LLSC) can be described in similar terms as those of DESY AC70 and 
Saclay C-115. The inclusion of the non-linear BCS resistance describes the medium field 
Q-slope reasonably well, while the linear BCS resistance alone underestimates the Q- 
slope (Figure 4). A (four-fold) increase of the thermal conductivity would produce exact 
agreement in that field region. Similarly as in the cases discussed above, the ultimate Q-
slope before baking, however, is steeper than the prediction on the basis of even the non-
linear model and any more or less realistic set of thermal parameters. 

 
Interestingly, a different CEBAF single cell cavity, OCSC (original CEBAF shape), 
recently built at J-Lab, shows a behavior reminiscent of the Saclay cavity shown in 
Figure 1, where the medium field Q-slope is stronger than described by the thermal 
feedback model even with the non-linear BCS resistance. This cannot be “repaired”, even 
with an extremely low thermal conductivity. That is at odds with the LLSC example 
shown in Figure 4. It is noteworthy that both the Saclay C-103 and the J-Lab OCSC 
cavities were tested at very low temperature (~1.4 K). Could that indicate that the 
prediction of the non-linear resistance with Eq. 8 underestimates the increase of the non-
linear component at lower temperature? Or is there an additional, yet unknown surface 
resistance contribution that appears at temperatures below 1.5 K? 
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Figure 3: Comparison of measured and predicted quality factor of a DESY 9-cell TESLA cavity 
(AC70) before and after baking. Experimental data were obtained at ~1.9 K. 
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Figure 4: Comparison of measured and predicted quality factor of a JLAB low loss, single cell 
CEBAF cavity (LLSC, 1.5 GHz) before and after baking. Experimental data were obtained at 2.0 K. 
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Figure 5: Comparison of measured and predicted quality factor of a JLAB single cell CEBAF cavity 
(OCSC – original CEBAF shape, 1.5 GHz) before and after baking. Experimental data were obtained 
at 1.4 K. 

 
The Fermilab 3.9 GHz cavities represent a special case because of their higher 

frequency and the therefore increased BCS resistance by one order of magnitude. Figure 
6 shows the model/experiment comparison for the first 3-cell 3rd harmonic prototype. The 
Q-slope and quench field (~105 mT) are more or less consistent with that predicted with 
the thermal feedback model including only the linear BCS resistance. The model predicts 
a quench field of 115 mT in this case. This clearly shows that the FNAL 3rd harmonic 
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cavities, unlike the TESLA fundamental mode cavities, are actually limited by thermal 
quench. It is not clear why the non-linear BCS resistance as given in Eq. 8 does not 
appear to describe well the Q slope found in the experiment.  
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Figure 6: Comparison of measured quality factor of a Fermilab 3rd harmonic 3-cell cavity to model 
predictions. Experimental data were obtained at 1.8 K. The numerical model predicts the Q-slope as 
well as the quench field reasonably well.  

 
 
6) Summary  
 

Calculations based on the thermal feedback model were implemented and applied to the 
case of the state of the art SRF cavities from CEA, DESY, J-Lab and Fermilab. This 
comparison revealed the following features:  

 
1) Thermal feedback models based only on linear BCS and residual surface resistance 

(as measured at low field in the respective cavities) under-estimate the Q-slope in 
the cases, in which the measurements were conducted at “typical” temperatures 
(~2 K). These cases require the inclusion of an additional surface resistance term, 
such as the non-linear BCS contribution suggested by Gurevich, [1].  

2) Even the non-linear BCS surface resistance contribution is insufficient to describe 
the very steep, ultimate Q-slope found before baking.  

 
The above observations, however, are contingent upon the assumptions made in the 

model, such as for instance the particular implementations of the thermal conductivity 
function or the choice of RF critical field. The RF critical field was not assumed to vary 
from the before to the after baking condition, for instance. A strong phonon-peak or other 
variations in the thermal conductivity or Kapitza conductance function can explain a 
certain level of disagreement between model and data. No realistic thermal parameters, 
however, can explain the ultimate Q-slope using the thermal feedback model used here.  
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Some “softer” conclusions can also be drawn from this comparison:  
1) The Saclay C-103 and J-Lab-OCSC cavities, which were tested at lower 

temperatures than the others (discussed here) show a Q-slope that is more 
pronounced than that which can be described using the linear and non-linear BCS 
resistance contributions in the thermal feedback model. This observation was also 
made previously by several other groups (see for instance [3]). Reduced thermal 
parameters cannot explain this discrepancy. Could that indicate that the increase of 
non-linear BCS resistance is underestimated in Eq. 8? 

2) The experimental data for the Fermilab 3rd harmonic cavity, which operates at 3.9 
GHz, show that the data are well described with the model using linear BCS 
resistance and residual resistance only. Does this indicate that the non-linear BCS 
resistance model as formulated in Eq. 8 overestimates the non-linear BCS 
resistance increase at higher frequency? 

3) The baking effect cannot be entirely be explained by the change of the linear BCS 
resistance as a result of a reduction of the mfp in the λ-layer. The above 
comparison shows that the ultimate Q-slope is not consistent with the linear BCS 
resistance and therefore this argument is invalid (in fact this was already 
previously pointed out by Visentin [4]). 

4) Cavities with the low surface resistance levels as those discussed here (also 
assuming that they are defect free and not plagued by field emission) do not 
quench because of thermal runaway instability, but rather because they reach the 
RF critical field. The only exception to that case are the Fermilab 3.9 GHz cavities 
which operate at a higher BCS surface resistance and are therefore “thermally” 
limited (i.e. they quench because of thermal feedback).  

 
A widely used and simple way to characterize Q-slope uses the so-called γ parameter 

from the Rs fit in Eq.11. A derivation of Eq.11 is given in Appendix 3. 
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Table 2 lists the γ parameters that fit the experimental data discussed in chapter 5. Note 
that the γ parameters in the first line represent the medium field Q-slope (for which the 
thermal feedback model is usually a good approximation). The parameters in the second 
line are those of the ultimate Q-slope, which cannot really be fitted by the thermal 
feedback model (as discussed above). The purpose of listing these numbers is to show 
that they are two orders of magnitude larger than those for the medium-field Q-slope. The 
predicted values on the basis of Eq. (A3-3) in Appendix 3 is γ~2, close to the values 
listed in the first row of the table. 

Table 2: Fit parameter γ (Eq. 25) for all experimental data discussed in chapter 6. 

 C-103 C-115 D-A70 F-3C-1 LLSC OCSC 
γ  (medium field) 3 3 1 1.5 1.5 2.6 
γ  (ultimate field) 500 350 500 - 500 650 
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Does this strong Q-slope before baking hint at a yet unknown surface resistance 
contribution? Could it be the result of a reduced critical RF field, below the 200 mT value 
assumed in this discussion? These are the questions that future research should resolve. 
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Appendix 1) Thermal Material Parameters 
 
 
A1-1) Thermal Conductivity 

 
The following formalism for the thermal conductivity of high purity Niobium is from 

Koechlin-Bonin2. Their model uses modified material constants (indicated with ‘) and 
parameters to calibrate the theoretical model to measurement data. The total thermal 
conductivity is a sum of the electron and phonon contributions.  
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The electron contribution is regulated by the number of electrons at the Fermi-level, 
which are not condensed into the superconducting phase. A polynomial fit of the 
normalized superconducting electron function is (A1-2): 
 

( ) 1)8(8'1282.27848.01017.0104.510 23344 =><<+−+⋅−= −− yRyyyyyyR α  
            (A1-2) 
 
The electronic contributions to the thermal conductivity are given with Wiedemann-Franz 
(L’=2.11x10-8WΩ/K2) and electron-phonon exchange (Fel-phon=7.6x10-7m/W/K). Note that 
the argument of the superconducting electron function is a’Tc/T, with a’=1.53, the 
modified BCS gap parameter. 
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The phonon contribution is given with C1=234 mK3/W and C2=4.34x103 W/K4/m2. Since 
the material considered is of very high purity, the phonon mean free path is assumed to 
be the grain-size. 
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The phonon-peak was (artificially) represented by a sin-function parameterized such as to 
generate a peak at 2 K with an (arbitrary) amplitude A (~10-20)  (A1-5). 
                                                 
2 F. Koechlin, B. Bonin, “Parametrisation of the Niobium Thermal Conductivity in the Superconducting 
State”, CEA internal note DAPNIA-SEA-96-01, Jan. 1996 
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Figure 8 shows recent thermal conductivity data3, indicating the presence of the phonon-
peak in most instances. For a case including the phonon peak a simple fit can be used to 
approximately describe the thermal conductivity rather than using the full-blown 
Koechlin-Bonin model (Equ A1-6). 
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A1-2) Kapitza  Conductance 
 
 

A phenomenological fit for the Kapitza conductance for T-T0<1.4 K was proposed by 
Mittag4. 
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Figure 7 shows the Nb thermal conductivity calculated for RRR=300 with and without 

phonon-peak (A=20). Also shown is the calculation obtained with the fit (A1-6). 
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Figure 7: Thermal conductivity of high purity Nb (RRR=300) according to Koechlin-Bonin. 

 

                                                 
3 Courtesy of D. Reschke / DESY 
4 Cryogenics, Vol. 13, p. 94, 1973 
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Figure 8: Thermal conductivity of Nb for SRF cavities. Courtesy of D. Reschke/DESY. 
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Figure 9: Kapitza conductance between Nb and HeII according to Mittag. 
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Appendix 2) Comparison of Different Implementations of Thermal Feedback 
 

The following compares an analytical implementation of the thermal feedback model to 
the exact model (solutions of equations of 3&4). This comparison will reveal that the 
simplified model fails to describe the surface resistance when approaching the thermal 
quench condition. At fields below the quench field, however, the simplified model is a 
reasonable approximation of the thermal feedback process. The models described are –1- 
the so-called Haebel model, an analytical model which uses temperature independent 
properties and a first order Taylor expansion of the BCS surface resistance and –2- the 
exact model (i.e. the exact solution of Eqs. 3&4). 
 
A2-1) Haebel’s Analytical Model 
 

A simplification, which is not necessarily accurate, but allows derivation of 
approximate solutions of the thermal feedback model, assumes that the thermal properties 
are assumed to be temperature independent. As discussed in section 2) this approximation 
is fairly accurate because the maximum temperature rise that can be tolerated on the 
surface before a thermal quench occurs because of the exponential temperature 
dependence of the BCS resistance. The material properties are typically calculated at the 
bath temperature T0, the surface temperature Tm (on the RF exposed surface) or some 
average of them (referred to as T’ here). With temperature independent thermal 
properties the heat balance equation (Eq. 1) becomes: 
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The specific thermal conductance, ktherm, can be calculated from the thermal model 

representing the system. As shown in the schematic in Fig. 0 the thermal model is that of 
a series connection of the Nb thermal impedance and a Kapitza impedance at the Nb-He 
interface. This model assumes infinite conductance in the liquid helium, a good 
assumption in superfluid helium. In helium I this assumption is less good and an 
additional correction due to the thermal impedance of the helium itself would be needed. 
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Equations (A2-1)-(A2-2) can be combined to an equation for the steady state 

temperature on the cavity surface Tm as a function of RF magnetic field amplitude. The 
thermal properties of the material are calculated at some particular temperature T’. In our 
case, in which κ~hKapd, the best choice is T’~0.5(T+T0). 
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To solve Eq. (A2-3), an expression for the surface resistance Rs(T) is needed. Typically 
a combination of residual and BCS surface resistance is used. Experimentally, the BCS 
resistance is derived from Q measurements in the cavity at different temperatures (and 
low power). The fit of the temperature dependence of the surface resistance allows to 
separate temperature dependent (BCS) and independent (residual,..) surface resistance 
contributions. This procedure is easiest at low field (low power). At high fields the 
disentanglement of the low and high field BCS contributions becomes more difficult. 

 
Eq. (A2-3) can be solved easily with, for example, a solver in any commercial math 
software. An analytical thermal feedback model proposed in 1998 by E. Haebel, 
however, has been widely used to describe Q(HRF) for SRF cavities. The Haebel model 
assumes that the BCS surface resistance can be expanded in a Taylor series as follows5 
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Here the temperature drop ∆T = Tm – T0 between the surface temperature Tm and bath 
temperature T0 is assumed small, (∆T << T0), so higher order terms in ∆T can be 
neglected. In turn, ∆T can be calculated from (A2-3), where all thermal parameters are 
taken at T0. Substituting Eq. (A2-3) into Eq. (A2-4) and solving for Rs(T), we obtain the 
non-isothermal surface resistance in the form: 
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With Haebel we assumed T’=T0 in Eq. (A2-5). For small RF field HRF, Eq. (A2-5) 
simplifies to 
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Here dRs/dT at T0 can be calculated using the BCS surface resistance (6): 
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Therefore, the Haebel model predicts a quadratic field dependence of Rs(HRF) at small RF 
fields. It also predicts a thermal breakdown at the magnetic field Hb for which the 
denominator in Eq. (A2-5) goes to zero: 
                                                 
5 “R&D Issues in Superconducting Cavities”, presented at the TTF meeting 1998, DESY Internal 
Document TESLA-98-05 60, 1998; 
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As follows from Eq. (A2-5), the surface resistance Rs(HRF) diverges at Hb indicating a 

main drawback of the Haebel model, which assumes that Tm – T0 is small (∆T << T0), so 
higher order terms in ∆T in Eq. (A2-4) are negligible. However, the fact that ∆T defined 
by Eqs. (A2-3) and (A2-5) becomes infinite at Hb, contradicts the initial assumption of 
the smallness of ∆T. This unphysical result indicates a mathematical inconsistency of the 
Haebel model, which gives incorrect behavior of Rs(HRF) near the thermal breakdown 
field.   

 
Appendix 3 describes a simple (and widely used) model that allows including other 

surface resistance contributions (e.g. non-linear BCS resistance terms) into the Haebel-
model. 

 
A2-2) Exact Model 
 

The exact method consists of the simultaneous solution of Eqs. (3)&(4) using a 
numerical scheme. One possible solution consists of constructing two nested loops two 
temperature arrays that are systematically iterated through in small steps until Ts and Tm 
that solve Eqs. (3)&(4) for a given set of material properties and a chosen HRF are found. 
The method used here in fact uses a built-in solver of a commercial math software to 
solve Eqs. (3)&(4). This method does not imply the calculation of the temperature profile 
across the Nb sheet (which is non relevant information anyways). 

 
A2-3) Model Comparison 
 

Table 3 gives “typical” material properties for a TESLA cavity. The BCS resistance 
parameters were derived from experimental data for one of the best performing 9-cell 
TESLA cavities (DESY AC70). The surface resistance implementation does not include 
the nonlinear correction. The thermal parameters in the table were calculated with the 
functions presented in Appendix 1. In particular the simplified fit (A1-6) was used to 
compute the Nb thermal conductivity (RRR=300, with phonon peak). 
 

Different models were used to simulate the Q-slope of a TESLA cavity for the material 
parameters listed in Table 3. These are the analytical (Haebel) and numerical (exact) 
models. These models are discussed above. The quench at the critical field was not 
implemented in the models. The thermal quench field, calculated with the exact model is 
~415 mT. Real cavities would obviously not be able to reach to the level of field because 
of the critical field limitation. This is of no importance here, however, since the purpose 
of the plots in Figure 10 and Figure 11 is to gauge semi- and analytical models by 
comparing them to the exact model.  
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Table 3: Material parameters used in the thermal model comparison. 

parameter symb unit value comment 
bath temperature Τ0 K 1.9 - 
wall thickness d mm 2.6  
thermal conductivity at T0 κ W/m/K 11.2 w. phon peak, RRR=300 
Kapitza conductance at T0 hKap W/m2/K 5021 Mittag 
BCS resistance parameter A(ω) Ω 1.058⋅10-5 
BCS resistance parameter α - 1.94 
BCS resistance parameter Tc K 9.2  

as in 1.3 GHz 
DESY / A70 cavity    

(after baking) 
surface resistance at T0 Rs(T0) Ω 9⋅10-9 includes 5 nΩ of Rs0 
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Figure 10: Comparison of surface resistance of a TESLA single cell cavity calculated with different 
implementations of the thermal feedback model and the material parameters as specified in Table 3.   

 
The plots in Figure 10 and Figure 11 reveal that the analytical (Haebel) model is not 

well suited to predict the thermal breakdown. Especially the Haebel model also strongly 
under-estimates the Q slope at fields approaching the quench field. The medium field Q-
slope due to thermal feedback, however, is reasonable well fitted with both 
implementations. 
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Figure 11: Comparison of quality factor of a TESLA single cell cavity calculated with different 
implementations of the thermal feedback model and the material parameters as specified in Table 3.  
The star indicates the thermal quench as predicted by the models. 
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Appendix 3) Calculation of γ 
 

As suggested by J. Halbritter6 the Haebel-model (see Appendix 2) can be generalized to 
include many different RF surface resistance contributions other than BCS. The starting 
point for this procedure is Eq. (A2-6) given in the derivation of the Haebel model in 
Appendix 2: 
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To include, for example, the non-linear BCS contribution (according to Eq. 7), the linear 
BCS resistance term in Eq. (A3-1) needs to be multiplied with the field dependent non-
linear correction term (1+Ch2), where h is the reduced field HRF/Hc. This obviously 
assumes that Rs=Rres+Rs,bcs.  
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Here C is assumed constant, so in terms of Eq. 8 C=C(T0,ω). Retaining only the H terms 
with power smaller or equal than two one obtains:  
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As in (A2-6) dRs/dT can be calculated at T0 from Eq.6 (including the residual resistance 
Rres). A typical γ is of order unity (a calculation using the parameters in Table 3, gives γ 
~2). As with the Haebel approximation, this model does not apply to the ultimate Q-drop 
close to the quench field. 
 

                                                 
6 J. Halbritter, “ Degradation of Superconducting RF Cavity Performances by Extrinsic Properties“, Proc. 
of the XIth RF superconductivity workshop, Luebeck, Germany, 2003; 


