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I. INTRODUCTION

The problem of the presence of the two–photon–exchange (TPE) contribution for elastic

electron–proton scattering at relatively large momentum transfer is very actual. Intensive

theoretical and experimental activity is under way, related, in particular, to the discrepancy

between the experimental results on the proton electromagnetic form factors (FFs), extracted

by different procedures, through the Rosenbluth fit [1] or from the polarization transfer

method [2] (for a recent discussion see Ref. [3]).

Estimations of the TPE contribution to the elastic electron–deuteron scattering were

firstly discussed in Refs. [4, 5] in the framework of the Glauber theory. It was shown [4]

that this contribution decreases very slowly with momentum transfer squared q2 and may

dominate the cross section at high q2 values. Since the TPE amplitude is essentially imag-

inary, the difference between positron and electron scattering cross sections depends upon

the small real part of the TPE amplitude [4]. Recoil polarization effects may be substan-

tial, in the region where the one– and two–photon–exchange contributions are comparable.

If the TPE mechanism becomes sizeable, the straightforward extraction of FFs from the

experimental data is no longer possible [4].

It is known that double scattering dominates in collisions of high–energy hadrons with

deuterons at high q2 values, and in Ref. [5] it was predicted that the TPE effect in elastic

electron–deuteron scattering should represent 10% effect at q2 ∼= 1.3 GeV2. At the same

time the importance of the TPE mechanism was considered in Ref. [6]. The fact that the

TPE mechanism, where the momentum transfer is shared between the two virtual photons,

can become important with increasing q2 value was already indicated more than thirty years

ago [4–6].

This mechanism was never directly observed in an experiment, but recent measurements

of the asymmetry in the scattering of transversely polarized electrons on unpolarized protons,

give values different from zero, contrary to what is expected in the Born approximation [7, 8].

This observable is related to the imaginary part of the interference between one and two

photon exchange and can be related only indirectly to the real part of the interference, which

plays a role in the elastic ep cross section.

Measurements of the ratio of the electric to the magnetic proton FFs, GE/GM , have

been performed at JLab in polarized ep elastic scattering, �e+ p → e+ �p [2]. The transverse,

2



Pt, and the longitudinal, Pl, components of the recoil proton polarization in the electron

scattering plane are directly related to the ratio of the electromagnetic proton FFs. This

method, firstly suggested in Ref. [9], could be applied only recently, due to the availability

of high intensity, high polarized electron beams, hadron polarimeters in the GeV range and

large acceptance spectrometers.

The data [2] have been obtained in the region 0.3 GeV2 ≤ Q2 ≤ 5.6 GeV2, and reveal

a remarkable fall of the ratio GE/GM when Q2 increases, in disagreement with the data

obtained by the Rosenbluth technique, which show that this ratio is constant.

In Ref. [10] it has been shown, on the basis of a VMD inspired model taking into

account ten resonances, that the polarization data [2] may be consistent with all known FF

properties, including also QCD asymptotics and that GE will vanish around q2=-15 GeV2.

A zero, and eventually negative values of GE, if confirmed by the planned experiment [11],

will seriously constrain the nucleon models.

From the theoretical point of view, it seems unavoidable to consider the problem of the

TPE contribution in the p̄ + p → e+ + e− reaction. The process p̄ + p → e+ + e− and its

crossing channel, e+p → e+p, must have common mechanisms. The process p̄+p → e++e−

is very convenient to study the polarization effects induced by collisions of polarized protons

and antiprotons, but the measurement of the final–lepton polarization cannot be considered

as a realizable experiment. However, for completeness, we will also calculate observables

related to the final electron polarization.

The TPE contribution in the p̄ + p → e+ + e− reaction results, first of all, in a nonlocal

spin structure of the matrix element. This makes the analysis of polarization effects more

complicated with respect to the case of the one–photon–exchange mechanism. Such analysis

can be done similarly to the case of hadronic reactions among spin 1/2 particles, such as,

for example, n + p → n + p scattering [12].

At our knowledge, the annihilation reaction p̄ + p → �+ + �−, � = e or µ was firstly

considered in Ref. [13] in the case of unpolarized particles, where the differential cross section

was calculated both in the center of mass (CMS) and in the laboratory (Lab) systems. As

already mentioned, if nucleon FFs decrease rapidly in time–like region, then, just as in

space–like region, it is possible that the TPE mechanism becomes important.

The general case of polarized initial particles (antiproton beam or/and proton target)

in p̄ + p → e+ + e− has been firstly investigated in Ref. [14], with particular attention
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to the determination of the phases of FFs, and more recently in Ref. [15]. The relations

between the measurable asymmetries in terms of the electromagnetic FFs, GM and GE, in

the time–like region were derived, assuming one photon exchange.

In this paper we consider the reaction

p̄ + p → e+ + e−. (1)

We derive here the expressions for the differential cross section and various polarization

observables for the case when the matrix element contains the TPE contribution. The

parametrization of the TPE term is done following the analytic continuation to the time–

like region of the approach used (in the space–like region) in Refs. [16–20]. Using some

approximations or in framework of a model, it was shown TPE could account, at least

partially, for the apparent discrepancy between the Rosenbluth and the polarization transfer

methods.

Another approach is taken in Refs. [17–19], where the purpose is to derive general ex-

pressions for the polarization observables in the elastic electron–nucleon scattering and to

suggest model independent methods to extract nucleon electromagnetic FFs even in pres-

ence of the TPE contribution (parametrized in the tensor [17] or axial [18] forms), without

underlying assumptions. We use the tensor form of the TPE contribution parametrization,

and follow the approach of Ref. [18].

II. DIFFERENTIAL CROSS SECTION

Let us consider the process (1) in the general case of polarized beam and target and

measuring the polarization of the outgoing electron. The starting point of our analysis of

the reaction (1) is the following general parametrization of the spin structure of the matrix

element for this reaction, according to the approach used in Refs. [16–20]

M = −e2

q2
jµJµ, with jµ = ū(k2)γµu(−k1), (2)

and

Jµ = ū(−p2)[G̃M(q2, t)γµ +
Pµ

m
F̃2(q

2, t) +
Pµ

m2
K̂F3(q

2, t)]u(p1),

where K = (k1−k2)/2, P = (p2−p1)/2, p1 (p2) and k1 (k2) are the four–momenta of proton

(antiproton) and positron (electron), respectively; q2 = (p1 + p2)
2, t = K · P , m is the

nucleon mass, G̃M , F̃2 and F3 are complex functions of two independent variables q2 and t.
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The spin structure of the matrix element of the electron–nucleon scattering (2) can be

derived in analogy with the elastic neutron–proton scattering [12] assuming general prop-

erties of the electron–hadron interaction, such as P–invariance and relativistic invariance.

Taking into account the identity of the initial and final states and the T–invariance of the

electromagnetic interaction, the process of the electron– nucleon scattering is characterized

by three invariant complex amplitudes (in the limit of zero electron mass). The spin struc-

ture of the matrix element for the p̄ + p → e+ + e− reaction is obtained from the matrix

element of the elastic electron–nucleon scattering by analytic continuation.

In the Born (one–photon–exchange) approximation we have

G̃Born
M (q2, t) = GM(q2), F̃ Born

2 (q2, t) = F2(q
2), F Born

3 (q2, t) = 0, (3)

where GM(q2) and F2(q
2) are the magnetic and Pauli proton electromagnetic FFs, respec-

tively, which are complex functions of the variable q2. The complex nature of FFs in time-like

region is due to the strong interaction between proton and antiproton in the initial state.

In the following we use the Sachs magnetic GM(q2) and charge GE(q2) proton FFs which

are related to the Dirac proton FF F1(q
2) and to F2(q

2) as follows

GM = F1 + F2, GE = F1 + τF2, τ =
q2

4m2
. (4)

To disentangle the effects of the Born and TPE contributions, let us single out the

dominant contribution and define the following decompositions of the amplitudes:

G̃M(q2, t) = GM(q2) + ∆GM(q2, t), F̃2(q
2, t) = F2(q

2) + ∆F2(q
2, t). (5)

Instead of the amplitude F̃2 we use the linear combination

G̃E(q2, t) = GE(q2) + ∆GE(q2, t). (6)

We neglect below the bilinear combinations of the terms ∆GM , ∆GE and F3 since they are

smaller (at least of the order of α), in comparison with the dominant ones.

Then the differential cross section of the reaction (1) can be written in CMS as follows:

dσ

dΩ
=

α2

4q6

E

p
LµνHµν , Lµν = jµj∗ν , Hµν = JµJ∗

ν , (7)

where E(p) is the energy (momentum) of the antiproton. In the case of longitudinally

polarized electrons the leptonic tensor has the form

Lµν = −q2gµν + 2(k1µk2ν + k1νk2µ) + 2i < µνqk2 >, (8)
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where < µνab >= εµνρσaρbσ. Other components of the electron polarization lead to a

suppression by a factor me/m.

Taking into account the polarization states of the beam and target, the hadronic tensor

can be written as the sum of three tensors as follows:

Hµν = H(0)
µν + H(1)

µν + H(2)
µν , (9)

where the tensor H(0)
µν corresponds to the unpolarized beam and target, the tensor H (1)

µν

describes the production of e+e− by polarized beam or target and the tensor H(2)
µν corresponds

to polarized beam and polarized target.

Since the presence of the TPE contribution leads to the term of the hadronic current

which contains the momenta from the leptonic vertex, the general structure of the H (0)
µν

tensor becomes more complicated: instead of the two standard structure functions we have

five ones (as in the case of γ∗d → np or γ∗N → πN). So, the general structure of this tensor

can be written as

H(0)
µν = H1g̃µν + H2PµPν + H3KµKν + H4(KµPν + KνPµ) + iH5(KµPν − KνPµ), (10)

where g̃µν = gµν − qµqν/q
2. One gets the following expressions for these structure functions

for the case of the hadronic current given by Eq. (2):

H1 = −2q2(|GM |2 + 2ReGM∆G∗
M),

H2 =
8

τ − 1

[
|GE|2 − τ |GM |2 + 2ReGE∆G∗

E − 2τReGM∆G∗
M +

2
√

τ(τ − 1) cos θRe(GE − τGM )F ∗
3

]
,

H3 = 0, H4 = −8τReGMF ∗
3 , H5 = −8τImGMF ∗

3 , (11)

where θ is the angle between the electron and the antiproton momenta in the p̄+p → e++e−

reaction CMS. One can see that the structure functions H4 and H5 are completely determined

by the TPE terms: in the absence of these terms we have the standard tensor structure for

H(0)
µν .

The differential cross section of the reaction (1) for the case of unpolarized particles has

the form:
dσ

dΩ
=

α2

4q2

√
τ

τ − 1
D, (12)
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D = (1 + cos2 θ)(|GM |2 + 2ReGM∆G∗
M) +

1

τ
sin2 θ(|GE|2 + 2ReGE∆G∗

E) +

2
√

τ(τ − 1) cos θ sin2 θRe(
1

τ
GE − GM)F ∗

3 .

One can see that in the Born approximation the expression (12) reduces to the result obtained

in Refs. [14, 15]. The contribution of the one–photon–exchange diagram leads to an even

function of cos θ, whereas the TPE contribution leads to four new terms of the order of α

compared to the dominant contribution.

At the reaction threshold where q2 = 4m2, one gets GM = GE and the differential cross

section becomes θ−independent in the Born approximation. This is not anymore true in

presence of TPE terms.

As it was pointed out in Ref. [21], for the processes of the type e+ + e− → h+ + h−,

except in particular cases, the term of the cross section due to TPE is an odd function of the

variable cos θ. Therefore, it does not contribute to the differential cross section for θ = 900.

III. SINGLE SPIN POLARIZATION OBSERVABLES

Let us consider the case when the antiproton beam is polarized. Then, if the hadronic

current is given by Eq. (2), the hadronic tensor H (1)
µν can be written as:

H(1)
µν = −2i

m

[
m2|G̃M |2 < µνqs2 > +(τ − 1)−1ReG̃M (G̃E − G̃M)∗(< µp1p2s2 > Pν −

< νp1p2s2 > Pµ) + ReGMF ∗
3 (< µkqs2 > Pν− < νkqs2 > Pµ)

]
+

2

m(τ − 1)

[
ImG̃MG̃∗

E(< µp1p2s2 > Pν+ < νp1p2s2 > Pµ) +

(τ − 1)ImGMF ∗
3 (< µkqs2 > Pν+ < νkqs2 > Pµ) −

2

m2
< s2p2p1k > Im(GE − GM)F ∗

3 PµPν

]
, (13)

where s2µ is the antiproton polarization four–vector (p2 · s2 = 0).

Note that, unlike the elastic electron–nucleon scattering in the Born approximation, the

hadronic tensor in the time–like region contains a symmetric part even in the Born ap-

proximation due to the fact that nucleon FFs are complex. Taking into account the TPE

contribution leads to additional terms in the symmetric part of this tensor.

The polarization four–vector of a relativistic particle, sµ, in a reference system where its

momentum, �p, is connected with the polarization vector, �χ, in its rest frame by a Lorentz
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boost is:

�s = �χ +
�p · �χ�p

m(E + p)
, s0 =

1

m
�p · �s.

Let us define a coordinate frame in CMS of the reaction (1), where the z axis is directed

along the antiproton momentum �p, the y axis is directed along the vector �p × �k, (�k is the

electron momentum), and the x axis forms a left–handed coordinate system. In this frame

the components of the unit vectors are: �̂p = (0, 0, 1) and �̂k = (sin θ, 0, cos θ) with �̂p·�̂k = cos θ.

The presence of a symmetrical part in the hadronic tensor (13) leads to a non–zero

single–spin asymmetry which can be written as

Ay(θ) =
2 sin θ√

τD

[
cos θ Im(GMG∗

E + GM∆G∗
E − GE∆G∗

M )+ (14)

+
√

τ(τ − 1)Im(cos2 θ GM + sin2 θ GE)F ∗
3

]
.

Again, in the Born approximation this expression reduces to the result of Ref. [14]. One

can see that:

- Ay(θ) is determined by the spin vector component which is perpendicular to the reaction

plane;

- Ay(θ), being a T–odd quantity, does not vanish even in the one–photon–exchange ap-

proximation due to the complex nature of the nucleon FFs in the time–like region. This is

the principal difference with the elastic electron–nucleon scattering.

Let us consider two particular kinematical cases:

- when the electron is scattered at θ = 900.

- the reaction threshold.

For θ = 900, in the Born approximation Ay(θ) vanishes. The presence of the TPE

contributions leads to a non–zero value of Ay(θ) at θ = 900 and this value is given by a

simple expression

Ay(900) = 2

√
τ − 1

D
ImGEF ∗

3 , D = D(θ = 900).

This quantity is expected to be small due to the fact that it is determined by the interference

of the one–photon and two–photon exchange amplitudes and is of the order of α. One can

see that this asymmetry is an increasing function of the variable q2: this is due to the

presence of the kinematical factor containing τ and to the steep decreasing of the nucleon

FFs with q2 while the TPE mechanism becomes more important when q2 increases. So, the
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measurement of this asymmetry at θ = 900 can give information about the TPE contribution

and its behaviour as a function of q2.

At threshold, in the Born approximation, Ath
y (θ) has to vanish, due to the relation GE =

GM . Including the TPE contributions, the asymmetry becomes:

Ath
y (θ) =

sin 2θ

Dth
ImGM(∆GE − ∆GM)∗.

Note that, at threshold, this asymmetry can be equal to zero, if ∆GE = ∆GM . In this

case the differential cross section does not contain any explicit dependence on the angular

variable θ, but only through the amplitudes ∆GE,M which, in the general case, depend on

the variable θ.

The importance of the TPE contributions in Ath
y (θ) at an arbitrary scattering angle will

increase as q2 increases. This is due to the presence of the kinematical factor containing τ

and it is expected that the TPE amplitudes decrease more slowly with q2 compared with

the nucleon FFs.

The antisymmetrical part of the hadronic tensor H (0)
µν leads to another single–spin observ-

able: the final electron gets a transverse polarization (orthogonal to the reaction plane) in

the annihilation of unpolarized proton and antiproton. The expression for this polarization

is:

P (e)
y (θ) = 2

me

m

√
τ − 1

D
sin θImGMF ∗

3 ,

where me is the electron mass. One can see that

- P (e)
y has a T–odd nature, since it is determined by the imaginary part of the product

of GM and of the amplitude F3.

- P (e)
y is entirely due to the TPE mechanism and it vanishes in the Born approximation.

- Since it is a transverse polarization, it is suppressed by a factor (me/m). The polar-

ization for the case of production of µ+µ−-pair is essentially larger (mµ/me=200) and for

τ+τ− production one finds no additional suppression. Another advantage of detecting heavy

leptons is that the polarization of unstable particles (µ and τ) can be measured through the

angular distribution of their decay products.

- P (e)
y vanishes at threshold, also in presence of TPE contribution.

- P (e)
y increases when q2 becomes larger. The reasons are the same as for the asymmetry

Ay (see the discussion above).
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Let us consider now the polarization transfer when the antiproton beam is polarized and

the polarization of the produced electron is measured. We consider only the longitudinal

polarization of the final electron because in this case the suppression factor me/m is absent.

The corresponding observables are:

Ax =
2 sin θ√

τD

[
ReGMG∗

E + Re(GM∆G∗
E + GE∆G∗

M) +
√

τ(τ − 1) cos θReGMF ∗
3

]
,

Az =
2

D

[
cos θ(|GM |2 + 2ReGM∆G∗

M) −
√

τ(τ − 1) sin2 θReGMF ∗
3

]
. (15)

These coefficients are T–even observables and they are nonzero in the Born approxima-

tion, and also for elastic electron–nucleon scattering. The coefficient Az vanishes at θ = 900

in the Born approximation. But the presence of the TPE term F3 in the electromagnetic

hadron current leads to a nonzero value of this quantity, driven by the term ReGMF ∗
3 .

The expressions (15), in the one–photon–exchange approximation, coincide with the re-

sults for the polarization vector components of the nucleon in the e+ +e− → N +N̄ reaction,

when the electron beam is longitudinally polarized [22, 23].

IV. DOUBLE SPIN POLARIZATION OBSERVABLES

Let us consider the case when the polarized antiproton beam annihilates with a polarized

proton target. The corresponding hadronic tensor H (2)
µν can be written as:

H(2)
µν = C1gµν + C2PµPν + C3(Pµs1ν + Pνs1µ) + C4(Pµs2ν + Pνs2µ) +

C5(s1µs2ν + s1νs2µ) + C6(PµKν + PνKµ) + iC7(Pµs1ν − Pνs1µ) +

iC8(Pµs2ν − Pνs2µ) + iC9(PµKν − PνKµ), (16)

where s1µ is the proton polarization four-vector (p1 ·s1 = 0) and the terms proportional to qµ

or qν were omitted, since they do not contribute to the cross section and to the polarization

observables (due to the conservation of the leptonic current). The structure functions have

the following form

C1 =
1

2
(q2s1 · s2 − 2q · s1q · s2)|G̃M |2,

C2 =
2

τ − 1

[
τ |G̃M |2 − |G̃E|2 + 2

K · P
m2

Re(τGM − GE)F ∗
3

]
s1 · s2 +

q · s1q · s2

m2(τ − 1)2
|G̃E − G̃M |2 +
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2

m2(τ − 1)
(q · s1K · s2 − q · s2K · s1)Re(GE − τGM )F ∗

3 ,

C3 = ReE1, C4 = ReE2, C6 = ReE3, C5 = −q2

2
|G̃M |2,

E1 =
q · s2

τ − 1
(τ |G̃M |2 − G̃EG̃∗

M) +
1

2m2
(2K · Pq · s2 − q2K · s2)F3G

∗
M ,

E2 = − q · s1

τ − 1
(τ |G̃M |2 − G̃EG̃∗

M) − 1

2m2
(2K · Pq · s1 + q2K · s1)F3G

∗
M ,

E3 =
1

2m2
(q2s1 · s2 − 2q · s1q · s2)F3G

∗
M ,

C7 = ImE1, C8 = ImE2, C9 = ImE3. (17)

The non–zero spin correlation coefficients between the polarizations of beam and target

(when the final leptons are unpolarized) can be written as:

Dxx =
sin2 θ

D

[
|GM |2 + 2ReGM∆G∗

M +
1

τ
(|GE|2 + 2ReGE∆G∗

E) +

2
√

τ(τ − 1) cos θRe(GM +
1

τ
GE)F ∗

3

]
,

Dyy =
sin2 θ

D

[
1

τ
(|GE|2 + 2ReGE∆G∗

E) − |GM |2 − 2ReGM∆G∗
M −

2
√

τ(τ − 1) cos θRe(GM − 1

τ
GE)F ∗

3

]
,

Dzz =
1

D

[
(1 + cos2 θ)(|GM |2 + 2ReGM∆G∗

M ) − 1

τ
sin2 θ(|GE|2 + 2ReGE∆G∗

E) −

2
√

τ(τ − 1) cos θ sin2 θRe(GM +
1

τ
GE)F ∗

3

]
,

Dxz = Dzx =
sin 2θ√

τD

[
Re(GMG∗

E + GM∆G∗
E + GE∆G∗

M) +

√
τ(τ − 1) cos θRe(GM − tan2θGE)F ∗

3

]
. (18)

For completeness, we give here the nonzero coefficients for the case of a longitudinally

polarized electron:

Dxy = Dyx =
1

D

√
τ(τ − 1) sin2 θImGMF ∗

3 ,

Dzy = Dyz =
sin θ√
τD

Im
(
GMpG

∗
Ep + GMp∆G∗

Ep − GEp∆G∗
Mp+√

τ(τ − 1) cos θGMpF
∗
3p

)
. (19)

One can see that:

- The coefficients Dxx, Dyy, Dzz, Dxz, and Dzx are T–even observables, whereas the

coefficients Dxy, Dyx, Dyz, and Dzy are T–odd observables.
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- In the Born approximation the expressions for the T–even correlation coefficients co-

incide with the results of Ref. [14]. The expressions for the T–odd ones coincide with the

corresponding components of the polarization correlation tensor of the baryon B and the

antibaryon B̄ created through the one–photon–exchange mechanism in the e+e− → BB̄

process [22].

- The relative contribution of the interference terms (between one- and two–photon–

exchange mechanisms) increases as q2 becomes larger (see the discussion above).

At the reaction threshold the correlation coefficients have some specific properties:

- All correlation coefficients do not depend on the function F3.

- In the Born approximation the (Dxx + Dyy + Dzz) observable does not depend on the

θ variable, but the TPE contribution induces such dependence.

- In the Born approximation the Dyy observable is zero, but the inclusion of the TPE

term leads to a nonzero value, determined by the quantity ReGM (∆GE − ∆GM)∗.

- The relation Dyy + Dzz = 0 holds for θ = 900.

- All T–odd double-spin observables vanish.

Taking into account the P–invariance of the hadron electromagnetic interaction, we can

write the following general formula for the differential cross section as a function of the

polarizations of the proton, (�ξ1), of the antiproton (�ξ2) and of the longitudinal polarization

of the produced lepton, (λe):

dσ

dΩ
(�ξ1, �ξ2, �ξ) =

(
dσ

dΩ

)
0

{
1 + An�n · �ξ1 + Ān�n · �ξ2 + P (e)

n �n · �ξ + Dmm �m · �ξ1 �m · �ξ2 +

Dnn�n · �ξ1�n · �ξ2 + D��
�� · �ξ1

�� · �ξ2 + Dm� �m · �ξ1
�� · �ξ2 + D�m

�� · �ξ1�m · �ξ2 +

λe

[
Am �m · �ξ1 + Ām �m · �ξ2 + A�

�� · �ξ1 + Ā�
�� · �ξ2 + Dmn �m · �ξ1�n · �ξ2 +

Dnm�n · �ξ1 �m · �ξ2 + D�n
�� · �ξ1�n · �ξ2 + Dn��n · �ξ1

�� · �ξ2

]}
, (20)

where

�� =
�p

|�p| , �n =
�p × �k

|�p × �k| , �m = �n × ��,

�ξ is the electron polarization four–vector and all polarization observables are functions of

two independent variables q2 and cos θ. The function An (Ān) is the asymmetry in the p̄+ �p

(�̄p + p) collision induced by the component of the polarization �ξ1(�ξ2) in the direction �n; Am

and A� (Ām and Ā�) are the polarization transfer coefficients when the target (beam) and the

electron are polarized due to the component of polarization vector �ξ1(�ξ2) in the directions
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�m and ��, correspondingly; Dij (ij = mm, ��, nn, m�, �m) and Dij (ij = mn, nm, n�, �n) are

the spin correlation coefficients induced by the collision of both polarized initial particles for

the case of unpolarized and longitudinally polarized final electron, respectively; P (e)
n is the

electron polarization in the case of unpolarized target and beam.

The following polarization observables

An, Ān, P (e)
n , Dmn, Dnm, D�n, Dn�

are T–odd observables, whereas the other ones are T–even observables.

In the general case, all these polarization observables are nonzero, and their q2− and

cos θ−dependence depends on the dynamics of the process. On the basis of C–invariance it

is not possible to predict any definite behavior of these observables.

V. CONCLUSIONS

We have studied the properties of the annihilation process p̄ + p → e+ + e− in presence

of two photon exchange. We have derived the expressions of the cross section and of all

polarization observables in terms of the nucleon electromagnetic FFs and of the amplitudes

describing the TPE mechanism. We have analyzed the properties of these observables in

different kinematical conditions.

The reasons of the possible contribution of the two photon contribution at large q2 have

been discussed long ago for e + p → e + p elastic scattering and apply equally well to the

crossing channels. The importance of the experimental evidence and of the quantitative

determination of TPE is related to the extraction of the electromagnetic FFs from the dif-

ferential cross section. The simple formalism based on the one-photon mechanism, becomes

much more complicated in presence of TPE.

Note that if the charge of the electron and positron is not detected (the detection is sym-

metric under interchange of the positron and electron), then the interference term between

the one- and two–photon–exchange channels will not contribute to the differential cross sec-

tion [13, 21, 24]. This symmetry between the positron and the electron can then be used

either to eliminate or to make evident the influence of the TPE mechanism on the nucleon

electromagnetic structure.

13



This analysis is especially useful in view of the future experiments planned at the FAIR

facility, at GSI [25], where the first measurement of the relative phase of the proton magnetic

and electric FFs in the time–like region is planned [26]. This information can discriminate

strongly between the existing models for the nucleon FFs. This phase can be most simply

measured via single–spin asymmetry in the annihilation reaction (1) with a transversely

polarized target or beam.
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