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Abstract

We derive, in model independent way, the spin structure of the matrix element for the reaction of

associative Θ+ pentaquark production, π±+D → Θ++Σ±, in the threshold region and in collinear

kinematics. The expressions for the polarization observables in this reaction are found assuming

spin 1/2 and different parities for Θ+. We have proved that such reaction can be used for a model

independent determination of the P-parity of Θ+ only by measuring the Θ+ polarization. Other

polarization observables, such as the dependence of the Σ± polarization on the vector and tensor

deuteron polarizations, are insensitive to the Θ+ parity in the considered kinematical conditions.

All linear and quadratic relations between polarization observables in π± + ~D → Θ+ + ~Σ±(Θ+ is

unpolarized) do not depend on the parity of the Θ+ pentaquark.
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I. INTRODUCTION

The possible existence of exotic hadrons was suggested in connection with the KN scat-

tering data [1] (before the advent of QCD). In QCD the multiquark states were considered

as natural extension of the ordinary hadrons. A state with mass about 1.5 GeV and a strong

decay width smaller than 15 MeV, now called Θ+ pentaquark, was predicted in Ref. [2].

This work motivated and oriented experimental searches recently leading to the observation

of a narrow resonance at about the predicted mass [3]. So far this observation has been

confirmed or infirmed by other experimental groups using various projectiles and targets

(for the details see the review [4]).

The narrow exotic (B=1, S=1) baryon resonance Θ+(1540) was called pentaquark since

the simplest quark content of Θ+ is (uudds̄). The quantum numbers of the pentaquarks are

very important for the determination of its quark structure and in particular its multiplet

assignment [5].

At present the existence of a narrow pentaquarks is not fully confirmed: several labo-

ratories have reported the evidence of such states, while others have negative results. The

question of whether pentaquarks exist may be solved by a second generation of high statistics

experiments (for example, at JLab [6]).

The parity of the Θ+ pentaquark, π(Θ), being a very important characteristics of this

exotic state, is especially challenging for a model independent determination. The study of

polarization phenomena for different processes of Θ+ production seems unavoidable. Unfor-

tunately, in many cases, the necessary set of observables includes the Θ+ polarization which

measurement, through the decay Θ+ → NK, is not an easy task.

Up to now, the most perspective method for the determination of π(Θ), in model in-

dependent way, has been suggested for associative hyperon production in nucleon-nucleon

collisions, N + N → Y + Θ+, Y = Λ or Σ, and p + p → Θ+ + Λ + π+ ([7] and refs therein).

It was shown, that in the threshold region, (with s-wave production of the final hyperons)

double spin polarization observables, such as the spin correlation coefficients Cxx or Cyy (in

the collision of polarized nucleons), and the spin transfer coefficient Dxx (from one initial

nucleon, beam or target, to the produced hyperon Y ) is sensitive to π(Θ).

We discuss in the present work another possible, simple reaction, the two body associative

hyperon production, with baryon number equal 2, similar to N + N → Θ+ + Y , but with a
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deuteron in the initial state:

π± + D → Θ+ + Σ± (1)

in the threshold region [Eπ,th= 1.04 GeV, with M(Θ+)=1.54 GeV] or in collinear kinematics,

with the aim of finding some polarization observables which are sensitive to π(Θ). Note that

a similar reaction, π− + D → n + n, has been suggested many years ago [8] for the model

independent determination of the charged pion parity.

The study of the reaction (1) in collinear kinematics looks more preferable in comparison

with the threshold region, due to the larger cross section in forward direction, and to the

fact that the formalism applies to any pion energy.

II. THE REACTION π± + D → Θ+ + Σ±

The simplest mechanism for the reaction (1) is shown in Fig. 1. It is similar to the

impulse approximation, where the new deuteron vertex, D → Θ+ +Λ, generates a deuteron

component made from eight quarks: D → 3u + 3d + ss̄. This component is not new. For

example, the presence of an intrinsic ss̄ component in the nucleon has been advocated to

explain the strong violation of the OZI rule, which has been observed in different processes

of φ production, in particular in pp̄ annihilation at rest ( for a recent review see Ref. [9]).

It is possible to rearrange the np system, composed by (uud + ss̄) + (udd), as superposition

of Θ+ and Λ hyperons and to derive a connection between the deuteron structure at short

distances and the Θ+ physics. However, our interest here is focused on the dependence of

the polarization effects in the reaction (1) on the parity of the Θ+ hyperon, π(Θ). To solve

this problem we use only general symmetry properties of the strong interaction, such as the

P-invariance and the isotropy of space.

In the general case, the matrix element for π± + D → Θ+ + Σ± contains six independent

spin structures, assuming spin 1/2 for Θ+, which have different parametrizations according

to π(Θ). From the isotopic invariance we have π(p) = π(n). The capture process, π−+D →
n+n [8], proved the pseudoscalar nature of the pion. In this case no polarization observable

is necessary, as the identity of the produced neutrons generates only one spin structure.

Unfortunately, one can not use such procedure for π± +D → Θ+ +Σ±, due to different final

hyperons.
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FIG. 1: Possible mechanism for π± + D → Θ+ + Σ±.

To avoid the complexity of the calculation of the polarization phenomena in reaction

(1), we restrict our analysis to two different kinematical regimes: threshold production

and collinear regime. Although the dynamics is different in these two cases, the analysis

of polarization effects is similar, due to the axial symmetry of the two regimes: only one

physical direction is defined: the three-momentum of the colliding particles. This essentially

simplifies the calculations. Let us start from considerations which hold in threshold regime.
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III. MATRIX ELEMENT AND POLARIZATION EFFECTS

The production of the final hyperons in s-state is characterized by two different partial

transitions:

π(Θ) = +1 : ℓ = 1 → J P = 0+ → Sf = 0,

ℓ = 1 → J P = 1+ → Sf = 1, (2)

π(Θ) = −1 : ℓ = 0 → J P = 1− → Sf = 1,

ℓ = 2 → J P = 1− → Sf = 1, (3)

where ℓ is the orbital angular momentum of the initial pion (in the reaction CMS), Sf is the

total spin of the the ΘΣ-system, J P is the total angular momentum and parity of colliding

(and final) particles.

The spin structure of the corresponding matrix element can be written as:

M(+) = χ†
2

[

f
(+)
1 ~σ · ~U × ~̂q + if

(+)
2 ~̂q · ~U

]

σyχ̃
†
1, (4)

M(−) = χ†
2

[

f
(−)
1 ~σ · ~U + f

(−)
2 ~σ · ~̂q~̂q · ~U

]

σyχ̃
†
1, (5)

where χ1 and χ2 are the two component spinors of the Θ+ and Σ hyperon, ~̂q is the unit vector

along the pion three momentum, ~U is the deuteron polarization three-vector, f
(±)
i = f

(±)
i (w),

i = 1, 2 are the partial amplitudes of the transitions (2) and (3), which are, in general case,

complex functions of the excitation energy w =
√

s − M1 − M2, M1,2 are the masses of Θ

and Σ,
√

s is the invariant total energy of the colliding particles.

Note that the spin structure of the matrix elements M(±) in collinear regime (i.e., for

any value of
√

s and production angle equal 00 or 1800) is described by the same formulas,

Eqs. (4) and (5), but the amplitudes f
(±)
i → f

(±)
i,col describe two different allowed helicity

transitions, which work in collinear kinematics. Therefore, so different kinematical condi-

tions are described by different amplitudes, but, due to the axial symmetry inherent to the

considered problem, the same analysis of polarization phenomena can be applied.

The axial symmetry and the P-invariance of the strong interaction allow only single spin

polarization observables in π + ~D → Θ+ + Σ, namely, the analyzing power induced by the

quadrupole polarization of the deuteron target:

dσ

dΩ
=

(

dσ

dΩ

)

0

[1 + AQabq̂aq̂b] , (6)
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where A is the analyzing power, and Qab is the tensor which describes the deuteron

quadrupole polarization. The spin–density matrix of the deuteron is described by (in the

reaction CMS):

ρab =
1

3

(

δab +
qaqb

M2

)

− i

2
ǫabcS̃c + Qab, (7)

Qaa =
qaqb

E2
Qab, Qab = Qba, S̃i =

E

M
Si −

~q · ~S

ME
qi,

where ~S and E(M) are the vector polarization and energy (mass) of the deuteron target in

the reaction CMS.

The dependence of the Σ-hyperon polarization ~PΣ, on the polarization characteristics of

the deuteron target, can be written in the following general form:

~PΣ = ~SP1 + ~̂q~S · ~̂qP2 + ~Q × ~̂qP3, (8)

Qa = Qabq̂b,

where Pi, i = 1− 3, are real functions which can be expressed in terms of bilinear combina-

tions of the reaction amplitudes. These functions are related to the following coefficients of

the polarization transfer from the initial deuteron to the produced Σ-hyperon:

Dxx = Dyy = P1, Dzz = P1 + P2, Dx,yz = −Dy,xz = P3,

where the z-axis is chosen along the ~̂q direction, but the x and y directions can not be

uniquely fixed, due to the axial symmetry.

Summarizing, it is possible to measure four T-even observables: (dσ/dΩ)0, P1, P2 and A
and one T-odd observable, the coefficient P3.

Therefore, we can state that there must be a definite linear relations between T-even

observables, which is model independent and works in collinear and threshold regime, as

well.

To find this relation, let us express the coefficients A, P1, P2 and P3 as quadratic com-

binations of the corresponding amplitudes (for both cases of the Θ+ parity):

π(Θ) = +1 :

(

dσ+

dΩ

)

0

=
N

3

(

2|f (+)
1 |2 + r2|f (+)

2 |2
)

, A(+)

(

dσ+

dΩ

)

0

= N
(

−r−2|f (+)
1 |2 + |f (+)

2 |2
)

,

P(+)
1

(

dσ+

dΩ

)

0

= −NrRef
(+)
1 f

(+)∗
2 , P(+)

2

(

dσ+

dΩ

)

0

= Nr
(

r−2|f (+)
1 |2 + Ref

(+)
1 f

(+)∗
2

)

,
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P(+)
3

(

dσ+

dΩ

)

0

= 2NImf
(+)
1 f

(+)∗
2 ,

π(Θ) = −1 :

(

dσ−

dΩ

)

0

=
N

3

(

2|f (−)
1 |2 + r2|f (−)

1 + f
(−)
2 |2

)

, A(−)

(

dσ−

dΩ

)

0

= N
(

−r−2|f (−)
1 |2 + |f (−)

1 + f
(−)
2 |2

)

,

P(−)
1

(

dσ−

dΩ

)

0

= Nr
(

|f (−)
1 |2 + Ref

(−)
1 f

(−)∗
2

)

, P(−)
2

(

dσ

dΩ−

)

0

= −Nr

(

Ref
(−)
1 f

(−)∗
2 +

~q2

E2
|f (−)

1 |2
)

,

P(−)
3

(

dσ−

dΩ

)

0

= −2NImf
(−)
1 f

(−)∗
2 ,

where r = E/M and N = 1/(64Π2MW )(p/qπ) is a kinematical factor.

From these formulas, one can find a linear relation between T-even polarization observ-

ables:

P(±)
1 + P(±)

2 +
r

3
A(±) = r−1 or D(±)

zz +
r

3
A(±) = r−1. (9)

This relation is the same for the two possible values of the Θ+ parity. Therefore, it can not

be used for the determination of this parity. Being model independent, this relation can be

useful to determine the extension of the threshold region, i.e., of the s-wave dominance.

The measurement of the analyzing power A and cross section (dσ/dΩ)0 allows to realize

the first step of the complete experiment for π± + D → Θ+ + Σ±, i.e., the determination of

the moduli of the two complex amplitudes:

N |f (+)
1 |2 = (1 − r2

3
A(+))

(

dσ+

dΩ

)

0

, Nr2 |f (+)
2 |2 = (1 +

2r2

3
A(+))

(

dσ

dΩ+

)

0

,

N |f (−)
1 |2 = (1 − r2

3
A(−))

(

dσ−

dΩ

)

0

, Nr2|f (−)
1 + f

(−)
2 |2 = (1 +

2r2

3
A(−))

(

dσ−

dΩ

)

0

. (10)

Evidently, the T-odd observable P3 , being proportional to sin δ (δ is the relative phase

of the complex amplitudes f
(±)
1 and f

(±)
2 ), is the most sensitive to this phase. This is the

last step of the complete experiment. It is possible also to find definite quadratic relations

between T-odd and T-even observables:

1 +
r2

3
A(±) − 2r4

9
(A(±))2 − r2

4
(P(±)

3 )2 = (P(±)
1 )2, if π(Θ) = ±1. (11)

It is another result, which shows also that the specific quadratic combination of different

observables of T-odd and T-even nature does not depend on π(Θ). In order to test these

relations, it necessary to have a deuteron target, vector and tensor polarized, and to measure
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the Σ-hyperon polarization. These linear and quadratic relations apply equally well for

threshold and for collinear kinematics of the considered process.

But the situation is different for the Θ+ polarization. The dependence of the Θ+ pen-

taquark polarization ~PΘ, on the polarization characteristics of the deuteron target, can be

written in the following general form (similar to Eq. (8)):

~PΘ = ~SP̄1 + ~̂q~S · ~̂qP̄2 + ~Q × ~̂qP̄3, (12)

where P̄i, i = 1 − 3, are real functions which can be expressed in terms of bilinear com-

binations of the reaction amplitudes. Using Eqs. (4) and (5) for the matrix elements we

can obtain the following expressions for P̄i in terms of quadratic combinations of the corre-

sponding amplitudes (for both cases of the Θ+ parity)

π(Θ) = +1 :

P(+)
1 = −P̄(+)

1 , P̄(+)
2

(

dσ+

dΩ

)

0

= Nr
(

r−2|f (+)
1 |2 − Ref

(+)
1 f

(+)∗
2

)

, P(+)
3 = −P̄(+)

3 ,

π(Θ) = −1 :

P(−)
i = P̄(−)

i , i = 1, 2, 3.

From these formulas one can see that only the transversal components of the Θ+ polarization

vector are sensitive to the pentaquark parity:

P̄1,3 = −π(Θ+)P1,3, P̄1 + P̄2 = P1 + P2.

In terms of the coefficients of polarization transfer Dab(Θ) [Dab(Σ)] from vector–polarized

deuteron target to the Θ+ (Σ) hyperons, these relations can be written as follows:

Daa(Θ) = −π(Θ)Daa(Σ), aa = xx; yy; x, yz or y, xz, Dzz(Θ) = Dzz(Σ).

Evidently, it is a very difficult experiment.

IV. CONCLUSIONS

We performed a model independent analysis of the spin structure of the matrix element

for associative hyperon production in π±D collisions, π± + D → Θ+ + Σ±, in collinear or

threshold regime. We calculated different polarization observables and showed that they
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are related by very specific linear and quadratic equations. Unfortunately, these model

independent relations are insensitive to the parity of the Θ-pentaquark. Therefore, difficult

measurements of the Θ+ polarization are necessary in order to determine the parity of the

Θ+.

What is the physical reason of such insensitivity of the π± + D → Θ+ + Σ± process to

π(Θ)? What is the main difference between N + N → Y + Θ and π± + D → Θ+ + Σ±,

which look very similar processes? The problem is that the initial two-nucleon system in

N + N → Y + Θ is more flexible, as it can be in triplet and singlet state, as well, whereas

in π± + D → Θ+ + Σ± the initial two-nucleon system, being a deuteron, is always in triplet

state.

However, if the parity of Θ+ will be determined, the study of the process π± + D →
Θ+ + Σ± will be useful for the study of other questions, related to the Θ+ physics, as, for

example, the exotic baryon content of the deuteron at small distances.
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