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ABSTRACT

The effect of a weak repulsive two-body interaction on the transition temper-
ature of a dilute gas Bose gas at fixed density has been controversial for a long
time. We show here that the effect is non-perturbative in nature.

Renormalization group then allows proving that the critical temperature Tc

increases linearly with the strength of the interaction, parametrized in terms of
the s-wave scattering length. However, the coefficient cannot be obtained from
perturbative calculations.

Recognizing that the hamiltonian of the system, which also describes the Helium
superfluid transition, is the N = 2 example of the general N vector model, one
generalizes the problem to arbitrary N . The coefficient of ∆Tc/Tc can then be
expanded in powers of 1/N .

The leading order result, which is independent of N for non-trivial reasons, is
in reasonable agreement with estimates coming from numerical simulations.
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1 Introduction

The effect of a weak repulsive two-body interaction on the transition temperature
of a dilute gas Bose gas at fixed density has been controversial for a long time
[1,2,3,4,5,6]. It has been slowly realized that the effect was non-perturbative in
nature. It has recently been argued theoretically [7] that Tc increases linearly
with the strength of the interaction parametrized in terms of the scattering length
a. Since the coefficient cannot be obtained from perturbation theory, in Ref. [7]
a simple self-consistent approximation was used to derive an explicit estimate.

In [8], first the linear behaviour was derived more directly, using general renor-
malization group arguments. Then, recognizing that the hamiltonian of the
system under study, which also describes the helium superfluid transition, is
a particular example of the general N vector model, for N =2, the problem
was generalized to arbitrary N . This generalization makes new tools available
[9,10,11]; in particular, the coefficient of ∆Tc/Tc can be calculated by carrying
out an expansion in 1/N . In [8], the leading order in 1/N was calculated explic-
itly. The result happens to be independent of N , for non-trivial reasons. The
calculation involves subtle technical points which are most easily dealt with by
dimensional regularization [12]. Surprisingly, the result is in reasonable agree-
ment with the most recent numerical simulations [13].

This paper is organized as follows: In section 2, we recall the basis of Bose–
Einstein condensation. In section 3, we describe the field integral representation
of the partition function of the dilute Bose gas (see e.g., ref. [14,15]) and lay out
the basics of the problem. Then, in section 4, we derive the linear behaviour
of the shift of the critical temperature for weak two-body interactions, using
renormalization group arguments. Finally, in section 5, we present the general
N -vector model and we calculate the leading order 1/N contribution to the
temperature shift. After the article [8], the 1/N correction to the shift has been
calculated [16] and other methods employed to calculate the amplitude of the
shift. For a recent review see ref. [17].

2 Independent bosons: Bose–Einstein condensation

Equation of state. The equation of state of a gas relates the average number of
particles 〈N〉, the chemical potential µ and the inverse temperature T = 1/β. In
the case of independent bosons, the equation of state takes the simple form

〈N〉 =
∑

i

〈ni〉 , 〈ni〉 =
1

eβ(ωi−µ) −1
, (2.1)

where 〈ni〉 is the average occupation number of the level of energy ωi.
The equation is defined only for µ < infi ωi.
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This expression can also be expressed in terms of the one-particle hamiltonian
operator H(1), with eigenvalues ωi, as

〈N〉 = tr
1

eβ(H(1)−µ) −1
. (2.2)

Bose–Einstein (BE) condensation. For a quantum hamiltonian operator of
the form H(1)(p̂, q̂) with a discrete spectrum, the equation of state, in the high
temperature limit βδω ≪ 1, reduces to its semi-classical approximation. In d
dimensions,

〈N〉 ∼ 1

(2π~)d

∫

ddp ddq

eβ(H(1)(p,q)−µ) −1
.

The average number of particles 〈N〉 is an increasing function of µ ≤ µc =
infH(1)(p,q). If the integral converges for µ = µc, one faces the apparent
paradox that 〈N〉 is bounded at fixed temperature.

The solution to the paradox is that the semi-classical approximation is no
longer valid for the lowest energy level, which yields a divergent contribution
for µ = Eground state. Returning to the exact expression, one infers that the
additional particles accumulate into the ground state: this is the essence of BE
condensation.

In the rather theoretical example of particles of mass m in a box of linear size L
(a harmonic potential is closer to the experimental conditions), high temperature
is equivalent to L→ ∞. One finds, for d > 2, the critical density

nc = 〈N〉L−d ∼
L→∞

1

(2π~)d

∫

ddp

eβp2/2m−1
= ζ(d/2)/λd, (2.3)

where ζ(z) is the Riemann function, and λ the thermal wave length:

λ = ~

√

2π/mT .

Alternatively, at density n fixed, the equation of state has no solution for tem-
peratures T < Tc(n) ∝ (~2/m)n2/d.

In what follows, we will only consider this situation, that is, particles in a box
in the infinite volume limit.

3 Statistical field theory of the weakly interacting Bose gas

We want now to investigate the effect of weak interactions between bosons.
The partition function. The partition function of a dilute gas of identical

bosons of mass m, at temperature T = 1/β, can be expressed as an integral

Z =

∫

[dψ(t, x)dψ∗(t, x)] e−S(ψ∗,ψ)/~,
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over fields ψ∗, ψ periodic in euclidean time,

ψ(0, x) = ψ(β, x), ψ∗(0, x) = ψ∗(β, x),

associated with boson creation and annihilation.
We assume here that the gas is sufficiently dilute for the two-body interactions

to be weak and three-body or higher interactions to be totally negligible.
Since one is interested only in long wavelength phenomena, the two-body poten-

tial can be replaced by a delta-function and parametrized in terms of the s-wave
scattering length a (positive because the interaction is assumed repulsive).

For d = 3, the effective euclidean action of the system may then be written as

S(ψ∗, ψ) = −
∫ β

0

dt

∫

d3x

[

ψ∗(t, x)

(

~
∂

∂t
+

~
2

2m
∇2
x + µ

)

ψ(t, x)

+
2π~

2a

m

(

ψ∗(t, x)ψ(t, x)
)2

]

,

where µ is the chemical potential.
The condition that the interaction is weak implies that a≪ λ, where λ is the

thermal wavelength
λ = ~

√

2π/mT .

Equation of state and two-point function. Quite generally, the equation of state
can be expressed in terms of the 〈ψ∗ψ〉 correlation function G. In the Fourier
representation,

n = T
∂ lnZ
∂µ

= T

∫

ddk

(2π)d

∑

ν

G̃(k, ων;µ), (3.1)

where ων = 2πνT are Matsubara frequencies, the quantization of ω being a
consequence of the periodic boundary conditions in euclidean time.

A U(1) phase transition of superfluid Helium type occurs at a critical chemical
potential µc given by

G̃−1(k = 0, ω = 0;µc) = 0 ,

where the correlation length diverges.
In the limit of free bosons

G̃−1(k, ω;µ) = k2/2m− iω − µ .

Then, in a box of linear size L and d > 2, one recovers µc = 0 and the critical
density (2.3). The general equation of state (3.1) implies that, in the limit of
vanishing repulsive interactions, the phase transition of the interacting model
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reduces to the BE condensation of the free Bose gas. In d = 3 dimensions, the
relation between condensation temperature and density n reads

T 0
c (n) ∝

d=3
(~2/m)n2/3.

Thus, at leading order in the interaction, the shift in the transition temperature
at fixed density, ∆Tc = Tc−T 0

c , can be related, to the change ∆n in the density
at fixed Tc by

∆Tc
Tc

= −2

3

∆n

n
.

The theory of critical phenomena tells us that the variation of the critical tem-
perature in systems with dimension d < 4 depends primarily on contributions
from the small momenta or large distance (or IR) region. This property simpli-
fies the problem, since to leading order the IR properties are only sensitive to the
ων = 0 Matsubara frequency. The entire calculation can thus be cast in terms of
a classical statistical field theory. The integration over the other non-zero Mat-
subara frequencies yields corrections to the effective action. They do not affect
the temperature shift at leading order.

4 Effective classical statistical field theory and renormal-
ization group

After a rescaling the field ψ in order to introduce more conventional field theory
normalizations, and a parametrization in terms of two real fields φ1, φ2:

ψ =
√
mT (φ1 + iφ2),

the partition function takes the form of the field integral

Z =

∫

[dφ(x)] exp [−S(φ)]

with

S(φ) =

∫
{

1

2
[∂µφ(x)]

2
+

1

2
rφ2(x) +

u

4!

[

φ2(x)
]2

}

ddx , (4.1)

where r = −2mTµ and, for d = 3, u = 96π2a/λ2.

The euclidean action reduces to the ordinaryO(2) symmetric (φ2)2 field theory,
which also describes the universal properties of the superfluid Helium transition.

A UV large momentum cutoff Λ ∼ 1/λ ∝
√
mT is provided by the higher

frequency modes. In the action, we have kept the dimension d arbitrary in order
to use dimensional regularization later.
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The goal is to obtain the leading order non-trivial contribution at criticality
(in the massless theory) to

n = 4mTρ , ρ =

∫ Λ ddk

(2π)d
1

Γ̃(2)(k)
,

where Γ̃(2)(k) is the vertex two-point function, inverse of the two-point correlation
function.

Because the interactions are weak, one may imagine calculating the change in
the transition temperature by perturbation theory. However, the perturbative
expansion for a critical theory does not exist for any fixed dimension d < 4. A
discussion of this problem requires RG arguments.

Renormalization group equations. We introduce the dimensionless coupling
constant (the large momentum cutoff Λ is proportional to 1/λ)

g = Λd−4u ∝ (a/λ)
d−2 ≪ 1 .

At Tc, Γ̃(2)(k) satisfies the RG equation

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− η(g)

)

Γ̃(2)(k,Λ, g) = 0 . (4.2)

For the O(N) symmetric (φ2)2 field theory, perturbative calculations yield

β(g) = −(4 − d)g +
N + 8

48π2
g2 + O(g3), η(g) =

N + 2

18

1

(4π)4
g2 + O(g3).

We recall here that, in the framework of the ε = 4− d expansion, the β-function
has, below four dimensions, a non-trivial zero [19]

g∗ = 48π2ε/(N + 8) + O(ε2),

which governs the large distance behaviour of connected correlation functions.
Precise estimates of the fixed point values and corresponding critical exponents
can be found in [20].

Solution. Equation (4.2), together with dimensional analysis, implies that the
vertex two-point function has the general form

Γ̃(2)(p,Λ, g) = p2Z(g)F
(

p/Λ(g)
)

(4.3)

with

β(g)
∂ lnZ(g)

∂g
= η(g), β(g)

∂ ln Λ(g)

∂g
= −1 .
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Therefore,

Z(g) = exp

∫ g

0

η(g′)

β(g′)
dg′ = 1 + O(g2)

and

δρ ∼
g→0

∫ Λ d3p

(2π)3
1

p2

(

1

F (p/Λ(g))
− 1

)

.

On dimensional grounds Λ(g) is proportional to Λ. The function Λ(g) is then
obtained by integration:

Λ(g) = g1/(4−d)Λ exp

[

−
∫ g

0

dg′
(

1

β(g′)
+

1

(4 − d)g′

)]

.

Crossover scale. The quantity Λ(g) is a crossover scale separating a universal
long-distance regime governed by the non-trivial zero g∗ of the β-function, from
a universal short distance regime governed by the gaussian fixed point g = 0.
Such a regime exists only if Λ(g) ≪ Λ, that is, if there is an intermediate scale
between the IR and the microscopic scales; otherwise only the IR behaviour can
be observed. In a generic situation g is of order unity and, thus, Λ(g) is of order
Λ: the universal large momentum region is absent.

Instead, Λ(g) ≪ Λ implies

g1/(4−d) exp

[

−
∫ g

0

dg′
(

1

β(g′)
+

1

(4 − d)g′

)]

≪ 1 .

Since g (equal to a/λ for d = 3), is ≪ 1, this condition is satisfied in the present
situation.

Then,

Γ̃(2)(p) ∝ p2−η for p≪ Λ(g), Γ̃(2)(p) ∝ p2 for Λ(g) ≪ p≪ Λ,

with η ≡ η(g∗) ≈ 0.035 for N = 2.

Linear behaviour. We now show that the condition Λ(g) ≪ Λ implies ∆Tc ∝
Λ(g).

First, from perturbation theory one infers that for d = 3, the function F (p)
(equation (4.3)) behaves for large p as

F (p) = Γ̃(2)(p)/p2 = 1 + O(ln p/p2).

Therefore, the first correction to the density is convergent at large momentum
and independent of the cutoff procedure:

δρ =

∫

d3p

(2π)3
1

p2

(

1

F (p/Λ(g))
− 1

)

.
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Similarly, the IR behaviour implies that this integral is IR convergent.
Setting p = Λ(g)k, one then finds the general form

δρ = Λ(g)

∫

d3k

(2π)3
1

k2

(

1

F (k)
− 1

)

.

The g dependence is entirely contained in Λ(g). For g small, one concludes

δρ

ρ
∝ g ∼ (−3/2c0)an

1/3 ,

a linear behaviour that, however, is non-perturbative! Moreover, the amplitude
−3c0/2 is universal.

5 The N-vector model. The large N expansion at order 1/N

Since the function F (p) cannot be obtained from a perturbative calculation,
we consider the O(N) symmetric generalization of the model corresponding to
the euclidean action (4.1): the field φ(x) then has N real components φi, i =
1, . . . , N .

The advantage of such a generalization is that it provides us with a tool, the
large N expansion, which allows calculating at the critical point. The large N
limit is taken at Nu fixed.

The first non-trivial correction to Γ̃(2)(p) appears only at order 1/N [18,14,11]:

Γ̃(2)(p) = p2 +
2

N

∫

ddq

(2π)d
1

(6/Nu) +B(q)

(

1

(p+ q)2
− 1

q2

)

+ O
(

1

N2

)

,

where B(q) is the one-loop contribution (the bubble diagram) to the perturbative
four-point function

B(q) =

∫

ddk

(2π)d
1

k2(k + q)2
∼
q→0

b(ε)q−ε ,

(ε = 4 − d > 0) which is UV finite for d < 4. For d = 3, b(1) = 1/8.
One evaluates

δρ = − 2

N

∫

ddp

(2π)2d
1

p4

ddq

(6/Nu) + b(ε)q−ε

(

1

(p+ q)2
− 1

q2

)

by keeping the dimension d generic and using dimensional regularization. This
allows exchanging the order between the p and q integrations, something which
is not allowed directly in dimension 3. In the d = 3 limit, the two integrations
yield (1/32π2)(Nu/6).
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As expected, δρ ∝ u:

δρ = −u/96π2 = − a

λ2
.

One finally obtains the change in the transition temperature [8]:

∆Tc
Tc

=
8π

3ζ(3/2)

a

λ
= c0an

1/3 with

c0 =
8π

3ζ(3/2)4/3
= 2.33 . . . .

For non-trivial reasons, the leading order result does not depend on N . The
calculation involves a 1/N correction, but the result is proportional to u, which
appears only in the combination uN .

Nevertheless, the result is valid only for N large. Taking into account, the
1/N correction [16], one finds c0 = 1.71 . . .. A number of other methods, lattice
calculations [13], summation of perturbative expansions, suggest c0 ≈ 1.3. These
1/N estimates have a precision typical of other 1/N calculations.

6 Conclusions

Using RG arguments, we have shown that the properties of the dilute, weakly
interacting Bose gas remain dominated by the UV fixed point up to large length
scales; this is why one can still refer to BE condensation when discussing the
phase transition of the interacting Bose gas.

RG arguments enabled us to confirm that the relative shift of the transition
temperature at fixed density is proportional to the dimensionless combination
an1/3 for weak interactions. This result is non-perturbative and the propor-
tionality coefficient, which is universal, cannot be obtained from perturbation
theory.

Therefore, a non-perturbative method, the large N expansion, has been intro-
duced that allows a systematic, analytic, calculation of this coefficient as a power
series in 1/N , where eventually one has to set N = 2.

The leading order contribution is formally of order 1/N multiplied by a func-
tion of aN , which is kept fixed in the large N limit. Because for d = 3 the result
is linear in a, the 1/N factor somewhat surprisingly cancels and the result is in-
dependent of N . Adding the 30% 1/N correction, one finds a value in reasonable
agreement with the most recent numerical estimates.
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