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New data on electromagnetic hadron form factors have triggered large theoretical and
experimental efforts and inspired new ideas and several proposals at different accelerators.
The possibility to achieve Q2 values up to � 6 GeV2 and the inconsistencies among form
factors extracted from polarized and unpolarized experiments suggest to search for the two-
photon contribution. A calculation of radiative corrections based on the structure function
method can bring the results into agreement and shows that the two photon contribution
to electron proton elastic scattering is small.

1 Introduction

The experimental determination of the elastic proton electromagnetic form factors (FFs)
at large momentum transfer is presently of large interest, due to the availability of electron
beams in the GeV range with high intensity and high polarization, large acceptance spec-
trometers, hadron polarized targets, and hadron polarimeters. The possibility of extending
the measurements of such fundamental quantities, which contain dynamical information on
the nucleon structure, has inspired experimental programs at JLab, Frascati and at future
machines, such as GSI, both in the space-like and in the time-like regions.

The traditional way to measure proton electromagnetic FFs consists in the determi-
nation of the ε dependence of the reduced elastic differential cross section, which may be
written, assuming that the interaction occurs through the exchange of one-photon, as [1]:

σBorn
red (θ, Q2) = ε(1 + τ)

[
1 + 2

E

m
sin2(θ/2)

]
4E2 sin4(θ/2)

α2 cos2(θ/2)

dσ

dΩ
= τG2

M (Q2) + εG2
E(Q2), (1)

where ε = [1 + 2(1 + τ) tan2(θ/2)]−1, α = 1/137, τ = Q2/(4m2), Q2 is the momentum
transfer squared, m is the proton mass, E and θ are the incident electron energy and the
scattering angle of the outgoing electron, respectively, and GM(Q2) and GE(Q2) are the
magnetic and the electric proton FFs and are functions of Q2, only. Measurements of the
elastic differential cross section at different angles for a fixed value of Q2 allow GE(Q2) and
GM(Q2) to be determined as the slope and the intercept, respectively, from the linear ε
dependence (1).
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High precision data on the ratio of the electric to magnetic proton FFs at large Q2

have been recently obtained [2] through the polarization transfer method [3]. Such data
revealed a surprising trend, which deviates from the expected scaling behavior previously
obtained through the measurement of the elastic ep cross section according the Rosenbluth
separation method [4]. New precise measurements of the unpolarized elastic ep cross section
[5] and re-analysis of the old data [6, 7] confirm that the behavior of the measured ratio
R(Q2) = µGE(Q2)/GM(Q2) (µ = 2.79 is the magnetic moment of the proton) is different
depending on the method used: either R(Q2) � 1, i.e., scaling behavior for unpolarized
cross section measurements, or a strong monotonic decrease from polarization transfer
measurements, which has been parametrized as [2]:

R(Q2) = 1 − (0.130 ± 0.005){Q2 [GeV2] − (0.04 ± 0.09)}. (2)

This puzzle has given rise to many speculations and different interpretations [9], sug-
gesting further experiments. In particular, it has been suggested that the presence of 2γ
exchange could solve this discrepancy through its interference with the main mechanism
(1γ exchange). However, the present data do not give any evidence of the presence of the
2γ mechanism, in the limit of the experimental errors [10]. The main reason is that, if
one takes into account C-invariance and crossing symmetry, the 2γ mechanism introduces
a very specific non linear ε dependence of the reduced cross section [11], whereas the data
do not show any deviation from linearity.

No experimental bias has been found in the measurements: the observables are in one
case the unpolarized differential cross section, and in the other case, the polarization of the
outgoing proton in the scattering plane (more precisely the ratio between the longitudinal
and the transverse polarization).

Let us stress that the discrepancy is not at the level of these observables: it has
been shown that constraining the ratio R from polarization measurements and extract-
ing GM(Q2) from the measured cross section ”the magnetic FF is systematically 1.5-3%
larger than had been extracted in previous analysis” , but well inside the error bars [12].

The inconsistency arises at the level of the slope of the ε dependence of the reduced
cross section, which is directly related to GE(Q2), i.e. the derivative of the differential cross
section, with respect to ε.

Radiative corrections (RC), which depend on the relevant kinematic variables, ε and Q2

are applied to the unpolarized cross section and may reach 30-40% at large Q2, whereas
they are neglected in polarization measurements. The standard procedure is based on Ref.
[13], where RC are calculated as a global factor which is applied to the elastic cross section
extracted from the data.

However, several approximations are made, which may not be safely extrapolated to
the conditions of the present experiments. In particular in the calculation of Ref. [13],
the consideration of hard collinear photon emission (where the radiative photon is emitted
along the direction of the incident or outgoing electron) is not complete. Moreover higher
order RC, pair production as well as vacuum polarization are not included.

We have shown [14] that a large correlation exists between the two parameters extracted
from the Rosenbluth fit at large Q2. A probable source of these correlations is found in the
standard procedure taken for RC. We recalculate the cross section of elastic electron-proton
scattering in leading and next-to leading approximation using the electron QED structure
(radiation) function approach [15, 16]. Numerical results show that this approach can bring
the polarized and unpolarized data into agreement, in frame of one photon exchange.
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Figure 1: Radiative correction factor applied to the data at Q2=3 GeV2 (squares) from
Ref. [17], at Q2=4 GeV2 (triangles) and 5 GeV2 (inverted triangles) from Ref. [4], and at
Q2=0.32 GeV2 from Ref. [18] (circles). The lines are drawn to guide the eye.

2 Statistical analysis of the present data

It is known that at large Q2 the contribution of the electric term to the cross section becomes
very small, as the magnetic part is amplified by the kinematic factor τ . Assuming the linear
dependence of Eq. (2), one can see that, for example, for ε = 0.2 the electric contribution
becomes lower than 3% starting from 2 GeV2. This number should be compared with the
absolute uncertainty of the cross section measurement. When this contribution is larger or
is of the same order, the sensitivity of the measurement to the electric term is lost and the
extraction of GE(Q2) becomes meaningless.

A large correlation appears in the FFs data extracted with the Rosenbluth method at
large Q2., that we attribute to the procedure used in applying radiative corrections.

The measured elastic cross section is corrected by a global factor CR, according to the
prescription [13]:

σBorn
red = CRσmeas

red . (3)

The factor CR contains a large ε dependence and a smooth Q2 dependence, and it is common
to the electric and magnetic parts. At the largest Q2 considered here this factor can reach
30-40%, getting larger when the resolution is higher. If one made a linear approximation
for the uncorrected data, one might even find a negative slope starting from Q2 ≥ 3 GeV2

[10].
In Fig. 1 we show the CR dependence on ε for different Q2 and from different sets of

data. One can see that CR increases with ε, rising very fast as ε → 1. It may be different in
different experiments because its calculation requires an integration over the experimental
acceptance.

The Rosenbluth separation consists of a linear fit to the reduced cross section at fixed
Q2, where the two parameters are G2

E and G2
M . The multiplication by a factor which is

common to the electric and magnetic terms, see Eqs. (1,3), and depends strongly on ε,
induces a correlation between these two parameters. In order to determine quantitatively
how large this correlation is, we have built the error matrix for the Rosenbluth fits to the
different sets of data available in the literature.
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Figure 2: Correlation coefficient, ξ, as a function of the radiative correction factor < CR >,
averaged over ε, for different sets of data: from Ref. [18] (circles), from Ref. [4] (triangles)
and from Ref. [17] (squares).

At fixed Q2 the reduced cross section, normalized to the dipole function: G2
D = [1 +

Q2(GeV2)/0.71]−2, has been parametrized by a linear ε dependence: σBorn
red /G2

D = aε+b. The
two parameters, a and b, have been determined for each set of data as well as their errors σa,
σb and the covariance, cov(a, b). The correlation coefficient ξ is defined as ξ = cov(a, b)/σaσb

and is shown in Fig. 2 as a function of the average of the radiative correction factor < CR >,
weighted over ε.

As the radiative corrections become larger, the correlation between the two parameters
also becomes larger, reaching values near its maximum (in absolute value). Full correlation
means that the two parameters are related through a constraint, i.e. it is possible to find
a one-parameter description of the data.

The data shown in Fig. 2 correspond to those sets of experiments where the necessary
information on the radiative corrections is available. The correlation coefficient itself can
be calculated for a larger number of data and it is very large for all recent unpolarized
measurements.

At low Q2 a correlation still exists, but it is smaller. For the data from Ref. [18] the
radiative corrections are of the order of 15%, seldom exceed 25% and correspond to ε < 0.8.
This allows a safer extraction of the FFs.

Fig. 2 shows that, for each Q2, the extraction of FFs by a two parameter fit may be
biased by the ε dependence induced by the radiative corrections. Whatever the precision
of the individual measurements is, the slope of the reduced cross section is not sensitive to
GE(Q2) at large Q2. The Q2 dependence is therefore driven by GM(Q2), which follows a
dipole form. For each Q2 a nonzero value of the ratio R will lead to an apparent dipole
dependence of GE(Q2). Therefore experiments based on this method, will always give a
Q2 dependence of GE(Q2) which is driven by GM(Q2), i.e. follow approximately a dipole
behavior.
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3 Radiative corrections

It is known [16] that the process of emission of hard photons by initial and scattered
electrons plays a crucial role, which results in the presence of the radiative tail in the
distribution on the scattered electron energy. We give here an application of the structure
function method and compare different calculations of radiative corrections. We show that
they can affect the electric and magnetic part of the unpolarized cross section, and change
in particular its ε dependence. The main point of interest here is to show the very sharp
dependence of the initial state emission on the inelastic tail of the scattered electron energy
spectrum. A more extended version of this calculation and its application to polarization
observables, including two photon exchange, can be found in [20].

The structure functions (SF) approach extends the traditional one [13], taking precisely
into account the contributions of higher orders of perturbation theory and the role of initial
state photon emission. The cross section is expressed in terms of SF of the initial electron
and of the fragmentation function of the scattered electron energy fraction. Experimentally
the detection of the scattered electron does not allow to separate the collinear photon
emission. Therefore, one integrates in a range of the scattered electron energy. This is
equivalent to set the fragmentation function to unity, due the well known properties of this
formalism [16]. Initial state photon emission is more important than final state photon
emission, due to the effect of decreasing Q2. Proton emission is essentially smaller than the
electron one, and can be included as a general normalization. Vacuum polarization, which
has been often neglected in previous analysis, here is taken into account.

The four momentum transfer squared can be written as: Q2 = 2E2(1− cos θ)/ρ, where
ρ is the recoil factor: ρ = 1 + (1 − cos θ)(E/M). In an experiment, the selection of elastic
scattering requires the integration of the events in the elastic peak, and the rejection of
inelastic events. We parametrize the cut on the energy of the final electron E ′, selecting
events with E ′ > cE/ρ, where c is the ’inelasticity’ cut, c < 1 (for the present numerical
application we choose c = 0.97).

Therefore, the differential cross section, calculated in frame of the SF method, dσSF

dΩ
, can

be written as:

dσSF

dΩ
=

α2 cos2(θ/2)

4E2 sin4(θ/2)

∫ 1

z0

dzD(z)
φ(z)

[1 − Π(Q2
z)]

2

(
1 +

α

π
Kunp

)
. (4)

where Kunp is an ε-independent quantity of the order of unity, which includes all the non-
leading terms, as two photon exchange and soft photon emission. More precisely the inter-
ference between the two virtual photon exchange amplitude and the Born amplitude and
the relevant part of the soft photon emission i.e., the interference between the electron and
proton soft photon emission, may be included in the term K. This effect is not enhanced
by large logarithm (characteristic of SF) and can be included in non-leading contributions.
The factor 1 + α

π
Kunp can be considered as a general normalization. Here we focus on the

ε-dependence of the differential cross section. In order to compare the radiative corrections,
we proceed as follows: we calculate the Born cross section (Eq. (1)) using dipole form fac-
tors. This result is equivalent to take the measured data and apply the ’standard’ radiative
corrections. The SF calculation, Eq. (4), can be expressed as a correction to the Born
reduced cross section (we omit RC of higher order):

σSF
red = σBorn

red (1 + ∆SF ) (5)

with

∆SF =
α

π

{
2

3
(L − 5

3
) − 1

2
(L − 1)

[
2 ln

(
1

1 − z0

)
− z0 − z2

0

2

]
+
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α

2π
ρ(1 + τ)(L − 1)

∫ 1

z0

(1 + z2)dz

1 − z

[
φ(z)

[1 − Π(z)]2
− φ(1)

[1 − Π(1])2

]}
, L = ln

Q2

m2
e

, (6)

me is the electron mass. The structure (radiation) function D(z) is

D(z) =
β

2

[
(1 +

3

8
β)(1 − z)

β
2
−1 − 1

2
(1 + z)

]
+ O(β2), β =

2α

π

[
ln

Q2

m2
e

− 1

]
. (7)

The lower limit of integration, z0, is related to the ’inelasticity’ cut, c, necessary to select
the elastic data:

z0 =
c

ρ − c(ρ − 1)
, (8)

The transfer momentum and recoil factor of the scattered electron after the collinear photon
emission are, respectively, Qz and ρz:

Q2
z = 2E2z2(1 − cos θ)/ρz; ρz = 1 + z

E

M
(1 − cos θ). (9)

The kinematically corrected Born cross section for the scattered electron, φ(z), is:

φ(z) =
1

εzz2ρz(1 + τz)
σred(z), σred(z) = τzG

2
M(Q2

z) + εzG
2
E(Q2

z). (10)

with

τz =
Q2

z

4M2
,

1

εz

= 1 + 2(1 + τz) tan2(θ/2). (11)

The vacuum polarization for a virtual photon with momentum q, q2 = −Q2 < 0, is included
as a factor 1/[1 − Π(Q2)], with Π(Q2) = α

3π

[
L − 5

3

]
.

The calculation requires a specific procedure for the integration of the SF D(z), which
has a singularity at the upper limit of integration, Eq. (4).

The dependence of SF reduced cross section, Eqs. (5-11), on ε is shown in Figs. 3a,b,c,
for different values of Q2=1, 3, 5 GeV2, (solid lines). For comparison, the corresponding
Born reduced cross section assuming also FFs parametrized in dipole form is shown as a
dashed line, and the Born cross section, with FFs parametrized according to polarization
measurements as a dash-dotted line.

One can see that SF corrections affect the ε dependence of the cross section. Such effect
is more important as Q2 increases and for large ε values. The relative difference of the SF
reduced cross section with respect to the Born reduced cross section (both assuming dipole
FFs), ∆SF , is shown in Fig. 3d. For large values of ε, the calculated reduced cross section
can differ from the Born one by more than 7%, for c = 0.97. As both calculations assume
dipole FFs, the source of the difference has to be attributed to how radiative corrections
are calculated and applied.

Let us stress that the main effect of this correction is to modify and lower the slope of
the reduced cross section. This effect brings into qualitative and quantitative agreement
FFs data issued from polarized and unpolarized measurements, as one can see from the
comparison of the solid and dash-dotted lines in Figs. 3a,b,c.

Of course, the concrete value of the slope depends on the inelasticity cut. Taking
0.95 ≤ c ≤ 0.97, the slope given by the SF calculation is in complete agreement with the
slope suggested by the polarization measurements.

4 Two-photon exchange

Let us consider two photon exchange, with a proton in the intermediate state of the box
diagram.
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Figure 3: Reduced cross section for ep elastic scattering as a function of ε, for c = 0.97 at
Q2=1 GeV2 (a), 3 GeV2 (b), and 5 GeV2 (b). The SF cross section, Eq. 5, (solid line)
and the Born cross section, Eq. 1, (dashed line) are shown for dipole parametrization of
FFs. The relative difference between these two calculations, ∆SF , is shown in (d) for Q2=1
GeV2 (solid line), 3 GeV2 (dotted line), and 5 GeV2 (dash-dotted line). For comparison,
the calculation of the Born cross section with FFs parametrized according to [12] is shown
as dash-dotted lines, in (a), (b) and (c).

In Ref. [20] the components of the recoil proton polarization (transversal Pt and longi-
tudinal P�) were calculated in frame of the Drell-Yan approach:

(
Pt

dσ

dΩ

)
corr

= −λ

1∫
z1

dzD(z, β)
α2

Q2
z

(
1

ρz

)2√
τz

tan2(θ/2)(1 + τz)
GE(Q2

z)GM(Q2
z)
(
1 +

α

π
Kt

)
;

(12)(
P�

dσ

dΩ

)
corr

= −λ

1∫
z1

dzD(z, β)
α2

2M2

(
1

ρz

)2√
1 +

1

tan2(θ/2)(1 + τz)
G2

M(Q2
z)
(
1 +

α

π
K�

)
.

(13)
where λ = ±1 is the chirality of the initial electron;

The factors Kunp and Kt,� contain the contribution of the 2γ exchange diagrams.
The loop momentum of the box-type Feynman amplitude is parametrized in such a

way, that the denominators of Green function are (±κ+ q/2)2 +λ2 for the photon, whereas
for the electron (e) and the for the proton (p) they have a form (e) = (±κ + ∆)2 − m2

e,

∆ = 1
2
(p1+p′1), (p) =

(
κ + 1

2
(p + p′)

)2−M2, where the sign ’−’ for the electron corresponds
to the Feynman diagram for the two photon box and the sign ’+’ corresponds to the crossed
box diagram.

Assuming a fast decreasing of the proton form factors [19], one can neglect the depen-
dence on the loop momentum κ in the denominators of photon’s Green function as well
as in the arguments of the form factors, which results in ultraviolet divergences of the
loop momentum integrals. One obtains convergent integrals with the cut-off restriction
|κ2| < M2τ :

∫
d4κ

iπ2

N±(∆, Q)(
(±κ + ∆)2 − m2

e

) (
(κ + Q)2 − M2

)θ
(
M2τ − |κ2|

)
= I± · N±(∆, Q). (14)
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where ∆ = 1
2
(p1 + p′1), Q = 1

2
(p + p′). The explicit form of I± and N±(∆, Q) can be found

in [20].
Then the expressions for K-factors can be written as:

Ki = −2N
(
Q2/M2

0

) U i(∆, Q)

Zi
, i = unp, x, z, (15)

where N is an enhancement factor: N = F 2(Q2/4)/F (Q2) � 2 which is due to the fact
that each photon carries half of the transferred momentum. Zi, i = unp, x, z are the moduli
squared of the Born amplitude which are singled out in the definition of the K-factor:

Zunp =

(
1 − Q2 (M2 + s)

s2

)[
g2

e + τg2
m

1 + τ
+ 2τg2

m tan2 (θ/2)

]
, (16)

Zt = −1

ρ
gegm

√
τ

1 + τ
sin θ, Z� =

Q2

2E2
g2

m

√
τ

1 + τ

(
E

M
− τ

)
. (17)

with ge = 1, gm = µ (the form factors dipole dependence is extracted as the enhancement
factor N (z) in (15)). In the unpolarized case the expression for Uunp(∆, Q) is:

Uunp(∆, Q) =
1

s2M2τ
· 1

4
Tr

[
(p̂′ + M) ΓλQ̂Γη (p̂ + M) Γ̄µ

]
×

×
{
I+ · 1

4
Tr

[
p̂′1γλ∆̂γηp̂1γµ

]
+ I− · 1

4
Tr

[
p̂′1γη∆̂γλp̂1γµ

]}
(18)

where Γα = γα − µ
4M

γαq̂, Γ̄α = γα + µ
2M

γαq̂. The quantities U t,�(∆, Q) for polarized case
can be obtained from (18) by replacing γµ → γµγ5 in the lepton traces and (p̂′ + M) →
(p̂′ + M) ât,�γ5 in the proton traces. Here at,� is the final proton polarization vector (i.e.
(at,�p

′) = 0) and corresponds to different orientations of the proton polarization. If the final
proton is polarized along the x-axis, one finds:

(atp) = 0, (atp1) = − E2

2Mρ

sin θ√
τ(1 + τ)

, (19)

whereas in case of polarization along the z-axis:

(a�p) = 2M
√

τ(1 + τ), (a�p1) = M

√
τ

1 + τ

(
E

M
− 1 − 2τ

)
. (20)

The numerical results strongly depend on the inelasticity cut, in the scattered electron
energy spectrum. The results shown here correspond to c = 0.97. This value has been
chosen because it corresponds to the energy resolution of modern experiments. The unpo-
larized cross section has been calculated assuming a dipole dependence of form factors on
Q2. In Fig. 4 the results are shown as a function of ε, for Q2 = 1, 3, and 5 GeV2, from top
to bottom. The calculation based on the structure function method is shown as a dashed
line. the full calculation, including the two-photon exchange contribution is shown as the
dash-dotted line. For comparison the results corresponding to the Born reduced cross sec-
tion are shown as a solid line. One can see that the main effect of the present calculation
is to modify and lower the slope of the reduced cross section. This effect gets larger with
Q2. Non-linearity effects are small. Including two-photon exchange modifies very little the
results, in the kinematical range presented here. The relative effect on the polarization is
much smaller than on the unpolarized cross section but the ε dependence is different for
the longitudinal and for the transversal components. Again the effect of the two photon
contribution is negligible, in both cases, of the order of 1

The present results suggest that an appropriate treatment of radiative corrections con-
stitutes the solution of the discrepancy between form factors extracted by the Rosenbluth
or by the recoil polarization method.
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Figure 4: The ε dependence of the elastic differential cross section, for Q2 = 1, 3, and 5
GeV2, from top to bottom: Born cross section (solid line), Drell-Yan cross section (dashed
line), full calculation (dash-dotted line).

5 Conclusions

We reanalyzed the Rosenbluth data with particular attention to the radiative corrections
applied to the measured cross section, and we showed from the (published) data themselves
that at large Q2 statistical correlations between the parameters of the Rosenbluth plot
become so large that GE(Q2) can not be safely extracted. The method itself is biased at
large momentum transfer because RC are applied as a global factor, which is the same
for the electric and the magnetic contribution. Such factor contains a large ε-dependence,
which induces a strong correlation in the parameters of the linear ε fit.

Calculations of RC in frame of the SF method, which takes into account higher order of
perturbation theory, show that RC from collinear hard photon emission affect the elastic ep
cross section, in particular its ε dependence. Similarly to the standard RC, they depend on
the electron scattering angle and on the kinematical selection for the elastic events. On the
opposite, they act differently on the electric and magnetic term of the cross section, changing
the slope of the reduced cross section which is related to the electric FF. When applied to
the polarized cross section, their effect is small on the relevant observables. Therefore it is
suggested here that such corrections, when properly applied to the experimental data, can
bring into agreement the results on the proton FFs issued from unpolarized and polarized
measurements. Moreover these corrections affect very little the linearity of the Rosenbluth
fit, contrary to what is expected from two photon exchange [11].

We confirm the conclusion of a previous paper [3] which first suggested the polarization
method for the determination of GE(Q2), due to the increased sensitivity of the cross section
to the magnetic term at large Q2: ’Thus, there exist a number of polarization experiments
which are more effective for determining the proton charge FF than is the measurement of
the differential cross section for unpolarized particles’.

This work was inspired by enlightening discussions with Prof. M. P. Rekalo. Thanks
are due to V. Bytev for useful discussions and technical help.
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