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The influence of random perturbations of high intensity accelerator elements on the beam losses is
considered. This paper presents the error sensitivity study which has been performed for the SPIRAL2
linac in order to define the tolerances for the construction. The proposed driver aims to accelerate a 5 mA
deuteron beam up to 20 A MeV and a 1 mA ion beam for q=A � 1=3 up to 14.5 A MeV. It is a continuous
wave regime linac, designed for a maximum efficiency in the transmission of intense beams and a tunable
energy. It consists in an injector (two ECRs sources� LEBTs with the possibility to inject from
several sources� radio frequency quadrupole) followed by a superconducting section based on an array
of independently phased cavities where the transverse focalization is performed with warm quadrupoles.
The correction scheme and the expected losses are described. The extreme value theory is used to estimate
the expected beam losses. The described method couples large scale computations to obtain probability
distribution functions. The bootstrap technique is used to provide confidence intervals associated to the
beam loss predictions. With such a method, it is possible to measure the risk to loose a few watts in this
high power linac (up to 200 kW).
beam halo are the space charge and/or the nonlinear exter-
I. INTRODUCTION

II. THE REFERENCE SIMULATION WITHOUT
Once the reference design for the accelerator with per-
fect elements respects the requirements, it is necessary to
evaluate the effects of imperfect elements. This evaluation
permits one to define tolerances for the construction of the
linac and to test the robustness of the achieved architecture.
The design is assumed to be ‘‘robust’’ if the probability to
record intolerable beam losses is a few percent. This
robustness test may be compared to a risk measurement.
By ‘‘imperfect element,’’ we mean for instance that we
have to consider that the quadrupoles would not be at the
correct position or that the cavities would not be at the right
phase and so on and so forth. To correct such errors, a
correction scheme based on correctors and diagnostics has
to be designed taking into account that the diagnostics are
also imperfect (misalignments, measurement, . . .). Several
authors studied the effects of imperfect ion linacs on the
beam [1–6]. In Refs. [2,3], the effect of nonlinear space
charge force is not treated. The halo induced by these
effects is then underestimated and the loss prediction be-
comes distorted. The approach in [1] is helpful if the
Coulomb force is negligible but is inaccurate for high
power linac at low energy. To tend to ‘‘realistic’’ simulation
of a high intensity linac, it is necessary to perform start-to-
end transport to be capable of estimating the impact of halo
produced at low energy on the beam losses at the high
energy part of the accelerator. References [4–6] detail
start-to-end simulations to take into account this point. In
these references, the main mechanisms to produce the
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nal fields. These studies used macroparticles to estimate
beam distribution and to record the losses at the beam pipe.
The discrete recorded losses at different locations in the
linac allow one to build a cumulative distribution function
(CDF) to provide a probability to deposit more than a
certain fraction of beam. But the discrete form of this
CDF induces that the probability to lose more than the
more extreme recorded loss becomes null. We are not
capable then to predict very extreme events. The extreme
value theory provides a firm theoretical foundation to
perform such a goal [Fisher and Tipett (1928) and
Gnedenko (1943)]. Combining this theory with the boot-
strap technique, we propose in this paper to detail a pro-
cedure to compute the average probability of occurrence of
extreme events such as a very low beam loss (10�5)
including a confidence interval (error bar) associated to
this evaluation. The procedure uses large scale simulations
of linacs combining different sets of errors. The correction
scheme manages the beam center and size. To illustrate the
method, the SPIRAL2 linac is used. To estimate the rela-
tive impact of errors, the following section recalls the
performances of the reference design of the driver.
ERROR

A. Calculation framework

To compare with the results including the element er-
rors, this paragraph shows a simulation of the reference
design. This design has been presented at the EPAC 2004
conference [7]. A 1 300 000 macroparticle 4� � Gaussian
2-1 © 2006 The American Physical Society
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FIG. 1. (Color) The transverse envelope behavior for the deuteron beam in the SPIRAL2 linac (
���
5
p
� � which is equivalent to the size

of an uniform distribution in position).

FIG. 2. (Color) The deuteron density projection in the transverse plane in the SPIRAL2 linac.
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FIG. 3. (Color) The density portrait of the deuteron beam at the linac exit in the phase space.

FIG. 4. (Color) Normalized rms emittance evolutions.
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distribution is used at the input of the LEBT line. The
transverse rms normalized emittance used is
0:2� mm mrad. The beam current is 5 mA. A deuteron
beam is considered to estimate the most critical beam
losses. Multiparticle simulations are performed from the
low-energy beam transport (LEBT) line to the target
through the radio frequency quadrupole (RFQ), the me-
dium energy beam transport (MEBT), the superconducting
linac (SCL) and the high energy beam transport (HEBT)
line. The transport of the beam through the RFQ is com-
puted with the code TOUTATIS [8]. The rest of the linac is
simulated with the TraceWin/PARTRAN package [9]. The
space charge is calculated with the PICNIC routine[10] for
Partran and a finite difference method for TOUTATIS [8].
The simulation takes into account a 3D domain and neigh-
bor bunches. Several elements are simulated using a 3D
field map: the LEBT quadrupoles, the RFQ and the quarter
wave resonators. Preliminary studies have shown that the
simulation of the other elements can be performed using
the classical hard edge formalism. To manage the neces-
sary huge number of runs for the Monte Carlo study, we
implemented in Tracewin a software package that permits
to pilot a heterogeneous collection of PCs [9]. The package
is based on a client/server architecture to distribute the
different independent runs. This is a multiparameter
scheme and not a parallel scheme which is less optimal
as each run can be performed by a single PC. As the
communication between each node is minimum, the effi-
ciency is enhanced. The envelope behaviors are plotted in
Fig. 1. Figure 2 shows the beam density projection per
plane in the linac. The density portrait in the phase space of
the deuteron beam at the linac exit is shown in Fig. 3 and
the rms evolutions are shown Fig. 4. The nonlinear space



FIG. 5. (Color) Beam size radii along the linac. 10�1 corresponds to 90% of the beam, 10�2 ! 99%, 10�3 ! 99:9% . . . and the last
black one is the radial aperture.
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charge forces are the main source of the emittance growth.
The phase dependent steering induced by the quarter wave
resonators is negligible.

B. Beam losses

Figure 5 represents the different beam size radii along
the linac (isodensity contours). The red line corresponds to
90% of the beam, the blue one 99%, the green 99:9%; . . .
and the last black line represents the aperture. We observe
that the beam size is closer to the aperture in the first part of
the superconducting accelerator. Figure 6 shows the losses
which occur in the structure. Three main locations for the
FIG. 6. (Color) Losses (W) along the structure, the loss limit
requirements are the red line.
losses are observed. The first one (30 W) corresponds to a
halo scraper located in the beginning of the LEBT. The
second one (10 W) is due to the scraper which has to
remove the chopped beam in the LEBT and to collimate
the halo. The last one (160 W) is in the MEBT. This power
is deposited on a scraper. This device has to protect the
superconducting part from the beam halo coming from the
MEBT. Without this collimator, more than 3 W are lost in
the first superconducting cavities. The acceptable losses in
the linac are defined in Table I. The SCL is divided in two
parts, the warm one (quadrupoles, diagnostics, pumps) and
the cold one (cryostats). They have been defined in respect
to radioprotection and cryogenic efficiency considerations.
The maximum beam power dissipated in each supercon-
ducting cavity has to be lower than 1 W to minimize the
extra power.
TABLE I. Loss tolerances. For the accelerating structures, the
first value corresponds to the tolerance at the beginning of the
structure and the last one to the end.

Section Losses (%) Losses (W)

LEBT 12.5 25
RFQ 2 4! 150
MEBT 10 730 W
SCL (warm) 0:2! 0:003 4! 6
SCL (cold) 1
HEBT 0.003 6
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III. SENSITIVITY OF THE LINAC TO ELEMENT
ERRORS

A. Definitions of errors and strategy

Before detailing different types of errors, it is important
to remark that two families of errors have to be coped with

‘‘Corrected’’ errors—These errors are applied before
tuning the linac. They are, for instance, cavity and quad-
rupole misalignments or field errors. The tuning or ‘‘cor-
rection’’ of the linac is performed with steerers coupled
with beam position monitors and quadrupoles coupled with
profilers. The strategy of the correction scheme is estab-
lished to minimize the effects of these static errors. The
errors of the rf (field and phase) are also included in this
category. They are not completely corrected because no
longitudinal adjustment is applied, but the wrong trans-
verse defocusing is readjusted with quadrupoles. Rotation
around the beam axis of the quadrupoles is also included in
this category but induced coupling is not corrected with a
dedicated device, only the beam size readjustment is per-
formed with the lenses.

Uncorrected errors.—These errors are applied after the
correction procedure. They represent the dynamic fluctua-
tions of the rf field or mechanical vibrations from the
environment. Fortunately, these errors have usually lower
amplitude but their frequencies may be problematic. In this
study, we will not go into detail of this frequency problem.
We will simulate the effect of uncorrected errors by adding
them after correction of the static errors. These errors are
mainly responsible for orbit oscillations around the cor-
rected orbit. The notion of orbit is also extended to the
longitudinal plane. The amplitudes of this defect are set to
1 order of magnitude lower than the static errors for
transverse planes.

Depending on the linac section, errors with different
amplitudes have been used. These amplitudes are summa-
rized in Tables IX, X, XI, XII, XIII, and XIV in the
appendix. For an error of amplitude A, the value has a
uniform probability between�A and�A. The rms value is
then A=

���
3
p

. If the distribution of errors is not uniform, the
mechanical engineer will have to apply the principle of rms
equivalence. The rotation angles around axes (OX, OY,
OZ) are calculated with the following formulas:

�x;y �
2d
L

and �z �
d
R

(1)

with d the displacement, L the length of the element, and R
the aperture radius of the element. Usually, this kind of
TABLE II. The correction sch

Correctors

3 quadrupoles and 2 steerers
3 quadrupoles, 1 solenoid, and 2 steerers
study combines different stages. First, each defect is
studied separately and is amplified until an unacceptable
threshold is reached. Second, the defaults are combined
and amplified until the threshold is reached again.
Weighting for the combination has to take into account
relative sensitivity and the capacity to respect the induced
tolerances. The main threshold for the SPIRAL2 project is
to avoid losses in the superconducting section above 1 W
per cavity. As this threshold is exceeded without error, the
beam dump of the MEBT is also used as a scraper to
control the loss level in the SC linac. Once the errors are
included in the simulations, the losses can be still kept
below 1 W per cavity. The new threshold would be the
acceptable dissipated power on the MEBT collimator. As
this threshold is unknown at this level of the project, study
will lie in varying amplitudes of the errors described in
Tables IX, X, XI, XII, XIII, and XIV all together from 0%
to 200%. The dissipated power on the beam dump will be
given for each amplitude of errors. These amplitudes of
errors have been chosen after iterating with the engineering
teams and the background from previous studies on high
intensity linacs [11]. This background allowed us to avoid
the preliminary studies to define the acceptable error for
each element. The main strategy was to converge on values
which may be reached with the present know-how in order
to avoid an extra cost induced by R&D. This is the reason
why, for example, the displacements in the cold part are
around 1 mm compared to the warm part where they are
around 0.1 mm.

B. Correction scheme

The beam center trajectory is controlled by using steer-
ers which kick the beam in both planes. The transverse
beam size is adjusted with quadrupoles coupled with beam
profilers or an emittance measurement. Only data coming
from diagnostics are used to tune the elements. With such a
method, we are very close to the commissioning and tuning
procedures which will be performed on the future machine.
A description of the correction scheme for each section is
given in Tables II, II, III, IV, and Vand Fig. 7 illustrates the
algorithm. The diagnostic errors are in Table VI.

C. Scan from 0% to 200% of errors

1. Results

The transport of 13 000 macroparticles has been simu-
lated for each linac of a set of 100 different linacs in order
eme of the deuteron LEBT.

Diagnostics

2 profilers (sizes and positions)
Emittance measurement (sizes, divergences, positions, and angles);
this measurement is used to match the beam at the RFQ entrance

and control the beam position and angle.



TABLE III. The correction scheme of the MEBT.

Correctors Diagnostics

3 quadrupoles and 2 steerers 2 profilers (sizes and positions)
3 quadrupoles and 2 steerers 2 profilers (sizes and positions)
1 steerer 1 beam position monitor (BPM)

TABLE IV. The correction scheme of the superconducting linac.

Correctors Diagnostics

1 steerer for each of the 19 periods Profilers for the 6 first periods and BPM at each period
4 last quadrupoles of the MEBT
and the first one of the linac

The matching procedure lies in adjusting these quadrupoles in order to get the same sizes
in the horizontal and vertical planes. To avoid mismatching modes, this adjustment

minimizes also the difference of sizes in a transverse plane from one period to the next one.
This tuning is performed once the quadrupole channel is previously defined and only

at the 6 first periods of the linac. It is not necessary to readjust any quadrupoles
after this section because a continuity of the phase advance per meter

has been set and makes that the linac is a single regular channel.

TABLE V. The correction scheme of the HEBT.

Correctors Diagnostics

4 quadrupoles and 2 steerers 2 profilers (sizes and positions)
3 quadrupoles and 2 steerers 2 profilers (sizes and positions)
2 quadrupoles 2 profilers (sizes)
8 steerers 8 BPM

FIG. 7. (Color) The algorithm for each run which is launched on
a node of the PC collection.
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to get a convergence for the average losses. These average
values will help us to select the acceptable tolerances for
the SPIRAL2 driver. For each linac, all the errors are
combined. Only the deuteron beam is simulated as it is
assumed to be the more problematic one with respect to
radioprotection. All plots show the mean values of each set
of 100 linacs. To compute the linear density of the depos-
ited power, total power in a section is divided by the total
length of the section.

A power of 40 W is dissipated in the scrapers of the
LEBT. This power is hardly sensitive to the errors. Figure 8
shows the losses for different amplitudes of errors. The
collimators are excluded. It appears that the losses in the
vacuum chamber of the LEBT do not significantly increase
with the errors. The main reason is that the cumulative
effect of imperfections is weak (beginning of the linac).

Comparing to Fig. 9 and Table I, the RFQ of the
SPIRAL2 project appears to have a large acceptance.
Losses are always kept below 1 W=m.

The two charts in Fig. 10 show the losses in the MEBT
line. They are always lower than the radioprotection
threshold (see Table I). But, the deposited power on the
scraper located at the end of the line increases quickly. One
option would be to multiply the number of scrapers to
minimize the power per unit. It would perform also a
more efficient scraping of the halo as one collimator will
TABLE VI. The amplitudes of errors for the diagnostics.

Element Error Value

BPM Position accuracy (mm) �0:1
Profiler Size accuracy (mm) �0:1
Emittance measurement Size accuracy (%) �10

Divergence accuracy (%) �10
Position accuracy (mm) �0:1
Angle accuracy (mrad) �0:3



FIG. 8. (Color) The losses in the deuteron LEBT in respect to
the error level.

FIG. 9. (Color) The deuteron losses in the RFQ in respect to the
error level.

FIG. 10. (Color) The deuteron losses in the MEBT without the scrap
level.
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not remove the halo particles which are crossing the axis at
the scraper location. Calculations have been performed to
verify that the loss level in SCL is tunable with the colli-
mator aperture as much as the errors in the SCL itself are
sufficiently weak.

The losses in the cavities for the first family of the SCL
are always lower than 1 W (see Fig. 11). The main dis-
sipated power is located in the first quadrupole (see
Fig. 12). In the second SC family, the 1 W threshold is
reached at �150%.

Acceptable mean peak losses lower than 6 W are re-
corded if the amplitude of combined errors are lower than
140%. The behavior of losses in this line in respect to the
error level is plotted in Fig. 13.

Figure 14 shows the losses and emittance growths for the
whole linac without error as reference (see Sec. II).

2. Conclusion for the scan from 0% to 200% of error
amplitude

All these results show that SPIRAL2 requirements are
respected if the amplitudes of errors are lower than 140% if
we consider mean values. A safer approach would be to
choose an amplitude equal to 100% as a good compromise
to minimize constraint for a possible upgrade to
100 MeV=u. The following section shows detailed results
for this case.

D. Application of the extreme value theory
for the loss estimate

1. Introduction

To get a good estimate of the distributions of centers in
phase space plane, 10 000 macroparticles per run are
largely sufficient. The most important quantity to reach
convergence for the standard deviation is the total number
of generated linacs. 1000 different linacs with all combined
errors on each element have been used for this study.
er and the deposited power on the scraper in respect to the error



FIG. 12. (Color) The deuteron losses in the SCL warm part in respect to the error level (first and second family of �).

FIG. 11. (Color) The deuteron losses in the SC cavities in respect to the error level (first and second family of �).

FIG. 13. (Color) The deuteron losses in the HEBT line in respect
to the error level.

FIG. 14. (Color) The deuteron losses and rms emittance growths
in the whole linac in respect to the error level (the whole linac
without error is the reference).
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FIG. 15. (Color) rms orbit behavior in the linac.
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The rms value of the orbit along the linac is plotted on
Fig. 15. We notice that the rms jitter centroid position at the
target is about 0.9 mm for this linac. It is mainly due to the
dynamic errors (vibrations) and BPM accuracy. Figures 16
and 17 show the distributions of the centers for the 1000
linacs.

The distribution in Fig. 18 is the normalized superposi-
tion of 1000 different beams at the linac exit. It represents a
probability contour map to reach this density at the target.

To study more precisely the losses occurring in the linac,
the 10 000 macroparticles are not enough to estimate losses
lower than 1 W for each linac. Thus, the number of
particles per run has been increased to 1� 106 in order
to reach the required resolution and the number of run has
been decreased to 341 runs (2 weeks of computations with
10 PCs). Figure 19 shows the statistical distribution of the
FIG. 16. (Color) Distributions for the positio
particles all along the linac for 100% of errors. It is
interesting to compare it with Fig. 5 to visualize the impact
of errors on the halo.

This set of simulations provides data which can be used
to build statistical models describing the extreme events.
Extreme value theory (EVT) provides a firm theoretical
foundation to perform such a goal. In many field of modern
science, EVT is well established [12–14]. This paper will
not detailed this theory. See the reference [14] which re-
views the basics and illustrates EVT with examples. By
‘‘extreme events,’’ in our case, we mean that we want to be
able to provide the probability to loose more than 1 or
10 W, and so on and so forth with a confidence interval. To
model the tails of our deposited beam power in the
SPIRAL2 linac, we will apply the following method:
(i) F
n centers
irst, scan the mean deposited power for each
element of the accelerator to detect the most critical
components
(ii) S
econd, fit the data with the Generalized Extreme
Value (GEV) distribution.
(iii) T
hird, estimate confidence intervals for value of
interest with the bootstrap method.
2. Average loss scan to select the hot spots

Figure 20 shows the mean losses repartition along the
structure for the 341 linacs and the corresponding dissi-
pated power. The repartition along the linac parts is sum-
marized in Table VII. The losses column summarizes the
integrated and the mean dissipated power along each ma-
chine section. The peak power column represents the
average maximum dissipated power which occurs in one
element of the section. For the SC linac, the warm part and
the cold part have been separated. These last data allow us
to select the most critical component in a particular section.
This selection assumes that the higher average deposited
power the higher the rms beam loss power for a given
at linac exit (1000 simulations).



FIG. 17. (Color) Energy and phase distributions at linac exit (1000 simulations).
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probability. The application of the extreme value theory is
justified to study our problem (see below). The power
distribution probability function is well represented by
the Fréchet function of the variable �power���=�, where
� is a location parameter and � is a scale parameter. The
FIG. 18. (Color) The probability distribution contour map obtaine
distributions.
mean value for such function is the sum ��� ���where �
is the Euler-Mascheroni constant (� 0:6). The standard
deviation is equal to �1:26� �. It means that we can
reasonably expect that elements with a high standard de-
viation have also a high mean value.
d by the normalized superposition of the 1000 output beam



FIG. 19. (Color) Beam size radii along the linac. 10�1 corresponds to 90%and the last black one is the aperture.
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If we focus on the results for the SCL, we can observe
two critical elements. The first one is the first quadrupole of
the first superconducting section where a mean value of
0:61 watt is dissipated and the second one is the first cavity
of the � � 0:12 section where a mean power of 0:19 W is
recorded. We will concentrate our study on these two
elements.

3. First quadrupole of the � � 0:07 section

Figure 21 shows the recorded loss distribution at the first
quadrupole of the first superconducting section. This rep-
resents the unnormalized probability density function
(PDF) computed with the results of the 341 linacs with 1�
106 simulated macroparticles per linac. With this number
FIG. 20. (Color) Average loss repartition along the structure. T
of macroparticles, one particle represents �8 mW at this
location of the linac.

Using this unormalized PDF, we can build a cumulative
distribution function (CDF) which will be our reference
data to fit with the GEV function of the lost power p:

H����p� � exp
�
�

�
1� �

p��
�

�
�1=�

�
; (2)

with �, the location parameter, �, the scale parameter and
�, the Jenkinson and von Mises parameter. To build the
CDF, we used the following formula:

Fn�x
n
i � �

i
n

for i � 1; . . . ; n; (3)
he most critical components are pointed with red arrows.



TABLE VII. Average losses repartition according to linac section (ndy means ‘‘not designed
yet’’).

Losses (W) Length (m) Losses �W=m� Peak losses (W)

LEBT 0.17 8.86 0.02 0.14
Scrapers LEBT 46.91 ndy 33.85
RFQ 0.33 5.09 0.07 0.14
MEBT 0.96 7 0.14 0.69
Scraper MEBT 317.23 ndy 317.23
SCL1 (warm) 0.97 10.2 0.09 0.61
SCL2 (warm) 0.160 7.014 0.02 0.03
SCL1 (cold) 0.34 3.6 0.09 0.10
SCL2 (cold) 0.50 6.986 0.07 0.19
HEBT 2.41 33.1 0.073 0.85
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which is the sample distribution function for a set of n
observations, given in increasing order xn1 	 
 
 
 	 xni . For
our case, n is equal to 341. The GEV fitted with these data
is plotted in Fig. 22. At this location of the linac, the
requirements assume that less than 4 W should be depos-
ited on the pipe. With the fitted GEV, we can estimate that
the probability to loose less than 4 W is 0:97 which is very
comfortable. The fitted parameters are �̂ � 0:223, �̂ �
0:89, and �̂ � �0:86. To see how sensible is this result
in respect to the achieved statistics, we can calculate a
confidence interval at 95%. The bootstrap method is a
helpful technique to construct such confidence interval.
We resampled 1000 times the recorded PDF and recom-
putes the expected return power level for a probability of
0:97. Figure 23 shows the empirical bootstrap distribution
for the return level for this probability. The confidence
interval at 95% is then �2:3; 5:9� W. This indicates that
the recorded losses are sufficiently numerous to estimate
that, with a good accuracy, we kept the beam losses at an
acceptable level. If we need to estimate probability for very
FIG. 21. (Color) Unnormalized probability density function for
the losses at the first quadrupole of the first section. The
deposited beam power (W) forms the abscissa and the number
of counts the ordinate.
high loss level, the same procedure has to be repeated. For
instance, with the same set of events, we can estimate that
for a probability of occurrence of 10�4 the mean deposited
power is 36 W with a confidence interval at 95% which is
�20; 52�W. It indicates that more recorded losses are re-
quired if we need to shrink the confidence interval around
this mean value of 36 W.

4. First cavity of the � � 0:12 section

With the same procedure, we can construct a GEV
function fitted with the recorded losses at the cavity loca-
tion. Figure 24 shows the fitted GEV with the recorded
losses at the cavity location. The fitted parameters are �̂ �
0:465, �̂ � 0:062, and �̂ � �0:061. The probability to
loose less than 1 W is 0:99. With the bootstrap method,
we can estimate a confidence interval for this probability. It
is �0:44; 1:33�W. Figure 25 illustrates the empirical boot-
strap distribution for the return level for this probability.
Table VIII gives a summary of the results for the most lossy
quadrupole and cavity. To give an other example of the
main interest to use EVT, we are capable to estimate that
the probability to loose more than 10 W in this cavity is
8 
 10�5.
FIG. 22. (Color) GEV fitted with the recorded losses for the
quadrupole. The deposited beam power (W) forms the abscissa
and the CDF the ordinate.



TABLE VIII. Beam loss estimates (PE) and 95% bootstrap
confidence intervals.

CDF @ PE Lower
bound

Point estimate
(PE)

Upper
bound

Quadrupole (W) 0.97 2.3 4 5.9
Cavity (W) 0.99 0.44 1 1.33

FIG. 23. (Color) Empirical bootstrap distribution for the return
level with a probability of 0:97. The two small red marks
indicate the �2� interval, the big red mark indicates the return
level obtained with a direct estimate from the recorded losses.

FIG. 24. (Color) GEV fitted with the recorded losses for the
most critical cavity. The deposited beam power (W) forms the
abscissa and the CDF the ordinate.

FIG. 25. (Color) Empirical bootstrap distribution for the return
level with a probability of 0:99. The two small red marks
indicate the �2� interval, the big red mark indicates the return
level obtained with a direct estimate from the recorded losses.
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IV. CONCLUSIONS

This application of the extreme value theory to beam
loss estimates in the SPIRAL2 linac based on large scale
Monte Carlo computations allowed us to provide loss
probability for this linac. The start-to-end error study
show manageable losses with a 4� � Gaussian as input
distribution and the use of collimators. The probability to
loose more than 1 W in a superconducting cavity predicted
with the GEV is less than 10�2. Such an event will happen
on average one linac over 100 built linacs. The losses in the
superconducting section are directly linked with the MEBT
scraper while the amplitude of the errors in the SCL itself
are not too large. Considering about 200 W of power
dissipated on the MEBT scraper, the element tolerances
are compatible with the present state of art. To go further to
realistic estimates of the beam loss, a more faithful mode-
lization of the linac is required. For instance, the output
beam distribution of the ECR source is necessary to en-
hance the start-to-end modelizations and the beam inter-
action with the residual gas (neutralization) has to be taken
into account to simulate more accurately the space charge
force especially at low energy.
APPENDIX: AMPLITUDE ERROR TABLES

Depending on the linac section, errors with different
amplitudes have been used. These amplitudes are summa-
TABLE IX. The amplitudes of errors for the RFQ cavity.

Error Corrected Uncorr.

Machining transv. curvature defect (mm) �0:1 0
Machining long. curvature defect (mm) �0:1 0
? tilt by segment (mm) �0:1 �0:01
k tilt by segment (mm) �0:1 �0:01
? displacement by segment (mm) �0:1 �0:01
k displacement by segment (mm) �0:1 �0:01

TABLE X. The amplitudes of errors for the magnetic quadru-
poles.

Error Corrected Uncorrected

Gradient (%) �1 �0:1
Displacement (mm) �0:1 �0:01
Rotations (OX, OY) (deg.) ��x;y �0:1��x;y

Rotations (OZ) (deg.) ��z �0:1��z
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rized in Tables IX, X, XI, XII, XIII, and XIV that
follow.
TABLE XI. The amplitudes of errors for the magnetic dipoles.

Error Corrected Uncorrected

Field (%) �1 �0:1
Displacement (mm) �0:1 �0:01
Rotations (OX, OY) (deg.) ��x;y �0:1��x;y

Rotations OZ (deg.) ��z �0:1��z

TABLE XII. The amplitudes of errors for the buncher cavities.

Error Corrected Uncorrected

Amplitude (%) �1 �0:1
Phase (deg.) �1 �0:1
Displacement (mm) �1 �0:1
Rotations (OX, OY) (deg.) ��x;y �0:1��x;y

TABLE XIV. The amplitudes of errors for the magnetic octu-
poles.

Error Corrected Uncorrected

Field (%) �1 �0:1
Displacement (mm) �0:1 �0:01
Rotations (OX, OY) (deg.) �0:04 �0:004
Rotations (OZ) (deg.) �0:15 �0:015

TABLE XIII. The amplitudes of errors for the SC cavities.

Error Corrected Uncorrected

Amplitude (%) �1 �0:1
Phase (deg.) �1 �0:1
Displacement (mm) �1 �0:1
Rotations (OX, OY) (deg.) ��x;y �0:1��x;y
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