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ABSTRACT

The 2D Wavelet Transform Modulus Maxima (WTMM) method is used to

obtain quantitative information on the fractal/multifractal nature and anisotrop-

ic structure of Galactic atomic hydrogen (H i) from the Canadian Galactic Plane

Survey. Five mosaics were analyzed in the second quadrant of the Milky Way,

corresponding to the Local, Perseus, and Outer spiral arms, as well as two “inter-

arm” regions located between these three spiral arms. A monofractal signature

is found for all five mosaics. An anisotropic signature is detected: the root mean

square (rms) roughness fluctuations of the mosaics in the latitude direction dif-

fer from those in the longitude direction. This anisotropy is scale-independent

for the inter-arm regions while it is scale-dependent for the spiral arms. The

longitudinal matter distribution of H i structure is similar for all five mosaics

while the latitudinal distribution is smoother in the spiral arms. These results

hold for all physical length scales studied, from ∼ 2 pc in the Local arm to ∼ 44

pc in the Outer arm. Several hypotheses are investigated to provide a physical

explanation: the scale-height gradient, the density wave, star formation activity,

photo-levitation of dusty clouds, random motion of H i clouds, corrugation, and

turbulence.
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1. INTRODUCTION

The Galactic H i has a very complex structure. At small scales, around singular objects

(WR stars, SNRs, and H ii regions), the H i is driven by winds, dissociation, and shock

fronts which induce chaotic, filamentary structures of varying complexity (Khalil, Joncas

& Nekka (2004), henceforth called Paper I). At the largest scale, the H i is approximately

axisymmetric in longitude with a vertical distribution (along b) often characterized by a

Gaussian / exponential distribution (Lockman 1984), although a few localized structures

like chimneys, for example, and the warp of the Galactic plane are well known (Binney

& Merrifield 1998). But at the intermediate scale (e.g. portions of spiral arms), one may

wonder whether the structure of the gas is affected by singular objects and/or by the push

and pull of random motions and gravity on clouds or any other kinds of oscillations, i.e.

corrugation (Spicker & Feitzinger 1986).

1.1. Fractals & Multifractals

Mandelbrot coined the term fractal more than twenty years ago to qualify geometri-

cally complex objects that could be characterized by a non-integer dimension (Mandelbrot

1974a,b, 1977, 1982). A better description for these originally called “pathological mathe-

matical monsters” (Hausdorff 1919; Besicovitch 1935) is that they possess details at every

scale.

The Hausdorff dimension (Hausdorff 1919), a usually non-integer value expressing the

complexity of fractal sets, is practically impossible to calculate by way of simple algorithms

(see Li, Arneodo & Nekka (2004) for a review and the development of a new technique). To

circumvent this difficulty, a more practical definition of the dimension of a set is generally

used (Kolmogorov 1958). The fractal dimension, dF (or capacity), can be calculated with

many algorithms: box-counting algorithms1, fixed-mass and fixed-size correlation algorithm-

s. For rough surfaces which are well described by self-affine2 fractals (Mandelbrot 1977, 1982;

1Probably the first usual definition of box-counting dimension was given in Pontrjagin & Schnirelman
(1932).

2Objects satisfying self-similarity conditions, but with different scalings in different directions, are said
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Peitgen & Saupe 1988), different methods of estimating dF , such as the perimeter-area rela-

tion, divider, box, triangle, slit-island, power spectral, variogram and distribution methods

(for a thorough review, see Decoster (1999)) were shown to give different results (see Lea-

Cox & Wang (1993) for a discussion). Limited resolution as well as finite-size effects are well

known to introduce biases on the estimate of dF , which are indeed method dependent (Dubuc

et al. 1989; Schmittbuhl, Violette & Roux 1995; Scotti, Meneveau & Saddoughi 1995). An

alternative strategy consists in computing the Hurst exponent, H , also called “roughness

exponent” (Mandelbrot 1977, 1982; Feder 1988). This scaling exponent is supposed (for

monofractal surfaces) to be related to the fractal dimension by dF = d − H , where d is the

Euclidean dimension of the space in which the surface is embedded. Again, many algorithms

are available to estimate H : height-height correlation function, variance and power spectral

methods, detrended fluctuation analysis, first-return and multi-return probability distribu-

tions (see Decoster (1999) and the references therein). But again, a number of artifacts may

pollute the estimate of the roughness exponent (Schmittbuhl, Violette & Roux 1995) and

the simultaneous use of different tools is highly recommended in order to appreciate in a

quantitative way the level of confidence in the measured exponent.

In the nineties, the use of the fractal dimension in the study of the interstellar medium

(ISM) was widespread. It has often been used to characterize the complexity of structures.

Most studies on interstellar clouds show that the fractal dimension is more or less universal,

with a value in the interval 2.2 to 2.5. Such studies were done for molecular clouds (Bazell &

Désert 1988; Scalo 1990; Falgarone, Phillips & Walker 1991; Elmegreen & Falgarone 1996)

as well as for H i (Vogelaar & Wakker 1994; Stanimirovic et al. 1998; Westpfahl et al. 1999).

A universal fractal dimension can inform us on the underlying physical processes that are

morphing the gas. For example, some find an analogy with the 4/3 exponent expected to

characterize the dependence of the variance of pressure fluctuations with spatial separation

in an atmosphere obeying Kolmogorov’s theory of incompressible, homogeneous, isotropic

turbulence (Dickman, Horwath & Margulis 1990), and suggest turbulence as a major physical

process involved in interstellar cloud structure (Scalo 1987; Falgarone 1989; Falgarone &

Phillips 1990).

However, if one is in the presence of a multifractal geometrical object which is, simply

put, a structure which is best described by a spectrum of fractal dimensions (Feder (1988);

Vicsek (1989)), most methods will not detect it since generically, they can only provide

the user with a single exponent. Hence, one must keep in mind that dF and H are global

quantities which do not characterize the local regularity of a signal or a surface.

to be self-affine.
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The eighties were a very fruitful period for the development of the multifractal formalism

(Parisi & Frisch 1985; Halsey et al. 1986), either by way of the so-called (D(h) or f(α))

singularity spectrum or the generalized fractal dimensions Dq (Badii & Politi 1985), with

applications in physics as well as in other fundamental sciences: Feder (1988); Vicsek (1989);

West (1990); Frisch (1995); Arneodo et al. (1995a); Sornette (2000).

Chappell & Scalo (2001) used a box-counting multifractal formalism to analyze sever-

al molecular cloud regions using IRAS maps. Since multifractal processes are likely to be

related to multiplicative cascades, a multifractal signature can be interpreted as evidence

of a hierarchical structure. Such evidence would be a confirmation of the widely accept-

ed hypothesis that molecular clouds are “clumpy” (large clumps are divided into smaller

clumps). The box-counting technique used by Chappell & Scalo (2001) was developed for

the analysis of multifractal singular measures. However, since the H i is diffuse and dis-

tributed everywhere in the Galactic disk, it is more likely to be considered as a “continuous”

mathematical function whose graph defines a rough surface. As pedagogically described by

Muzy, Bacry & Arneodo (1994), the box-counting technique is not appropriate to analyze

continuous functions (it actually yields a trivial estimate of the scaling exponents α = d)

and one must use instead wavelet techniques where the analyzing wavelets will play the role

of “generalized oscillating boxes”.

1.2. The Wavelet Transform and the WTMM Method

Introduced by Morlet and Grossman for the analysis of seismic signals (Grossmann &

Morlet 1984; Goupillaud, Grossmann, & Morlet 1984), the wavelet transform (WT) is a

mathematical tool consisting in the decomposition of a signal on a set of functions charac-

terized by parameters of position and scale. For the study of the ISM, the WT has been

used as an analysis tool (Gill & Henriksen 1990; Gill 1993; Langer, Wilson & Anderson

1993), a filtering method, (Abergel et al. 1996; Miville-Deschênes et al. 2003), and for image

reconstruction (Maisinger, Hobson & Lasenby 2003).

The term “mathematical microscope” was coined by Arneodo et al. (1995a) to describe

the advantages of the multi-scale analysis of the WT coupled with the positional informa-

tion, making it the perfect tool to analyze the scale-invariance properties of fractal objects

(Arneodo, Grasseau & Holschneider 1988; Arneodo 1996; Flandrin, Abry & Goncalvès 2002).

The Wavelet-Transform Modulus Maxima (WTMM) method is a wavelet-based mul-

tifractal formalism introduced by Arneodo, in collaboration with Bacry and Muzy (Muzy,

Bacry & Arneodo 1991; Bacry, Muzy & Arneodo 1993; Muzy, Bacry & Arneodo 1993, 1994;



– 5 –

Arneodo, Bacry & Muzy 1995), where the different dilations of the analyzing wavelet act as

“generalized oscillating boxes” to reveal quantitative information at every scale considered.

Replacing the boxes used in the standard multifractal formalism by wavelets, gets rid of

possible smooth behavior that either mask singularities or perturb the estimation of their

strength. The other fundamental advantage of using wavelets is that the skeleton defined

by the wavelet transform modulus maxima (Mallat & Zhong 1992; Mallat & Hwang 1992)

provides an adaptive space-scale partitioning from which one can extract the D(h) singu-

larity spectrum via the scaling exponents τ(q) of some partition functions defined from the

WT skeleton (see §3.3). For practical purposes, the WTMM method does not have the

drawbacks of the structure function approach (Monin & Yaglom 1975; Frisch 1995) or of the

box-counting techniques. While the latter only applies to singular measures, the former gen-

erally fails to fully characterize the multifractal properties since from the scaling behavior of

the positive q-order moments of the increments of the function under consideration, only the

strongest singularities can be captured (Muzy, Bacry & Arneodo 1993, 1994; Arneodo, Bacry

& Muzy 1995). Applications of the WTMM method to 1D signals have already provided

insight into a wide variety of problems (Arneodo et al. 1995a, 2002).

The WTMM method was generalized from 1D to 2D in Arneodo, Decoster & Roux (1999,

2000) and Decoster, Roux & Arneodo (2000), where the formalism was first developed and

tested on isotropic and anisotropic monofractal and multifractal rough surfaces, and where

the possible applications for edge detection and de-noising were presented. In Roux, Arneodo

& Decoster (2000), the authors analyzed high-resolution (LANDSAT) satellite images of

(earth) cloud structure, where the intermittent nature of the clouds confirmed the relevance

of the multifractal description. Furthermore, the 2D WTMM method proved very efficient

to characterize the anisotropic structure induced by the convective rolls in the clouds. The

detection and characterization of anisotropic structures will be discussed in great detail in

the present work.

1.3. Application of the 2D WTMM Method to H i

This paper presents the results of an intermediate-scale structural analysis of H i in the

Galactic Plane using the 2D WTMM method. A region of about 45 by 8 degrees was covered

in the analysis, with five different collapsed velocity intervals corresponding to the Local,

Perseus and Outer Arms and to the two “inter-arm” regions in between. Our objective is to

obtain a quantitative characterization of the fractal, multifractal, and anisotropic properties

of the internal structure of the H i analyzed in both spiral and inter-arms, and then to draw

conclusions on the turbulent nature and stratified structure of the gas. A further goal is
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to generate models of rough surfaces where the fractal properties as well as some structural

anisotropy that we detected will be incorporated in order to “mimic” the H i as best as

possible (for the range of scales studied). The work presented here aims to complement

the study of Paper I, where the Metric Space Technique was used to analyze the small-

scale structure of H i features associated to galactic objects of known origin. Although

the two tools are very different and do not provide the same kind of output (differents

methods applied to different objects), we hope that both contributions will provide a better

understanding of the evolution of the ISM in our Galaxy. However, one should keep in mind

that any image analysis tool is subject to resolution limitations and finite-size effects. The

work presented here is no exception.

The data are presented in §2. The 2D WTMM method is described in §3. The con-

struction and analysis of synthetic isotropic monofractal and multifractal surfaces, as well

as anisotropic monofractal surfaces are dealt with in §4. The results for the H i mosaics

are reported in §5, while the analysis and discussion are in §6. The paper ends with the

conclusion in §7.

2. DATA

The data come from the Canadian Galactic Plane Survey (CGPS), where the obser-

vations were taken with the Dominion Radio Astrophysical Observatory (DRAO) synthesis

telescope (Penticton, BC, Canada). A detailed description of the CGPS is given in Taylor et

al. (2003). The velocity channels are separated by 0.842 km s−1. According to declination,

the rms noise varies from 2.1 to 3.2 K in an empty channel.

The CGPS H i data cubes (193 synthesis pointings) were assembled in five large H i

mosaics: the Local spiral arm, the Perseus spiral arm, the Outer arm, and two “inter-

arm” regions respectively located between the Local and Perseus arm, henceforth called

“Inter I”, and between the Perseus and Outer arm, henceforth called “Inter II”. The five

mosaics are presented in Figure 1. These five H i column density mosaics result from the

integration of the cubes over the velocity range relevant to each structure according to

galactic longitude (Table 1). Unlike the Local, Inter I, and Perseus mosaics, the velocity

intervals vary significantly as a function of longitude for Inter II and Outer (Simonson 1976).

The arms and interarms were isolated in velocity using Simonson (1976) and longitude-

velocity plots made from the Canadian Galactic Plane Survey data (Gibson & Stil 2002).

Interarms boundaries were chosen when the column density was less than 20% of the peak

value of the adjacent arms. This value is pretty constant for the Local arm and Inter I but

varies by ± 2-3% around that value for the other features. The Perseus arm has a definite
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gradient in l− v plots and the Outer arm has less contrast and is more “sketchy” in l, b and

v as is obvious from the many segments appearing in Table 1.

The analysis requested the mosaics to be cut-up in subregions (white boxes in Figure

1). The pattern was governed to avoid extra-galactic and galactic absorption sources, by

“edge-effects”, by defects due to image construction and manipulation, and by the need to

avoid articifial and anti-symmetric anisotropic signatures. A detailed discussion now follows.

Each one of the five mosaics was divided into 32 (1024× 1024) overlapping sub-images.

These sub-images were cut up in such a way that the border of the central 512×512 parts of

each coincided with the border of its neighbors central 512× 512 parts. Only the 512× 512

central parts are kept for analysis (edge effects), although in some cases however, portions

of only 256 or 384 pixels were available (see following discussion). By proceeding in this

way, we were able to cover over 90% of the mosaics with the 1024 × 1024 images. Only the

top, bottom, left, and right “borders” (for a total of less than 10%) of each mosaic ended

up being rejected, which is where the noise level is most elevated (see Taylor et al. (2003)’s

description of the CGPS).

Now, in an ideal situation, all 32 images would have been analyzed (for each mosaic).

However, several locations contained absorption sources, which correspond to large negative

values (in K km s−1) and affect drastically the values of the wavelet transform. The sub-

images containing absorption sources were therefore systematically rejected. Some of these

sources were extra-galactic, which means that the corresponding sub-regions had to be re-

jected for all mosaics, while some were galactic, which means that only some (closer) mosaics

were affected. Not only the (negative) value of the pixels has to be taken into account as

a criterion for rejection, but also the number of pixels associated to the absorption sources.

For example, a single pixel with a value of −250 K km s−1 does not have the same effect

on the wavelet transform as an area of 25 square pixels with values in the range [−50,−15]

K km s−1. Comparisons were therefore made from the analysis of synthetic surfaces with

simulated absorption sources of different values and sizes in pixels, thus quantifying their

effects on the wavelet analysis (data not shown). Rejection was based on these quantitative

comparisons. We rejected images containing � 10 square pixel areas of negative values.

The construction and analysis of synthetic surfaces generated with the aim of calibrating

the present wavelet approach in terms of highly singular small structures (e.g. absorption

sources), different levels of saturation (often found in scanned biomedical images), and other

general image artifacts are the subject of ongoing work (Khalil 2006).

For the Inter 2 and Outer mosaics, image construction and manipulation was more

complicated since in some areas, two neighboring pixels corresponded to a collapse of different

velocity intervals. In some cases, this created vertical transition lines in the mosaics, which
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could even be detected by visual inspection. By examining the effects that these vertical

lines had on the values of the wavelet transform, it was relatively easy to decide whether to

keep or reject the corresponding sub-images, and many were indeed rejected, especially for

the Inter 2 mosaic. Indeed, the discontinuous nature of these vertical lines is associated to a

very specific fractal parameter value, i.e., when the so-called Hölder exponent (see definition

below) equals 0. An image segmentation routine was therefore performed to determine

whether such discontinuities occured and thus reject the juxtaposed sub-image accordingly.

This routine was based on preliminary results showing no such discontinuties within any of

original sub-images (i.e. the pre-juxtaposed images).

The rejection of sub-regions imply different coverages for each of the five mosaics. The

differing coverages do not affect the large-scale analysis of the data (i.e. the anisotropy

measures). They limit however our capacity to compare the sub-regions within mosaics of

the comparisons of spiral arms. After rejecting the sub-regions for the reasons stated above,

there remained another dilemma. By analyzing whole mosaics corresponding to Perseus,

Inter 2, and Outer, one would have been analyzing the large-scale structure of the Galactic

Disk itself, and not the inside structure of the Disk. Indeed, the last thing that we wanted

to show was that the Galactic Plane is distributed longitudinally (i.e., that it is, in fact, a

plane or a disk). Obviously, anyone can come to that conclusion simply by looking at most

standard l-b graphs. Instead, the goal of this paper is to show that the material “composing”

the Plane is itself anisotropically distributed (and derive its fractal properties).

Therefore, by analyzing sub-regions that contained, in one sub-image, some material

that belongs to the spiral (or inter) arm as well as the areas located above and/or below,

one would inevitably obtain an artificial, usually anti-symmetric, anisotropic signature, since

the values of the wavelet transform corresponding to the “edge”, or “border” between spiral

(or inter) arm and upper and lower material would dominate the calculations. This would

result in an artificial anisotropic signature and would inevitably lead one to conclude that

the Galactic Plane is indeed a Disk.

Results using wavelets of different orders can be used to confirm this statement, but

were not compiled nor presented in the paper3. Indeed, a few sub-areas were rejected for

presenting anisotropic signatures where the results changed from the order-1 and order-3

wavelet analysis, which is interpreted as being caused by the “latidudinal gradient” from the

“disk non-disk” transition. Only the sub-areas where results from the order-1 and order-3

wavelets coincided were kept, i.e., where the uncertainty intervals overlap (σ = 0.03).

3The reader is invited to consult the several other points of discussions regarding the use of the order-1
vs. order-3 wavelets in this paper, especially the section on the DRAO noise analysis (§5.1).
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So this is indeed where some subjectivity (for Perseus, Inter 2, and Outer), i.e., some a

priori knowledge of the analyzed objects, was used. But this decision was made only after

realizing that the analysis of whole spiral arms yielded an “artificial” anisotropic signature.

More importantly, this decision ensures that the quantitative differences found between spiral

and inter arm is indeed valid.

Finally, in Simonson (1976), one can note a “spur” of H i, most likely associated with

the Perseus Arm. As one can see from Table 1, material associated to velocities between

−50 and −64 km s−1 was therefore rejected as a member of the Inter 2 mosaic.

3. THE 2D WAVELET-TRANSFORM MODULUS MAXIMA METHOD

The 2D WTMM method (Arneodo, Decoster & Roux 2000) is primordially a multifractal

analysis tool which provides a way to estimate the so-called D(h) spectrum of singularities,

i.e. the fractal (Hausdorff) dimension of the set of points in the 2D surface which are

characterized by a specific local roughness (Hölder) exponent h, or, in the case of a mono-

fractal signature, by a global Hurst exponent H . Moreover, an anisotropic structure can also

be easily detected from the directional information provided by the continuous 2D wavelet

transform.

Here, the wavelet transform acts as a mathematical microscope to obtain quantitative

structural information (fractal, multifractal, and anisotropy) at all scales studied. In the

following description of the 2D WTMM method, comments are included regarding the draw-

backs of using either a box-counting multifractal formalism (Chappell & Scalo 2001), or

the structure function approach (Parisi & Frisch 1985), and how the 2D WTMM method

generically avoids these drawbacks.

3.1. The Continuous Wavelet Transform and the Analyzing Wavelets

Let us consider two wavelets that are, respectively, the partial derivatives with respect

to x and y of a 2D smoothing (Gaussian) function,

φGau(x, y) = e−(x2+y2)/2 = e−|x|2/2, (1)

namely

ψ1(x, y) = ∂φGau(x, y)/∂x and ψ2(x, y) = ∂φGau(x, y)/∂y. (2)

For any function f(x, y) ∈ L2(R) (where L2(R) consists of all square integrable functions),

the continuous wavelet transform of f with respect to ψ1 and ψ2 is expressed as a vector
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(Mallat & Zhong 1992; Mallat & Hwang 1992):

Tψ[f ](b, a) =

(
Tψ1 [f ] = a−2

∫
d2x ψ1(a

−1(x − b))f(x)

Tψ2 [f ] = a−2
∫

d2x ψ2(a
−1(x − b))f(x)

)
,

= ∇{TφGau
[f ](b, a)} = ∇{φGau,b,a ∗ f}.

(3)

Thus, Eq. (3) amounts to define the 2D wavelet transform as the gradient vector of f(x)

smoothed by dilated versions of φGau(a
−1x) of the Gaussian filter.

In Figures 2a and 2b are shown the first-order analyzing wavelets ψ1 and ψ2, where the

smoothing function φGau is the Gaussian function defined in Eq. (1). In Figures 2c and

2d are shown the third-order analyzing wavelets obtained from the Mexican hat smoothing

function

φMex(x) = (2 − x2)e−|x|2/2. (4)

Using higher order wavelets, where the number nφ of vanishing moments of φ conditions

the order of the analyzing wavelets, nψ = nφ + 1, provides the WTMM method with the

capability of characterizing the roughness, not only of the function under study, but also

of its derivatives (a capability that is absent from the box-counting and structure function

approaches) (Muzy, Bacry & Arneodo 1993, 1994; Arneodo et al. 1995a; Arneodo, Decoster

& Roux 2000). In this paper, the third-order analyzing wavelets will be used to verify the

authenticity of the anisotropic signature found in the five analyzed mosaics (§5). Indeed,

when using a wavelet of order n, one needs to confirm the robustness of the results by

repeating the analysis with a wavelet of a superior order (e.g. order n+2). Therefore, if the

results obtained with an order-1 wavelet are confirmed with an order-3 wavelet, then it is

a confirmation of the relevance of the results. If there is a change when going from order-1

to order-3, for e.g. in the study of earth clouds in Roux, Arneodo & Decoster (2000), this

means that the analyzed data (or some components, for example a polynomial or sinusoidal

distribution hidden in the data) are not self-similar and that some physical phenomenon

should be responsible for this departure from self-similarity (for earth clouds, it was the

large-scale smooth structure of the convective rolls).

The wavelet transform can be written in terms of its modulus and argument

Tψ[f ](b, a) = (Mψ[f ](b, a),Aψ[f ](b, a)), (5)

where

Mψ[f ](b, a) =

√
(Tψ1[f ](b, a))2 + (Tψ2[f ](b, a))2, (6)

and

Aψ[f ](b, a) = Arg(Tψ1[f ](b, a) + iTψ2[f ](b, a)). (7)
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3.2. Global and Local Regularity Properties of Rough Surfaces: Hurst and

Hölder Exponents

In this section, the term rough surface is defined, and the notions of Hurst exponent,

used to characterize the global scale invariance properties of monofractal surfaces, and Hölder

exponent, used to characterize the local scale invariance properties of multifractal surfaces,

are also presented.

A rough surface refers to a surface that can be correctly described by a single-valued

self-affine function satisfying: ∀x0 = (x0, y0) ∈ R2, ∀x = (x, y) ∈ R2 in the neighborhood of

x0, ∃H ∈ R, such that, for any λ > 0, one has (Mandelbrot 1977, 1982; Peitgen & Saupe

1988):

f(x0 + λx, y0 + λαy) − f(x0, y0) ∼ λH [f(x0 + x, y0 + y) − f(x0, y0)]. (8)

If f is a stochastic process, then this identity holds in law for a fixed λ and x0. Depending

on the value of α, f will display either isotropic scale invariance (α = 1) or anisotropic

scale invariance (α �= 1) (Schertzer & Lovejoy 1985, 1987; Schmittbuhl, Violette & Roux

1995; Schertzer et al. 1997). For self-affine functions (i.e. the monofractal case), the Hurst

exponent H characterizes the global regularity of the function f under consideration. Note

that if H < 1 (which is the case in most applications), then f is nowhere differentiable and

generally, a more singular surface f will be characterized by a smaller H . Note that an

uncorrelated Brownian surface is characterized by H = 1/2. For this class of functions, the

Hurst exponent is related to the usual definition of the fractal dimension df = d−H , where

d represents the dimension of the space where the surface is embedded.

However, fractal functions often display multi-affine properties in the sense that their

roughness fluctuates from point to point (i.e. the multifractal case) (Muzy, Bacry & Arneodo

1991, 1994; Arneodo, Bacry & Muzy 1995). The definition of the Hurst exponent in Eq. (8)

must be changed in order to describe these multifractal functions, so that it becomes a local

quantity h(x0) (Arneodo, Decoster & Roux 2000). We define the Hölder exponent (the

strength of a singularity of a function f at the point x0) by the largest exponent h(x0) such

that there exists a polynomial of degree n < h(x0) and a constant C > 0, so that for any

point x in the neighborhood of x0, one has:

|f(x0) − Pn(x − x0)| ≤ C|x − x0|h(x0). (9)

Therefore, the roughness of f at the point x0 is characterized by h(x0). Like the Hurst

exponent H , the higher the exponent h(x0), the more regular the function f , except that the

characterization is only valid for the point x0. In this work, we will mainly consider fractal

functions of two variables that possess cusp singularities only. (We refer the reader to Jaffard

& Meyer (1996) for rigorous mathematical results concerning 2D oscillating singularities, or
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chirps.) But as previously pointed out, the situation is a little more tricky in 2D than in 1D

depending whether the scale invariance is under isotropic or anisotropic dilations.

A very efficient way to perform point-wise regularity analysis is to use the wavelet

transform modulus maxima (Mallat & Zhong 1992; Mallat & Hwang 1992). At a given

scale a > 0, the wavelet transform modulus maxima (WTMM) are defined by the positions

b where the wavelet transform modulus Mψ[f ](b, a) (Eq. (6)) is locally maximum in the

direction Aψ[f ](b, a) (Eq. (7)) of the gradient vector Tψ[f ] (Eq. (5)). When analyzing rough

surfaces, these WTMM lie on connected chains henceforth called maxima chains (Arrault

et al. 1997; Arneodo, Decoster & Roux 1999, 2000). Actually, one only needs to record

the position of the local maxima of Mψ along the maxima chains together with the value

of Mψ[f ] and Aψ[f ] at the corresponding locations. At each scale a, the wavelet analysis

thus reduces to store those WTMM maxima (WTMMM) only. They indicate locally the

direction where the signal has the sharpest variation. These WTMMM are disposed along

connected curves across scales called maxima lines (Arneodo, Decoster & Roux 1999, 2000).

The wavelet transform skeleton is defined as the set of maxima lines that converge to the

(x, y)-plane in the limit a → 0+. This WT skeleton contains a priori all the information

about the local Hölder regularity properties of the function f under consideration. Indeed,

one can show that along a maxima line Lx0 that points to x0 in the limit a → 0+, the wavelet

transform modulus behaves as a power law with exponent h(x0):

Mψ[f ][Lx0(a)] ∼ ah(x0), (10)

provided the order of the analyzing wavelet nψ > h(x0). The reader is referred to Arneodo,

Decoster & Roux (2000) where the properties and behavior of the maxima lines are presented

on four specific examples which clearly illustrate the singularity detection and processing

ability of the continuous wavelet transform.

3.3. The 2D WTMM Method

Let f be a rough surface and Sh the set of all points x where the Hölder exponent

(Eq.(9)) of f at x is h. The singularity spectrum D(h) of f is the function which associates

with any h, the fractal dimension, dF , of Sh:

D(h) = dF{x ∈ R2 : h(x) = h}. (11)

The maxima lines defined from the WTMMM computed at different scales can be used to

detect the positions where singularities are located as well as the estimation of their strength

h (Eq. (10)).
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The characteristic feature of fractal functions is the existence of a hierarchical distribu-

tion of singularities (Arneodo et al. 1995a; Mallat 1998). Locally, the Hölder exponent h(x0)

is then governed by the singularities which accumulate at x0. This results in unavoidable

oscillations around the expected power-law behavior of the wavelet transform modulus along

the maxima lines (Eq. (10)) (Muzy, Bacry & Arneodo 1994; Arneodo, Bacry & Muzy 1995).

The estimation of the strength of a singularity located at x0 is biased by the singularities

located in the neighborhood of x0. Therefore, the exact determination of h from log-log

plots on a finite range of scales is uncertain and must be avoided (Bacry et al. 1991; Vergas-

sola et al. 1993). Hence, the determination of statistical quantities like the D(h) singularity

spectrum (Eq. (11)) requires a method which is more feasible and more appropriate than a

systematic investigation of the wavelet transform local scaling behavior along the maxima

lines that define the wavelet transform skeleton.

3.3.1. Partition Function

The 2D WTMM method relies upon the space-scale partitioning given by the wavelet

transform skeleton. This skeleton is defined by the set of maxima lines that point to the

singularities of the considered function and therefore contains all the information concerning

the fluctuations of point-wise Hölder regularity. Let us define L(a) as the set of all maxima

lines that exist at the scale a and which contain maxima at any scale a′ ≤ a. The WTMM

method consists in defining the following partition functions directly from the WTMMM

that belong to the wavelet transform skeleton:

Z(q, a) =
∑

L∈L(a)

(
sup

(x,a′)∈L,a′≤a

Mψ[f ](x, a′)
)q

, (12)

where q ∈ R. As compared to classical box-counting techniques discussed in §1 and in

Chappell & Scalo (2001), the analyzing wavelet ψ plays the role of a generalized “oscillating

box”, the scale a defines its size, while the WTMM skeleton indicates how to position our

oscillating boxes to obtain a partition at the considered scale. Without the “sup” in equation

(12), one would have implicitly considered a uniform covering with wavelets of the same size

a. As emphasized for example in Muzy, Bacry & Arneodo (1994), the “sup” can be regarded

as a way of defining a “Hausdorff like” scale-adaptive partition which will prevent divergences

to show up in the calculation of Z(q, a) for q < 0.

Now, from the deep analogy that links the multifractal formalism to thermodynamics

(Halsey et al. 1986; Arneodo, Bacry & Muzy 1995), one can define the scaling exponent τ(q)

from the power-law behavior of the partition function:

Z(q, a) ∼ aτ(q), a → 0+, (13)
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where q and τ(q) play respectively the role of the inverse temperature and the free energy.

The main result of the wavelet-based multifractal formalism is that in place of the energy

and the entropy (i.e. the variables conjugated to q and τ), one has the Hölder exponent

h (Eq. (9)) and the singularity spectrum D(h) (Eq. (11)). This means that the D(h)

singularity spectrum of f can be determined from the Legendre transform of the partition

function scaling exponent τ(q):

D(h) = min
q

(qh − τ(q)). (14)

¿From the properties of the Legendre transform, it is easy to convince oneself that monofrac-

tal functions that involve singularities of unique Hölder exponent h = H are characterized

by a τ(q) spectrum which is a linear function of q of slope H . On the contrary, a nonlinear

τ(q) curve is the signature of functions that display multifractal properties, in the sense that

the Hölder exponent h (= ∂τ/∂q) is a quantity that fluctuates depending on the spatial

position x.

Let us note that the exponents τ(q) are much more than simply some intermediate

quantities of a rather easy experimental access. For some specific values of q, they have well

known meaning (Muzy, Bacry & Arneodo 1994):

• q = 0: In full analogy with standard box-counting arguments, −τ(0) can be identified

to the fractal dimension of the set of singularities of f :

−τ(0) = dF{x , h(x) < +∞} . (15)

• q = 1: τ(1) is related to the fractal dimension (capacity) of the rough surface S defined

by the function f . More precisely:

dF (S) = max(2, 1 − τ(1)). (16)

• q = 2: τ(2) is intimately related to the scaling exponent β of the spectral density (f̂ is

the Fourier transform of f):

S(k) =
1

2π

∫
dθ |f̂(k, θ)|2 ∼ k−β , (17)

where

β = 4 + τ(2). (18)

In order to avoid numerical drawbacks related to the Legendre transform (Eq. (14)), one

can avoid directly performing it by considering the quantities h and D(h) as mean quantities
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defined in a canonical ensemble (Arneodo, Bacry & Muzy 1995), i.e., with respect to their

Boltzmann weights computed from the WTMMM:

Wψ[f ](q,L, a) =

∣∣sup(x,a′)∈L,a′≤a Mψ[f ](x, a′)
∣∣q

Z(q, a)
, (19)

where Z(q, a) is the partition function defined in equation (12). Then one computes the

expectation values (Arneodo, Decoster & Roux 2000):

h(q, a) =
∑

L∈L(a)

ln

∣∣∣∣∣ sup
(x,a′)∈L,a′≤a

Mψ[f ](x, a′)

∣∣∣∣∣ Wψ[f ](q,L, a), (20)

and

D(q, a) =
∑

L∈L(a)

Wψ[f ](q,L, a) ln(Wψ[f ](q,L, a)), (21)

from which one extracts
h(q) = lima→0+ h(q, a)/ ln a,

D(q) = lima→0+ D(q, a)/ lna,
(22)

and therefore the D(h) singularity spectrum.

Finally, one should note that, a priori, there is no indication for any two realizations of

a given stochastic process to have the same D(h) curve. This has been a topic of discussion

in Arneodo, Decoster & Roux (2000) and many of the references therein. That is why

any multifractal analysis must be performed on several realizations of the same process

with a well-defined averaging protocol. Two averaging methods can be used: quenched and

annealed. For the former, the τ(q) curve is extracted from averaging < lnZ(q, a) > over the

number of images,

e<lnZ(q,a)> ∼ aτ(q), a → 0+, (23)

while for the latter, τ(q) can be computed after averaging the partition function obtained

for each image,

< Z(q, a) >∼ aτ(q), a → 0+. (24)

For example, Arneodo, Decoster & Roux (2000) have empirically demonstrated that in order

to have access to a rather large range of q-values, it was necessary to average the results

over 32 images of 1024 × 1024, where both averaging mechanism gave similar results. The

quenched averaging method is used here.
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3.3.2. Probability Density Functions

¿From the definition of the partition function in equation (12), one can transform the

discrete sum over the WTMMM into a continuous integral over Mψ[f ]:

Z(q, a)/Z(0, a) =< Mq > (a) =

∫
dMMqPa(M), (25)

where M is a condensed notation for sup(x,a′)∈L,a′≤a Mψ[f ](x, a′) and Pa(M) =
∫

dAPa(M,A),

where Pa(M,A) is the joint probability density function of the modulus and argument of

the WTMMM computed at scale a. The multifractal description thus consists in character-

izing how the moments of the probability density function (pdf) Pa(M) of M behave as a

function of the scale parameter a. The power-law exponents τ(q) in equation (13) therefore

quantify the evolution of the shape of the M pdf across scales. At this point, let us remark

that one of the main advantages of using the wavelet transform skeleton is the fact that,

by definition, M is different from zero and consequently that Pa(M) generally decreases to

zero at zero. This observation is at the heart of the WTMM method since, for this reason,

one can not only compute the τ(q) spectrum for q > 0 but also for q < 0 (Muzy, Bacry &

Arneodo 1991, 1993, 1994). From the Legendre transform of τ(q) (Eq. (14)), one is thus

able to compute the whole D(h) singularity spectrum, i.e. its increasing left part (q > 0) as

well as its decreasing right part (q < 0). Furthermore, the well-defined shape of the Pa(M)

plots is a confirmation of a sufficient amount a statistics to allow for a proper convergence

in the calculation of the partition functions. Showing the Pa(M) plots for many scales can

tell us whether or not there is a lack of statistics starting from a certain (large) scale. If

one is interested in, say, the large scale iso/anisotropic information gathered from the plots

of the pdf of the arguments, Pa(A) =
∫

dM Pa(M,A), one should also make sure that the

information holds for a sufficient amount of statistics by observing a well-defined shape in

the Pa(M) plot for the corresponding scale. As discussed later in Section 4.1.4 and in Figure

8, the behavior of Pa(M) at small values of M (i.e., how Pa(M) decreases to 0 at M = 0)

characterizes the behavior of the τ(q) spectrum (Eq. (13)) for negative q-values.

4. TEST APPLICATIONS OF THE 2D WTMM METHOD

Introduced by Mandelbrot & Van Ness (1968), fractional Brownian motion (fBm) has

become a very popular modeling tool used in signal and image (2D and 3D) analysis. It

has been used to calibrate the WTMM method in 2D (Arneodo, Decoster & Roux 2000).

Construction of fBm models for the ISM where presented in Stutzki et al. (1998). Miville-

Deschênes, Levrier & Falgarone (2003) analyzed the effects of the projection of simulated
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3D fBm fields in 2D in order to characterize the effects of projection in ISM maps. Non-fBm

methods were also used to model the ISM (Hetem & Lépine 1993).

In this section, the analysis of synthetic fBm isotropic monofractal and multifractal 2D

surfaces will demonstrate the accuracy and robustness of the 2D WTMM method. Further-

more, we will see how the 2D WTMM method can easily characterize anisotropic structures

by analyzing synthetic anisotropic rough surfaces.

4.1. Isotropic Fractional Brownian Surfaces

In this section a review of the definition of 2D fBm is presented. Afterwards, the 2D

WTMM methodology described in §3 is tested on several realizations of 2D fBm, for three

different Hurst exponent values (Arneodo, Decoster & Roux 2000).

A 2D fBm BH(x) indexed by H ∈]0, 1[, is a process with stationary zero-mean Gaussian

increments whose correlation function is given by (Peitgen & Saupe 1988):

< BH(x)BH(y) >=
σ2

2

(
|x|2H + |y|2H − |x − y|2H

)
, (26)

where < . . . > represents the ensemble mean value and x,y ∈ R2 . The variance of such a

process is

var(BH(x)) = σ2|x|2H (27)

for any x ∈ R2. 2D fBm’s are self-affine processes that are statistically invariant under

isotropic dilations:

BH(x0 + λu) − BH(x0) � λH [BH(x0 + u) − BH(x0)], (28)

where u is a unitary vector and � stands for the equality in law. The index H corresponds to

the Hurst exponent. But since equation (28) holds for any x0 and any direction u, this means

that almost all realizations of the fBm process are continuous, everywhere non-differentiable,

isotropically scale-invariant as characterized by a unique Hölder exponent h(x) = H , ∀x.

Thus fBm surfaces are the representation of homogeneous stochastic (mono)fractal functions

characterized by a singularity spectrum which reduces to a single point

D(h) = 2 if h = H,

= −∞ if h �= H.
(29)

By Legendre transforming D(h) according to equation (14), one gets the following expression

for the partition function exponent (Eq. (13)):

τ(q) = qH − 2. (30)
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τ(q) is a linear function of q, the signature of monofractal scaling, with a slope given by the

index H of the fBm. The relationship between H and the power spectral index, β (Eqs. (17)

and (18)) is given by

β = 4 + τ(2) = 2 + 2H, (31)

where β = limk→∞− log(S(|k|))
log(|k|) (in Fourier space) (Eq. (17)).

The 2D WTMM method described in §3 was tested (Arneodo, Decoster & Roux 2000)

on isotropic fBm surfaces generated by the so-called Fourier transform filtering method (Ffm)

(Peitgen & Saupe 1988). This particular synthesis method is used because of the simplicity

of its implementation. Indeed it amounts to a fractional integration of a 2D “white noise”

and therefore it is expected to reproduce quite faithfully the isotropic scaling invariance

properties. By looking at Figures 3a (H = 0.2), 3b (H = 0.5) and, 3c (H = 0.8), one can

see that the fBm surfaces become less and less irregular when increasing the index H .

4.1.1. Fourier Analysis

The Fourier analysis of 32 (1024 × 1024) images of BH=0.2(x) is presented in Figure 4.

Figure 4a presents some contour plots of the 2D Fourier spectrum that do not display any

significant departure from radial symmetry (except along the kx and ky axes as the conse-

quence of the periodization introduced by the discrete Fast-Fourier Transform). Isotropic

scaling is confirmed in Figure 4b where the power spectral density is shown to behave like a

power-law as a function of the wavevector modulus |k| with an exponent β = 2.40, which is

in perfect agreement with equation (31).

4.1.2. Wavelet Analysis

We have wavelet transformed these 32 (1024 × 1024) images of BH=0.2(x) with a first-

order analyzing wavelet (Figs. 2a and 2b). To avoid edge effects, only the 512 × 512

central part of the wavelet transform of each image is kept for analysis. Figure 5 illustrates

the computation of the maxima chains and the WTMMM for an individual image at three

different scales. Figure 5b is the convolution of the original image (Fig. 5a) with the isotropic

Gaussian smoothing filter φGau (§3.1).

According to the definition of the wavelet transform modulus maxima, the maxima

chains correspond to well defined edge curves of the smoothed image (Fig. 5b). The local

maxima of Mψ along these curves are located at the points where the sharpest intensity

variation is observed. The corresponding arrows clearly indicate that locally, the gradient
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vector points in the direction (as given by Aψ) of maximum change of the intensity surface.

When going from large scale (Fig. 5d) to small scale (Fig. 5c), the characteristic average

distance between two nearest neighbour WTMMM decreases like a. This means that the

number of WTMMM and in turn, the number of maxima lines, proliferates across scales like

a−2. One thus recovers the theoretical result that the support of the singularities of a 2D

fBm (i.e., the set of points where the maxima lines that define the wavelet transform skeleton

converge in the limit a → 0+, ) as a dimension dF = 2 (Eq. (15)). Note that some maxima

chains do not have any WTMMM. The reason is that some chains are monotonic. The only

minimum (resp. maximum) that they possess is at an extremity. WTMMM corresponding

to these extremeties are not kept for analysis.

4.1.3. Numerical Computation of the τ(q) and D(h) Spectra

The results obtained from the computation of the τ(q) and D(h) spectra using the 2D

WTMM method described in §3.3 are presented in Figure 6. In Figure 6a, the partition

function Z(q, a) (over 32 images of BH=0.5(x)) displays a remarkable scaling behavior over

more than 3 octaves when plotted versus a in a logarithmic representation, where a is

expressed in σW units. Throughout this paper, σW = 13 pixels is the width of the analyzing

wavelet at the smallest scale where it is still well enough resolved (the highest resolution

accessible to our wavelet transform microscope). Moreover, for a wide range of values of q ∈
[−4, 4], the data are in good agreement with the theoretical τ(q) spectrum (Eq. (30)). When

proceeding to a linear regression fit of the data over the first two octaves as recommended by

Audit et al. (2002), one gets the τ(q) spectra shown in Figure 6c for three values of the fBm

index H = 0.2, 0.5, and 0.8. Whatever H , the data systematically fall on a straight line, the

signature of monofractal scaling properties. However, the slope of this straight line provides

a slight underestimate of the corresponding Hurst exponent H , namely H = 0.19, 0.48, and

0.77 respectively. This behavior is also seen in Figures 6a and 6b for the Z(q, a) and h(q, a)

functions for individual q values. Let us point out that a few percent underestimate has

also been reported when performing similar analysis of 1D fBm. Theoretical investigation

of finite-size effects and statistical convergence has been recently performed to explain this

experimental observation (Audit et al. 2002).

4.1.4. Probability Density Functions

In Figure 7 are shown the pdfs Pa(M) and Pa(A), computed at four different values

of the scale parameter for BH=0.2(x). As seen in Figure 7a, Pa(M) is not a Gaussian, but
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decreases to zero at zero. This explains that when concentrating on the wavelet transform

skeleton, the discrete sum in the r.h.s. of equation (12) does not diverge when considering

negative q values. This critical remark is at the heart of the 2D WTMM method: By allowing

us to compute the τ(q) spectrum for negative as well as positive q values, the 2D WTMM

method is a definite step beyond the 2D structure function method which is simply undefined

for negative q values (the increment pdf being maximum at zero) and is therefore intrinsically

restricted to positive q values, which correspond only to the strongest singularities of the

analyzed surfaces.

The corresponding pdfs Pa(A) are represented in Figure 7b. Pa(A) clearly does not

evolve across scales. Moreover, except for some small amplitude fluctuations observed at the

largest scale, Pa(A) = 1/2π is a flat distribution as expected for statistically isotropic scale-

invariant rough surfaces. Moreover, as discussed in §3.3, the well-defined shape of Pa(M) at

the scales shown is a confirmation of the appropriate number of statistics.

Let us now consider the problem of statistical convergence of the τ(q) and D(h) spectra,

i.e. the statistical convergence of the partition function Z(q, a). According to equation (25),

Z(q, a) is the integral of MqPa(M). One can show that the monofractal self-similarity

relationships yield the following rescaling properties (Arneodo, Decoster & Roux 2000):

a−qHMqPa(M) = Fq(M/aH), (32)

where Fq are q-dependent functions that do not depend upon the scale parameter a. The

validity of the above equation has been discussed in detail in Arneodo, Decoster & Roux

(2000) and is addresssed here in Figure 8 for q ∈ [−3, 4]. The data collected at different

scales actually collapse on a single distribution whose shape clearly depends upon q, in good

agreement with equation (32). Because of the progressive lack of statistics when one increases

a, the distributions obtained at the largest scales become more and more noisy (especially

for large values of |q|). This means that the integral of these distributions, i.e. Z(q, a), is less

and less accurately estimated at large scales. This explains the requirement of estimating

the Hurst exponent of 2D fBm over a rather narrow range of scales at small scales (Audit

et al. 2002). To quantitatively and objectively determine the range of acceptable q-values in

the present study, only the q-values where the difference in area under the curves is ≤ 10%

were kept.

4.1.5. Multifractal Rough Surfaces

At the referee’s request, the authors removed the content of this section since multifrac-

tality was not found in the H i data. However, tests were performed and the WTMM method
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would have detected such quality if it were present. Figures 4b, 6e, and 6f correspond to

the analysis of synthetic multifractal surfaces generated with the so-called Fractionaly Inte-

grated Singular Cascade (FISC) algorithm presented in Decoster, Roux & Arneodo (2000),

where theoretical expressions are given for both the τ(q) and D(h) spectra as well as the

relationship the roughness exponents and the power spectral exponent.

4.2. Anisotropic Surfaces

Standard 2D fBm models are not always sufficient in fully characterizing real world

surfaces (Arneodo, Decoster & Roux 2000). Allowing spatial fluctuations in the local Hölder

regularity, i.e., multifractality, gives more flexibility to these models. Another limitation is

the isotropy, which is rather idealistic in the case of real textures. In this section we address

the issue of anisotropic rough surfaces (Schertzer & Lovejoy 1985, 1987; Peitgen & Saupe

1988; Schmittbuhl, Violette & Roux 1995; Schertzer et al. 1997).

A natural way of introducing some anisotropy in the fast Fourier transform filtering

surface synthesis method is to use different fractional integration orders in two orthogonal

directions of space. However, although the concept of 2D anisotropic fBm is well-defined

mathematically, it has never been validated numerically (to the best of our knowledge).

Recent progress has been accomplished in the study of fractional Brownian “sheets” (fBs),

BHx,Hy(x) where the main difference between the two lies in the homogeneity of the initial

conditions of the random process. For a technical description, see Pesquest-Popescu &

Lévy Véhel (2002) and Montseny (2004). Let us mention that an alternative method was

proposed by Makse et al. (1996) motivated by the generation of long-range correlations in

large systems.

We introduce the exponents Hx and Hy to describe the global Hurst regularity in the

x and y directions respectively4. An anisotropic surface is thus described as a self-affine

two-dimensional function where Hx �= Hy.

Two methods are used here two estimate the individual Hurst exponents Hx and Hy.

The first method consists in a simple 1D Fourier analysis of x-directional and y-directional

cuts (estimation of the directional power spectral indices5, βx2Hx + 1 and βy = 2Hy + 1),

4Only the horizontal (x) and vertical (y) directions are considered here to avoid over-crowding this text.
More generally, anisotropic structure can be defined in any direction, where the individual Hurst exponents
would be defined as Hθ and Hθ+π/2.

5Note that Eq. (31) can be generally written as β = 2H + d, where d is the Euclidean dimension.
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and the second, explained below in §4.2.4, consists in the analysis of the horizontal and

vertical wavelet transform components, Tψ1 and Tψ2 (see §3.1). Note that the introduction

and characterization of the Hx and Hy exponents, where both are in the interval [0, 1], is

novel.

4.2.1. Fourier Analysis

We have generated 32 (1024× 1024) images (fBs) of BHx=0.10,Hy=0.50(x) where the regu-

larity in the x-direction, Hx = 0.10, differs significantly from the regularity in the y-direction,

Hy = 0.50. The Fourier analysis is presented in Figure 9. Figure 9a presents some contour

plots of the 2D Fourier spectrum, where the anisotropic signature is translated as a pref-

erence in the x direction in the (kx, ky) plane. The log-log plot of the 2D power spectrum

shown in Figure 9b reveals the relation between the beta index (Eq. (31)) and the minimal

Hurst exponent H = min(Hx, Hy) = Hx, i.e. β = 2Hx + 2. The actual value of the fitted

slope is given by β = 2.26 ± 0.06, a slight over-estimation6. The individual spectral indices

calculated from the 1D cuts in Figures 9c and 9d, are βx = 1.22± 0.01 and βy = 1.97± 0.01.

These values are also slightly over (resp. under) estimated, which is expected for such a

large difference between the theoretical values βx = 2Hx +1 = 1.20 and βy = 2Hy +1 = 2.00

(Montseny 2004).

4.2.2. Wavelet Analysis

We have wavelet transformed these 32 (1024× 1024) images of BHx=0.10,Hy=0.50(x) with

a first-order analyzing wavelet (Figs. 2a and 2b). From a visual inspection of Figure 10, one

can see that the maxima chains show a vertical tendency, which becomes more and more

pronounced when going to small values of a. In the meantime, the WTMMM proliferate like

a−2, with a characteristic evolution of the corresponding arrows towards a general alignment

to the x-direction (Aψ converges to 0 and ±π), i.e., to the direction that corresponds to the

most singular behavior as characterized by H = min(Hx, Hy).

Therefore, for 1D cuts, one has β = 2H + 1.

6The presented uncertainties for β, βx, and βy correspond to the errors from the fitted slopes, over the
range 1 < log2(k), log2(k(x)), log2(k(y)) < 8.
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4.2.3. Numerical Computation of the τ(q) and D(h) Spectra

In Figure 11 are reported the results of the computation of the τ(q) and D(h) spectra

using the 2D WTMM method described in §3. As shown in Figure 11a, the partition function

Z(q, a) over 32 (1024 x 1024) images, displays a well defined scaling behavior over the

range of scales 1 ≤ a ≤ 6 (in σW units) when using the first-order wavelet. A linear

regression fit of the data for −4 ≤ q ≤ 4 yields the numerical τ(q) spectrum shown in

Figure 11c. All the data points fall on a straight line of slope Hx = 0.12 ± 0.01, which is

in agreement with the estimated βx just above (§4.2.1). Indeed, the data are well fitted by

τ(q) = 0.12 (±0.01) q − 1.96 (±0.04), which confirms that the anisotropic fBs are singular

almost everywhere (dF = −τ(0) ≈ 2, Eq. (15)). As shown in Figure 11b, one recovers the

exponent H = min(Hx, Hy) = Hx from the scaling of the expectations values h(q, a) (Eq.

(20)) in the limit a → 0+. Note that one observes some cross-over at large scales to a scaling

behavior with exponent H = max(Hx, Hy) = Hy for significantly negative values of q.

When completing this analysis by computing D(q) form the scaling behavior of D(q, a)

(Eq. (21)), one gets to the conclusion that the D(h) singularity spectrum reduces to a

single point D(h = 0.12 ± 0.01) = 1.96 ± 0.04 (D(h) = −∞ elsewhere). These results

demonstrate that, up to finite-size effects, the 2D WTMM method is powerful enough to

account quantitatively for the homogeneous (monofractal) anisotropic scaling properties of

rough surfaces, where the minimal directional Hurst exponent corresponding to the most

singular direction is detected.

4.2.4. Probability Density Functions

In Figures 7c and 7d are reported the results of the computation of the pdfs Pa(M)

and Pa(A), from the same set of 32 (1024 x 1024) images of anisotropic rough surfaces

(BHx=0.10,Hy=0.50(x)). Both pdfs are shown for four different values of the scale parameter

a. In contrast to what was observed for isotropic monofractal rough surfaces in the previous

sections, Pa(A) becomes more and more sharply peaked (Fig. 7d) at two values A = 0 and

±π, in the limit a → 0+. These values correspond to the x-direction associated with the

smallest scaling exponent H = min(Hx, Hy) = Hx = 0.10. There are also small peaks at

±π/2 which are the signature of the existence of a different scaling exponent Hy = 0.50 > Hx,

but which get smaller and smaller in the limit a → 0+.

When considering smaller and smaller scales, it turns out that what is happening in the

most singular direction, i.e., in the x-direction of the rough surfaces under study, ultimately

governs their scale invariance properties. This explains why both global analysis tools used
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just above (the exponents β and H), yielded the minimal value of the directional roughness

exponents (resp. βx and Hx).

In fact, the two components of the 2D continuous wavelet transform behave as:

Tψ1 [f ](b, a) ∼ aHx , (33)

and

Tψ2 [f ](b, a) ∼ aHy , (34)

and this, independently of the specific spatial location b. As shown in Figure 12, one

recovers this anisotropic scaling behavior on the WTMMM. Indeed, when restricting the

computation of the pdfs of Tψ1 and Tψ2 to the wavelet transform skeleton, one obtains the

following remarkable self-similarity properties:

P
(
Tψ1 [f ](L(a))

)
= P1

(
Tψ1 [f ](L(a))/aHx

)
, (35)

and

P
(
Tψ2 [f ](L(a))

)
= P2

(
Tψ2 [f ](L(a))/aHy

)
, (36)

where P1 and P2 are two universal functions that do not depend upon the scale parameter

a. When going back to the (modulus, angle) representation, one gets

Mψ[f ](L(a)) ∼ (Aψa2Hx + Bψa2Hy)1/2 ∼ amin(Hx,Hy) ∼ aHx (37)

where Aψ and Bψ are wavelet dependent prefactors. In fact, in the limit a → 0+, one

thus finds that the local Hölder regularity is governed by Hx = 0.10 = min(0.10, 0.50) =

min(Hx, Hy). These results corroborate the conclusions derived from the computation of the

τ(q) and D(h) spectra in Figure 11. The anisotropic random surface generated in Figure 10a,

is a homogeneous (monofractal) rough surface which is invariant with respect to anisotropic

dilations. Its local Hölder regularity is the same at each spatial point and is governed by the

scaling behavior properties in the direction of minimal regularity. According to equations

(33) and (34), one gets

tanAψ[f ](L(a)) = Tψ2 [f ](L(a))/Tψ1[f ](L(a)) ∼ aHy−Hx (38)

which confirms that Aψ → 0 or ±π along each maxima line in the limit a → 0+. This

explains the evolution of Pa(A) in Figure 7d. To conclude, let us emphasize that, beyond its

ability to characterize statistically the Hölder regularity properties, the 2D WTMM method

also accounts for possible departure from isotropic scaling. In the case under study in this

section, both scaling exponents Hx = 0.11±0.01 and Hy = 0.49±0.01 have been numerically

estimated with high accuracy (as compared to the results obtained from the Fourier analysis)

from the collapse of the Tψ1 and Tψ2 pdfs according to equations (35) and (36) in Figures

12c and 12d.
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4.2.5. Sensitivity Tests

The sensitivity of our two techniques (directional analyses of the x and y components

for the Fourier analysis and wavelet transform) must now be tested for smaller values of

|Hy −Hx|. In what follows, a quick overview of a supplemental study will demonstrate more

precisely the limitations of both techniques.

Two sets of 32 (1024× 1024) anisotropic surfaces (fBs) were generated with (Hx, Hy) =

(0.41, 0.44) and (Hx, Hy) = (0.45, 0.52) respectively. The Fourier analysis of both BHx=0.41,Hy=0.44(x)

and BHx=0.45,Hy=0.52(x) yields the following individual power spectral exponents βx = 1.82±
0.01, βy = 1.89± 0.01 and βx = 1.90± 0.02, βy = 2.01± 0.02, while the global (2D) spectral

exponents are β = 2.84 ± 0.03 and β = 2.90 ± 0.03 respectively (data not shown).

The computation of the partition functions Z(q, a) and expectation values h(q, a) with

the 2D WTMM method yields τ(q) and D(h) spectra which are in good agreement with

the theoretical values. From the τ(q) spectra, one obtains H = 0.40 ± 0.01 and H =

0.45± 0.01 respectively, where both values correspond to the minimal Hurst exponent (H =

min(Hx, Hy)). The D(h) singularity spectra reduce to single points: D(h = 0.40) = 2.04 ±
0.04 and D(h = 0.45) = 1.98 ± 0.04 (data not shown).

The original and rescaled pdfs of the individual components of the wavelet transform

are shown in Figure 13 for BHx=0.41,Hy=0.44(x). The individual Hurst exponents are recov-

ered with very high accuracy. Indeed, one finds Hx = 0.41 ± 0.01 and Hy = 0.44 ± 0.01.

Similar accurate estimates, Hx = 0.45 ± 0.01 and Hy = 0.52 ± 0.01 are also obtained for

BHx=0.45,Hy=0.52(x) (data not shown). This quick study shows that our techniques are capa-

ble of analyzing anisotropic surfaces with |Hy − Hx| down to about 0.03. Figure 14, which

corresponds to the rescaled pdfs of Tψ1 by different neighboring values of Hx, confirms the

choice of the uncertainty, σ = 0.01.

5. RESULTS

5.1. Noise Analysis and Filtering

The 2D WTMM method was used to analyze the five mosaics presented in §2 (see also

Figure 1 and Table 1). However, the impact of noise behavior in the CGPS data must be

addressed. Originally discussed in Miville-Deschênes et al. (2003), the images obtained from

DRAO exhibit a granular structure which is attributed to instrumental noise. A thorough

analysis of the noise itself, of its effects on the mosaics, and a filtering method are presented

in this section.
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5.1.1. Noise Analysis from the DRAO Empty Channels

The 2D WTMM analysis presented in this subsection will demonstrate the differences

between noise mosaics constructed from some empty channels of the 21-cm data cubes (hence-

forth called the “DRAO noise”) and synthetic pure white noise (henceforth called “synthetic

noise”). For the latter, an isotropic monofractal behavior is expected, with D(h = −1) = 2.0.

Figure 15 shows a sample of each of the two noise mosaics, with the DRAO noise (Fig.

15a) and the synthetic noise (Fig. 15b). In order to make an adequate comparison, the

number of (empty) velocity channels used to construct the DRAO noise mosaics was chosen

to be similar to the average number of velocity channels used to construct the five mosaics.

A simple visual inspection of Figure 15 clearly shows differences between the DRAO and

synthetic noise images. By definition, the synthetic noise is a totally uncorrelated surface,

where at the smallest scale, each pixel is randomly different from its neighbor, and at larger

scales, no correlated structure exists. However, from the DRAO noise surface, one can

clearly see that at the smallest scales, two neighboring pixels are not necessarily uncorrelated.

Indeed, the “granularity” seen at the smallest scales of the DRAO noise (black components

on a white background) are composed of many pixels. Therefore, any two neighboring pixels

on one of these components (or grains) are extremely correlated. At the largest scales, a

careful inspection of the DRAO noise surface shows a correlation caused by the so-called

“honeycomb structure”, a signature of the effects of the choice of the synthesis telescope

pointings (Taylor et al. 2003).

A Fourier analysis similar to what was done in §4 is presented in Figure 16, except

that the results presented here correspond to an averaging over the central 512 × 512 parts

of 16 (instead of 32) 1024 × 1024 DRAO (�) and synthetic (•) noise surfaces7, where the

variance of the synthetic noise was imposed to be equal to the variance of the DRAO noise.

The contour plot shown in Figure 16a, corresponding to the synthetic noise, seems perfectly

random. Indeed, this is to be expected since all pixels are totally uncorrelated at all scales:

no prefered scale exists where more power would be represented. This evenly distributed

power translates as a flat 2D power spectrum (Fig. 16b, •). The same is true for the

analysis of the 1D x and y-cuts (Figs. 16c and 16d respectively, •). On the other hand,

although the power spectra obtained from the 2D surfaces (Fig. 16b) and 1D x and y cuts

7A detailed analysis of the expected level of uncertainty versus the number of images used as well as the
size of images is presented in Arneodo, Decoster & Roux (2000), where it is shown that a greater uncertainty
is expected for 16 rather than 32 images, but that sub-image numbers in the range 9-18 (which corresponds
to the mosaics analyzed here) will yield similar uncertainty levels (see Figure 23 from Arneodo, Decoster &
Roux (2000).)
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(Figs. 16c and 16d respectively) from the DRAO noise (�) show a relatively flat slope for

the intermediate scales, one can clearly see a tangible steepening of the slope at large scales

(low values of the wave vector k) and a steepening of the slope at small scales (large k). This

is in agreement with the above discussion, i.e., the large scale honeycomb structure, and the

extremely correlated small scale granularity. Finally, note that there is no indication of a

directional preference (anisotropy) from the power spectral analysis of the 1D cuts.

The computation of the τ(q) and D(h) spectra for both the DRAO (�) and synthetic

(•) noise surfaces are shown in Figure 17. Figure 17 yields the estimation of the Hurst

exponents for the synthetic noise surfaces (•), i.e., D(h = −1.00) = 2.01 ± 0.02, as well

as the DRAO noise surfaces (�), i.e., D(h = −1.06) = 2.02 ± 0.04. The behavior of the

expectation values for the DRAO noise surfaces (�) shown in Figure 17b is in agreement

with the above discussion, namely that the surfaces tend to be more correlated respectively

at small and large scales, which translates as a higher value for the Hurst exponent, H , and

thus a more positive (or rather, less negative) slope for h(q, a).

The probability density functions Pa(M) and Pa(A) for the DRAO noise are shown in

Figure 18. Unlike the modulus pdfs analyzed in §4, the Pa(M) pdfs shown in Figure 18a,

where a first-order analyzing wavelet was used, show a widening of the curves with decreasing

scale. This is caused by a negative (H = −1) Hurst exponent.

In Figure 18b, there are small oscillations in the pdfs of the arguments, Pa(A), of

comparable size to what was observed for isotropic fBm surfaces (§4.1) for the smallest

scales (full line and �). However, for the largest scales (
 and �), there are two clear peaks

at 0 and ±π. The peaks are caused by the large scale correlations discussed above: the

honeycomb effect. Since these DRAO noise surfaces were cut-up in a systematic and similar

way for all 16 analyzed surfaces, the position of the honeycomb lattice is similar, and in

fact, accentuated when averaging over the 16 surfaces. One way to get rid of the anisotropic

signature would be to construct a large DRAO noise mosaic similar to the spiral and inter-

arm mosaics presented in Figure 1. Instead, one can use the third-order analyzing wavelet,

which is blind to linear and quadratic behaviors8. The third-order analyzing wavelet was

thus used in Figure 18d, where one can clearly see the dampening of the large scale peaks

from Figure 18b. This is a spectacular demonstration of the strength of the 2D WTMM

method. Indeed, the large scale anisotropy is easily dealt with and one can be certain that

the honeycomb structure will not affect the results presented in this paper.

As will be shown in what follows, another, perhaps equally important topic that should

8In fact, an n-order analyzing wavelet is blind to polynomial behaviors of degree n−1 (Arneodo, Decoster
& Roux 2000).
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be emphasized, is that the values of the modulus of the wavelet transform (range of x

values in Figures 18a and 18c) is quite small compared to the values of the modulus of the

five analyzed mosaics. This means that even if there were an anisotropic structure in the

DRAO noise surfaces, corresponding to an artificial (instrumental) anisotropic signature, its

contribution to the mosaics would be so small as to have absolutely no effect on the results.

5.1.2. Filtering

In order to deal as best as possible with the granularity of the DRAO data, the filtering

method presented in Miville-Deschênes et al. (2003), based on the wavelet-based “à trous”

algorithm, was used here to filter the five mosaics. The method consists in the decomposition

of the images on a wavelet basis. In order to improve the signal to noise ratio, only the wavelet

coefficients satisfying a threshold condition relative to the amplitude of the noise are kept in

the reconstruction algorithm. The effects of the filtering on the Local arm mosaic are shown

in Figure 19 for the 2D (Fig. 19b) and 1D (Figs. 19c and 19d) Fourier analysis. With the

unfiltered data, the wavelet analysis reaches areas of only ∼ 21.4σW ≈ 34 pixels in diameter.

Filtering improves the scale span down to areas of ∼ 20.9σW ≈ 24 pixels in diameter only

(≈ 7 arc minutes). In the upcoming sections, we limited the analysis of the data to a scale

just preceding the slope change seen in Fig. 19b. This value changes somewhat for the

different mosaics. The position of the slope change has been calculated for each mosaic.

Theses positions are respectively 21.1, 21.0, and, 20.9, for the Local, Perseus, and Outer arms

and 21.0 and 21.0 for the Inter I and Inter II mosaics (in σW units, where σW = 13 pixels).

5.2. The Three Spiral Arms

5.2.1. Fourier Analysis

The Fourier analysis of the subregions outlined in white in Figures 1a, 1c, and 1e are

presented in Figure 19.

Figure 19a presents a contour plot of the 2D Fourier spectrum of the Local arm subre-

gions, where a circle was added to help the reader see the slight ellipticity of the contours,

which is also present in the 2D Fourier spectra of the Perseus and Outer arm subregions

(data not shown). As was done for the synthetic surfaces (§4.1 and 4.2), where the analysis

was performed by averaging over the 32 central 512 × 512 parts of the original 1024× 1024

images, all results presented here correspond to an averaging over all white subregions pre-

sented in Figure 1. From the log-log plot of the 2D power spectrum shown in Figure 19b, the
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beta index was estimated to be β = 2.95 ± 0.05, 2.97 ± 0.04, and 2.94 ± 0.05 for the Local,

Perseus, and Outer arms respectively9. The range of the fits correspond to the length of the

straight lines located above the log-log plots. A further Fourier analysis was performed by

calculating the power spectrum on the x and y one-dimensional cuts of each mosaic. The

fact that the values obtained for the exponent βx = 1.82± 0.04, 1.91± 0.05, and 1.76± 0.06

are strictly less than those extracted for βy = 1.97 ± 0.10, 2.03 ± 0.05, and 1.94 ± 0.05 is in

agreement with the slightly elliptical shape of the contours found in Figure 19a. This could

be interpreted as a first indication that an anisotropic structure is present in these three

mosaics. However, one cannot solidly quantify this affirmation with the Fourier analysis

alone.

5.2.2. Wavelet Analysis

We have wavelet transformed the subregions of the Local, Perseus, and Outer arms with

a first-order analyzing wavelet (Figures 2a and 2b). Again, to avoid edge effects, only the

central parts of the wavelet transform of each 1024×1024 image, which are represented by the

white subregions in Figures 1a, 1c, and 1e, are kept for analysis. All of these subregions are

≤ 512×512. Figure 20 illustrates the computation of the maxima chains and the WTMMM

for an individual image of the Local arm at three different scales. Figure 20b shows the

convolution of the original image (Fig. 20a) with the isotropic Gaussian smoothing filter

φGau (Eq. (1)).

As seen for the study of synthetic surfaces in §4.1 and 4.2, the maxima chains correspond

to well defined edge curves of the smoothed image. The local maxima of Mψ along these

curves are located at the points where the sharpest intensity variation is observed. The

corresponding arrows clearly indicate that locally, the gradient vector points in the direction

(as given by Aψ) of maximum change of the intensity surface. Going from large scale (Fig.

20d) to small scale (Fig. 20c), the characteristic average distance between two nearest

neighbour WTMMM decreases like a. This means that the number of WTMMM and in

turn, the number of maxima lines, proliferates across scales like a−2, like isotropic fBm and

anisotropic fBs monofractal surfaces. This is an indication that the Local arm mosaic is a

rough surface which is likely to be singular almost everywhere (−τ(0) = dF = 2). For the

sake of concision the corresponding results for the Perseus and Outer arms are not shown as

they are qualitatively similar to those obtained in Figure 20 for the Local arm.

9The presented uncertainties for β, βx, and βy correspond to the errors from the fitted slopes.
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5.2.3. Numerical Computation of the τ(q) and D(h) Spectra

The results obtained from the computation of the τ(q) and D(h) spectra using the 2D

WTMM method described in §3.3 are presented in Figure 21. In Figures 21a and 21b the

partition functions Z(q, a) and the expectation values h(q, a) for the Local (�), Perseus (�),

and Outer (◦) arms display excellent scaling behavior over the range a ∈ [20.9σW , 23.0σW ]

when plotted versus a, for the range of values of q ∈ [−1, 3]. Although the mosaics were

filtered to minimize the noise, the wavelet analysis is restricted to the scales larger than

a = 20.9σW = 24 pixels (σW = 13 pixels).

When proceeding to a linear regression fit of the data over the ranges a ∈ [21.1, 22.6],

a ∈ [21.0, 22.6], and a ∈ [20.9, 22.6] respectively (in σW units) for each spiral arm, one gets the

τ(q) spectra shown in Figures 21c, 21d, and 21e. The data fall on straight lines, reflecting

the signature of monofractal scaling properties. The slopes of these straight lines correspond

to the Hurst exponents H = 0.52± 0.03, H = 0.53± 0.03, and H = 0.51± 0.03 respectively

for the Local, Perseus, and Outer arms, when averaged over all subregions. Accordingly, the

D(h) singularity spectra shown in Figures 21f, 21g, and 21h collapse to single points D(h =

0.52) = 2.02±0.03, D(h = 0.53) = 2.01±0.03, and D(h = 0.51) = 2.03±0.03, a remarkably

precise result considering the relatively small amount of available data. This is a quantitative

confirmation that the Local, Perseus, and Outer mosaics are “almost everywhere” singular.

5.2.4. Probability Density Functions

In Figure 22 are shown the pdfs Pa(M) and Pa(A) for the Local arm, computed for

four different values of the scale parameters a = 21.0, 21.5, 22.0, and 22.5 (in σW units, where

σW = 13 pixels). As seen in Figure 22a, where a first-order wavelet was used, Pa(M) is

not a Gaussian, but decreases to zero at zero, an expected property which was discussed in

§4.1. The corresponding pdfs Pa(A) are represented in Figure 22b. Pa(A) is clearly peaked

at ±π/2 and the observed maxima seem to slightly depend on the scale parameter a. This

is a solid confirmation that the mosaics exhibit an anisotropic signature. In Figures 22c and

22d are shown the pdfs Pa(M) and Pa(A) using a third-order wavelet. A zoom-in on the left

peak of Pa(A) is included in Figure 22d, showing the scale dependence. For the smallest and

largest scales shown in the zoom-in window, average values are clearly different even within

uncertainty: 0.206 ± 0.005 for the smallest scale and 0.247 ± 0.015 for the largest.

The fact that the peaks in Pa(A) do not fade when going from the first-order to the third-

order wavelet is a confirmation that the anisotropy is not caused by a large-scale structure

in the mosaic (Roux, Arneodo & Decoster 2000). The anisotropic signature detected in
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the mosaics is not caused by the large-scale shape of the galactic disk and the anisotropy

is therefore inherent to the analyzed H i structure. As seen in §4.2 with the synthetic

anisotropic surfaces, having many more WTMMM pointing towards ±π/2 tells us that the

direction of greatest intensity variation is vertical. This should be interpreted as a situation

where the fluctuations in the vertical direction have a greater variability than the fluctuations

in the horizontal direction, as characterized by Hurst exponent values Hx > Hy. However,

this is surprisingly and interestingly not the case here. An explanation is given in the next

paragraphs.

The corresponding pdfs for the Perseus and Outer arms are shown in Figure 23 (only

the ones computed with the third-order analyzing wavelet are illustrated). They display

qualitatively the same characteristics as those previously observed for the Local arm except

that fact that the Pa(M) curves are wider for the Perseus mosaics (Fig. 23a) than for the

two other spiral arms (Figs. 22c and 23c). This is simply the signature of the intensity

levels being much more variable in the Perseus mosaic than in the two others (see Figure

caption 1). Again, a zoom-in on the left peak of Pa(A) is included in Figure 23d, showing

the scale dependence. Here again, average values are also different even within uncertainty:

0.199 ± 0.005 for the smallest scale and 0.224 ± 0.013 for the largest.

In Figures 24a and 24b are shown the pdfs of the x and y components of the wavelet

transform of the Local arm in logarithmic form: ln (Pa(Tψ1)) vs Tψ1 and ln (Pa(Tψ2)) vs Tψ2 .

Unlike the results obtained from Figures 12 and 13, for the synthetic anisotropic surfaces

(§4.2), the Tψ2 curves in Figure 24b are wider than those in Figure 24a, even though we

expect to have Hx > Hy. Indeed, when calculating the individual Hurst exponents by

rescaling these curves by aHx and aHy in Figures 24c and 24d, we find Hx = 0.42± 0.03 and

Hy = 0.52± 0.03 respectively. Therefore, the global Hurst exponent found in §5.2.3, namely

H = 0.52 is not equal to min(Hx, Hy) but is rather equal to max(Hx, Hy). The analysis of

the rescaled pdfs using the third-order wavelet in Figures 24e and 24f confirms these results:

Hx0.41±0.03 and Hy = 0.52±0.03. The uncertainty (σ = 0.03) on the values of Hx and Hy

was determined as in §4.2.5 (Fig. 14). As mentioned above, the uncertainty level is inversely

proportional to the number of images over which the results were obtained, but is considered

to be similar from one mosaic to another (Arneodo, Decoster & Roux 2000).

Quite similar estimates of Hx and Hy were obtained with the first-order analyzing

wavelet for the Perseus arm (Hx = 0.42 ± 0.03, Hy = 0.52 ± 0.03) and the Outer arm

(Hx = 0.43±0.03, Hy = 0.52±0.03) (data not shown). The use of the third-order analyzing

wavelet confirms the robustness of these estimates for the Perseus arm (Hx = 0.40 ± 0.03,

Hy = 0.50 ± 0.03) as well as for the Outer arm (Hx = 0.41 ± 0.03, Hy = 0.48 ± 0.03). The

results are summarized in Table 2.
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The difference between the width of the curves of ln (Pa(Tψ2)) vs Tψ2 and ln (Pa(Tψ1))

vs Tψ1 is significant. The behavior of the wavelet transform is much more variable in Tψ2

than in Tψ1 , explaining the larger width of the former compared to the latter. This phe-

nomenon affects the estimate of the Hurst exponent when calculated with the 2D WTMM

methodology (§3.3). In effect, since the global H is obtained from the scaling behavior of

M = (T 2
ψ1

+ T 2
ψ2

)1/2 ∼ aH (Eq. (37)), the contribution to M from Tψ2 is so strong that it

dominates the scaling law behavior over the accessible range of scales. Since Tψ2 ∼ aHy (Eq.

(34)), the estimate of the global Hurst exponent on this range of scales is thus governed

by the y component of the wavelet transform, i.e., H = Hy = max(Hx, Hy) = 0.52 ± 0.03.

Furthermore, since the noise restrains us from having access to the smallest scales, where

the notions of Hölder and Hurst exponents are valid (i.e., when a → 0+, see §3.1), it is

not unequivoqual that the measured global Hurst exponent should be the minimal value

of Hx and Hy. If one could have access to the smallest range of scales (a → 0+), the

global Hurst exponent would be equal to the minimum of the x and y components, i.e.,

H = min(Hx, Hy) = Hx = 0.42± 0.03, as seen for the synthetic anisotropic surfaces in §4.2.

Note that any other fractal or multifractal analysis tool would have misleadingly detect-

ed max(Hx, Hy) as the global Hurst exponent of these mosaics, a clear evidence demonstrat-

ing how the wavelet transform is the perfect analysis tool for anisotropic fractal analyses.

Now, physical and/or instrumental processes must exist to explain these two phenomena

(the mere presence of an anisotropic signature and the fact that M scales with ∼ amax(Hx,Hy)

instead of ∼ amin(Hx,Hy) on the range of scales available to the analysis). Such a discussion

is postponed to §6.2.

This section concludes with the analysis of the statistical convergence of the partition

functions for the mosaics, where, as in §4.1.4, the criteria follow those previously validated

in Arneodo, Decoster & Roux (2000). As an example, Figure 25, corresponding to the Local

arm, validates the choice for the range of acceptable values for q ∈ [−1, 3] for all mosaics.

The data collected at different scales collapse on a single distribution whose shape depends

on q. This is a confirmation that the WTMM analysis is affected by the fact that the

number of sub-regions in the mosaics does not total 32 1024 × 1024 images and, perhaps

more importantly, the fact that the smallest scales (where the WTMMM are found in greatest

numbers: NWTMMM ∼ a−2) are unavailable due to the noise.
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5.3. The Two Inter-Arms

5.3.1. Fourier Analysis

The Fourier analysis of the subregions outlined in white in Figures 1b and 1d for the

two inter-arms are presented in Figure 26. The β exponents obtained from the log-log

plots of the corresponding 2D power spectra shown in Figure 26b are βI = 2.93 ± 0.05

and βII2.94 ± 0.05 for the Inter I and Inter II mosaics respectively. The individual beta

indices are βI
x = 1.90 ± 0.04, βII

x = 1.85 ± 0.06 and βI
y = 1.89 ± 0.03, βII

y = 1.89 ± 0.04.

The differences between βx and βy for the inter-arms are not as significant as for the spiral

arms (§5.2.1). Anisotropy may be present but the calculated uncertainties prevent any firm

statement. Therefore, from the Fourier analysis alone, one cannot compare the roughness

nor the strength of this anisotropic signature with those of the three spiral arms.

5.3.2. Wavelet Analysis

The wavelet analysis for the subregions of the Inter I and Inter II mosaics with a first-

order analyzing wavelet gives qualitatively similar results to those illustrated in Figure 20

for the Local arm subregions. As already seen for the study of synthetic surfaces in §4.1

and 4.2, as well as the study of the three spiral arms in §5.2, the maxima chains correspond

to well defined edge curves of the smoothed image. The number of WTMMM and in turn,

the number of maxima lines that define the wavelet transform skeleton, proliferates across

scales like a−2, a behavior that indicates that the inter-arm mosaics are rough surfaces that

are likely to be everywhere singular (−τ(0) = dF ≈ 2, Eq. (15)).

5.3.3. Numerical Computation of the τ(q) and D(h) Spectra

The results obtained from the computation of the τ(q) and D(h) spectra for the Inter

I and Inter II mosaics are presented in Figure 27. In Figures 27a and 27b, the partition

functions Z(q, a) and the expectation values h(q, a) display excellent scaling behaviors over

the range a ∈ [20.9σW , 23.0σW ] when plotted versus a, where the range of values of q is

q ∈ [−1, 3].

When proceeding to a linear regression fit of the data over the ranges a ∈ [21.0, 22.5] and

a ∈ [21.0, 23.0] for the Inter I and Inter II mosaics respectively (in σW = 13 units), one gets

the τ(q) spectra shown in Figures 27c and 27d. The first difference between the spiral arms

and the inter-arm mosaics is that the data for the latter do not fall exactly on straight lines.
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However, the departure from linearity is very slight. Many more data, and less noisy mosaics

would be needed to have access to values of q outside of the range [−1, 3] that would allow

us to diagnose some departure from monofractal scaling (see Fig. 6e). Therefore, one can

only say that there is a slight possibility that the two inter-arm mosaics display multifractal

scaling, and they will thus be considered as monofractal.

The slopes of the τ(q) spectra in Figures 27c and 27d correspond to the following Hurst

exponent values H = 0.44±0.03 and H = 0.45±0.03 respectively for the Inter I and Inter II

mosaics. Accordingly, the D(h) singularity spectra shown in Figures 27e and 27f reduce to

a single point D(h = 0.44)2.00± 0.03 and D(h = 0.45) = 2.03± 0.03 respectively (note that

one can notice some evidence of a parabolic behavior as a possible signature of multifractal

scaling, see Fig. 6f). The inter-arm mosaics are thus everywhere singular.

5.3.4. Probability Density Functions

In Figures 28a and 28b are shown the pdfs Pa(M) and Pa(A) of the Inter I subregions,

computed with the first-order analyzing wavelet (Figs. 2a and 2b) for four different values

of the scale parameters a = 21.0, 21.5, 22.0, and 22.5 (in σW = 13 units). Again, Pa(A) is

clearly peaked at ±π/2, a behavior very similar to what was observed in Figures 22 and

23 for the three spiral arms. This is a solid confirmation that, even though the study of

the individual beta indices (βx and βy) did not exhibit clear anisotropic information, the

mosaics do have an anisotropic structure. In Figures 28c and 28d are shown the pdfs Pa(M)

and Pa(A) using a third-order analyzing wavelet. The fact that the peaks in Pa(A) do not

fade when going from the first-order to the third-order wavelet is a confirmation that the

anisotropy is not caused by a large-scale structure in the mosaic, a confirmation that the

anisotropic signature, like the one found in the spiral arms, is inherent to the analyzed H i

structure. However, there is a major difference from the argument pdfs obtained for the

spiral arms. As seen in Figure 28d, the zoomed-in section shows that average results now

overlap within uncertainty: 0.215 ± 0.010 for the smallest scale and 0.231 ± 0.015 for the

largest. Pa(A) for the Inter I subregions does not display any significant scale dependence

which strongly suggests that as previously guessed from the Fourier analysis, the two scaling

(Hurst) exponents Hx ≈ Hy. Similar scale independent pdfs are observed for the Inter II

subregions (data not shown).

A analysis of the behavior of the pdfs of the x and y components of the wavelet transform

of the Inter I subregions in logarithmic form: ln (Pa(Tψ1)) vs Tψ1 and ln (Pa(Tψ2)) vs Tψ2 was

performed. Like the pdfs of the x and y components for the spiral arms (Fig. 24), the Tψ2

curves for the inter-arms are wider than the Tψ1 curves (data not shown). When calculating



– 35 –

the individual Hurst exponents by rescaling these curves by aHx and aHy respectively, we

find (Hx, Hy) = (0.45, 0.44) and (Hx, Hy) = (0.42, 0.45) (±σ = 0.03) respectively for the

Inter I and Inter II mosaics (data not shown). The analysis of the rescaled pdfs using

the third-order analyzing wavelet yields (Hx, Hy) = (0.41, 0.43) and (Hx, Hy) = (0.42, 0.45)

(±σ = 0.03) respectively for the Inter I and Inter II mosaics (data not shown). Therefore

from the first and third-order wavelet analysis of the rescaled pdfs, one cannot determine

whether Hx < Hy or Hx > Hy (within 1σ). This confirms that for both inter-arm regions, the

global Hurst exponent found from the Fourier is the same as the directional Hurst exponents,

i.e., H ∼ Hx ∼ Hy ∼ 0.43 ± 0.03.

However, the inter-arm mosaics do display some scale independent anisotropy since the

pdfs of the arguments (Pa(A)) are not flat like the ones for the isotropic monofractal fBm

surfaces (Fig. 7b). Indeed, there is no doubt that the Pa(A) curves for the inter-arm mosaics

are peaked at ±π/2 (Figs. 28b and 28d). How then, can one have Hx = Hy? The answer

comes from the very important fact that the Tψ2 curves are wider than the Tψ1 curves. The

strong contribution from Tψ2 to M = (T 2
ψ1

+T 2
ψ2

)1/2 causes the presence of these peaks. This

means that the strength of the prefered direction of the WTMMM (along the y-axis), i.e.

±π/2, does not change with scale.

Therefore, there are two types of anisotropy. First, there is a scale independent anisotrop-

ic signature (inter-arms) caused only by the greater variability of the y component of the

wavelet transform (Tψ2). The second is a scale dependent anisotropic signature (spiral arms)

caused by different directional scaling exponents, i.e., Hx �= Hy (smaller the scale, stronger

the anisotropy). In other words, the ratio of the number of horizontal versus vertical arrows

does not change with scale for the inter-arms mosaics, while this ratio does change with scale

for the spiral arms (Fig. 20).

6. ANALYSIS AND DISCUSSION

A summary of the results obtained from the 2D WTMM analysis is presented in Table

2. Before starting the analysis, the reader must be reminded that the regions examined

here were chosen very carefully. It has been known for some time (see Burton (1976))

that the calculation of the column density is affected by regions where the opacity is ≥ 1.

Therefore, areas with strong absorption features were avoided. Since the galactic plane

is sampled, optical thinness is not claimed for every pixel! However, the sampled area

(101◦ ≤ l ≤ 145◦, |b| � 2◦) is especially simple and favorable. The spiral arms are arranged

is such a way that lines of constant spiral phase are approximatively lines of constant radial

velocity as well. Hence the column density maps combine both velocity field fluctuations
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and density fluctuations as sources of TB variations (Rohlfs 1974).

Albeit these attenuating circumstances, one cannot rule out that our results are affected

by the presence of some degree of optical thickness in any given pixel. Lazarian & Pogosyan

(2004) have argued that measuring a power law slope of −β = −3, as found here, could be

the indication that absorption is affecting power spectrum calculations. The best way to

test if the results presented here are affected would be to calculate the power spectra on an

increasing sum of velocity channels starting with one, then the sum of two, etc. for each

subregion. Such calculations were done in Stanimirovic & Lazarian (2001) where the power

law slope was shown to change as the velocity slice thickness increased. However, given

that the DRAO observations have a noise level three times higher than the Stanimirovic &

Lazarian (2001) data, the statistical analysis of small portions of the mosaics may not enable

the detection of significant changes in β and H as a function of velocity thickness. Green

(1993) calculated the slopes of the power spectra of galactic plane data obtained with the

DRAO telescope. He studied the variation of the slopes for adjacent sums of three velocity

channels (the minimum number of channels to render noise manageable). Green indeed found

differing slopes for the power spectra but most were identical within the, sometimes large,

uncertainties. Green’s work is indicative that our current data may not provide conclusive

evidence on the effect of absorption. Nevertheless, Green’s results and the referee’s proding

encouraged us to make the calculations. The results are shown in Tables 3 and 4 where β

was calculated for an ever increasing number of channels (1 to 26, 0.82 to 21.4 km s−1) for

11 portions of the Local spiral arm (i.e., the subregions outlined in Figure 1). The power law

slopes were calculated for the same scale range of 2.8 to 22.3 parsecs (i.e. 1 � log2(k) � 4)

for proper comparison. The smaller scales were strongly affected by the noise for small sums

of channels. Table 3 contains the slopes calculated from the mean power law of the 11

regions of the Local arm mosaic and the mean slope from the 11 individual power laws with

the accompanying standard deviation. The results for every region are not shown since the

variation of β from region to region remains within the uncertainties. Figure 29 illustrates the

slopes behavior with increasing number of channels. The power law slope remains constant

within the uncertainties, contrary to what was found by Stanimirovic & Lazarian (2001)

where the slope increased with velocity slice thickness. One must be aware that the latter

observations delt with the Small Magellanic Cloud and a scale range of 30 to 4000 parsecs.

To better test the predictions of Lazarian & Pogosyan (2004), trends were looked for to

smaller scales (1.4 pc, i.e. 1 � log2(k) � 5) using only sums of 11 channels or more, where

the noise level was low enough. Again the slopes remain constant within the uncertainties as

shown in the upper part (
) of Figure 29 (see also Table 4). These results are at odds with

similar calculations done from observations of the SMC (Stanimirovic & Lazarian 2001),

LMC (Elmegreen, Kim & Stavely-Smith 2001) and M81 (Elmegreen, Elmegreen & Leitner
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2003). The difference may come from the domination of the power measured at very large

scales (hundreds of parsecs). Elmegreen, Kim & Stavely-Smith (2001) even suggested that

such behavior was related to the finite thickness of a galaxy’s disk. However, Dickey et al.

(2001) used data from the Southern Galactic Plane Survey to calculate the power spectra

for two regions of the fourth galactic quadrant very similar in extent and scales to each of

our 11 regions (≈ 1.4◦). Their region 2 is on the galactic plane and shows a power spectra

slope behavior with velocity thickness almost identical to our 11 regions. This similarity

is very interesting considering that the velocity gradient along the line of sight caused by

the differential Galactic rotation is different. One may therefore be limited in the ability to

identify varying physical conditions in the Galactic plane using only power spectra slopes.

Either the predictions of Lazarian & Pogosyan (2004) cannot be confirmed with the data

presented in this paper or HI self-absorption dominates at so many scales that the search

for velocity-density correlations in the framework of turbulence study cannot be done in the

Galactic plane.

The following general analysis is presented in two parts. A recap of the results pre-

sented in §5 together with the differences and similarities between the results obtained from

the spiral and inter-arm mosaics are presented in §6.1, and the astrophysical discussion is

presented in §6.2.

6.1. Spiral vs Inter Arms

The global Hurst exponents found from the slope of the linear τ(q) spectra computed

with the 2D WTMM method for the inter-arm mosaics (H = 0.44±0.03 and H = 0.45±0.03)

are strictly less (within uncertainty) than those of the Local, Perseus, and Outer spiral arms

(H = 0.52 ± 0.03, H = 0.53 ± 0.03, and H = 0.51 ± 0.03) for the physical scales shown

in Table 2. Therefore, the H i from the spiral arms looks smoother than the H i from the

inter-arm regions. Note that the Fourier analysis alone cannot give such precise quantitative

information. Indeed, the power spectra analysis gives essentially the same slope whether

considering the arms (§5.2.1) or inter-arms (§5.3.1), i.e. −β ∼ −3.0 (corresponding to

H ∼ 0.5). However, within each arm or inter-arm, the slopes vary significantly from one

region to the next (Table 5). The standard deviations of the mean slopes for all regions are

larger than the uncertainties. Again, the Perseus arm has the larger variations. No trends

were found between individual slopes and longitude. The overall slope of −β ∼ −3.0 confirms

the results of Crovisier & Dickey (1983) and Dickey et al. (2001) but for a much larger

section of the Milky Way. These authors observed one 3.2 and two 1.5 square degree areas

of the inner Galaxy respectively. Green (1993) analyzed a section of the second quadrant
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(l = 140◦, b = 0◦) located in our survey, using a different technique. Green worked directly

with the uv-plane visibilities. His power-law indices are smaller: −β = −2.4,−2.4,−2.8 for

the Local, Perseus, and Outer spiral arms and −2.5,−3.0 for the inter-arms, and with larger

uncertainties (±0.1 to ±0.3). Hence Green (1993) found a steepening of the slope for the

further H i (Inter II and the Outer arm). The results presented here do not follow a similar

trend, either in our complete sample or for the regions corresponding to Green’s fields. This

could be explained by the higher sensitivity of the CGPS data and the different scales that

were used to derive the slopes (we were very careful not to include the noise affected small

scales, see the first paragraph of §5 and Miville-Deschênes et al. (2003)).

Two types of anisotropic structures are detected. For all mosaics (spiral arms and inter-

arms), the contribution from the y component of the wavelet transform (Tψ2) is so great that

it dominates the value of the modulus M. This greater variability of Tψ2 , compared to the

variability of Tψ1 , is a first indication of the presence of a structural anisotropy. The study

of the directional Hurst exponents for the inter-arms mosaics, Hx ∼ Hy ∼ 0.43, implies

that these mosaics are rough surfaces with anisotropic properties that do not depend on the

scales. In contrast, the spiral arms display anisotropic scaling since the directional Hurst

exponents are strictly unequal (Hx ∼ 0.40 and Hy ∼ 0.50). Indeed, unlike the study of the

synthetic anisotropic surfaces in §4.2 which showed that M ∼ amin(Hx,Hy), the results for the

spiral arms show that M ∼ amax(Hx,Hy) as the consequence of the greater variability of Tψ2 as

compared to Tψ1 . (On the range of accessible scales, the scaling behavior of M is governed

by the power law behavior of Tψ2 ∼ aHy .) The physical phenomena possibly responsible for

the greater fluctuations variability in the vertical (y) direction are discussed in §6.2.1.

There is a possibility, albeit small, that the inter-arm regions exhibit multifractal scaling

(Figure 27). Some comparisons could be made with the microcalcification aggregates found

in dense human breast tissues (Kestener et al. 2001; Kestener 2003). In effect, these latter

exhibit a slight departure from monofractality. The 2D WTMM method was used to show

that these surfaces consisted of fractal aggregates superposed on a dense background. Such

a geometry could be present in the two inter-arm regions. A further study on H i aggregates,

possibly corresponding to new star-forming regions, from the two inter-arm regions is required

and shall be pursued in the near future.
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6.2. Astrophysical Discussion

6.2.1. Scale-Height Relation

One is tempted to look for a correlation between the results presented here and the scale-

height gradient of the Galaxy. In fact, a logical approach would consist in the construction

and analysis of synthetic surfaces where such a gradient would be present. For example, the

H i vertical distribution from Lockman (1984) could be combined to a monofractal isotropic

surface (§4.1). However, the function given in Lockman (1984) consists in the sum of two

gaussians and an exponential. Therefore, the “Lockman” function is infinitely differentiable

and its roughness (or rather, its smoothness) is thus represented by a Hurst exponent of

H = ∞. The combination of such a function to a 2D fBm surface (where H is usually

∈ [0, 1]) will not affect calculations of the WTMMM, provided one uses an analyzing wavelet

with a sufficiently large number of zero moments, and therefore, will not cause an anisotropic

signature.

This does not necessarily mean that the anisotropic signature is not caused by the

scale-height (vertical) gradient of the galactic H i. It could very well be. However, it would

mean that its distribution could not be given by such a smooth function as the “Lockman”

function, but rather by a much more singular mathematical function characterized by a

Hurst exponent, H , in the interval [0, 1] instead of H = ∞.

Furthermore, the scale-height gradient could be responsible for the greater variability of

the y (vertical) component of the wavelet transform, which causes the widening of the pdfs

of Tψ2 for all mosaics, and as seen in §5.2.4 and 5.3.4, causes the modulus of the wavelet

transform (M) to scale (on the range of accessible scales) like ∼ amax(Hx,Hy) instead of the

theoretically expected ∼ amin(Hx,Hy). However, this effect should therefore be expected to

increase with distance, which is not the case here.

6.2.2. Anisotropy

This study is an attempt at objectively quantifying the global structure of the H i

distribution in our Milky Way. Lengths and widths of spiral features, varying from 1 kpc

and 35 pc (Local arm) to 7 kpc and 220 pc (Outer arm) were analyzed. However, the Local

arm is close enough that the sampled scales may be too small to properly study latitudinal

behavior. This may be offset by the finding of Porcel et al. (1998) that the Local arm is

more than 70 pc over the plane, probably explaining the similarity of the results shown in

Table 2. The following relates the findings on the anisotropy to the gravitational theory of
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spiral structure proposed by Lin & Shu (1964, 1966).

It can be demonstrated that interstellar clouds respond strongly to the imposed spiral

potential from a density wave (Roberts 1972). An eloquent illustration of this effect can

be found in Figure 7b from Toomre (1977), where harmonic oscillations are exposed to a

traveling sinusoidal force. The gas particles are neatly piled up at positions imposed by the

frequency of the traveling wave. A galaxian density wave can thus be seen as an ordering

mechanism since the spiral arms are the locus of lower shear and lower tidal forces from the

background galaxy as compared to the inter-arms (Elmegreen 1992). This description falls

in line with this paper’s results, where the spiral arms appear to be globally the smoother

galactic features (for the accessible range of scales). In the inter-arms, clouds can be broken

apart by the larger shear and tidal forces, giving rise to a more irregular latitudinal gas

distribution. However, as mentioned in §6.1, the spiral arms display anisotropic scaling. The

arms are smoother along b than along l. In fact, the directional Hurst exponent Hx (along

l) is ∼ 0.4 whether one considers the arms or the inter-arms. Moreover, the reader should

keep in mind that the analysis of the smallest scales (a → 0+), which were unavailable here

because of the relatively high noise level, would yield similar global Hurst exponents for the

arms and inter-arms, i.e. H = min(Hx, Hy) ∼ 0.4 instead of H = max(Hx, Hy).

The roughness of the spiral arms along l may be explained simply by massive star

formation activity and its consequence, supernovae. Indeed, the roughness exponent, H

of the Perseus arm is smaller for values of l between 104◦ ≤ l ≤ 109◦, where five sites of

active star formation are present (S139, S142, S146, S152, and S153) and the supernova

CTB 109. Similarly for the Local arm, where the H ii regions S185 and S187 and the

supernovae G126.2+1.6 and G127.1+0.5 are coeval10 within 123◦ ≤ l ≤ 129◦. Along l, lines

of constant spiral phase are sampled. Therefore, the irregularities in the column density

maps are caused either by the “radial” velocity field of galactic rotation or disturbances like

supernovae. However, since the galactic rotation velocity field is very smooth, the latter

hypothesis is retained as exemplified above.

The relative smoothness of the arms along b is not easily explained unless the density

wave does its ordering role at least up to the scale height of the H i gas (≈ 200 pc) and

that the kinematic and density disturbances originating in star formation and supernovae

are limited to a very thin portion of the disk. The H i layer being so thin, all the gas

may follow an identical mean velocity streaming pattern (spiral arms). Lockman (1984) has

shown that the mean velocity of the ISM above the plane lies near the circular speed at the

10The catalogs of Blitz, Fich & Stark (1982) and D.A. Green’s online catalogue
(http://www.mrao.cam.ac.uk/surveys/snrs/) were consulted.
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corresponding point in the plane for the inner galaxy. Only a process related to spiral arms

can be invoked to explain the higher Hy value.

In addition to the global processes discussed above, there is a number of phenomena

that can act on the vertical extent of the gas.

As mentioned in Dickey & Lockman (1990), the kinetic temperature of H i is too low

to support it to its observed height against the galactic potential. It could be held up by

the photo-levitation of small dusty clouds (N < 5 × 1020 cm−2) (Franco et al. 1991; Ferrara

1993). The radiation pressure is provided by the interstellar radiation field and would be

stronger near star clusters. Hence, it is argued that this phenomena is most likely to occur in

the inner galaxy. However, the decreasing galactic potential in the outer galaxy may partly

offset this segregation.

Lockman & Gehman (1991) proposed that the random motion of H i clouds, similar

to a turbulent pressure, would have enough kinetic energy to rise the H i above the plane.

However, this result is not very sensitive to the exact form of the galactic gravitational

potential. Again, the high diffusivity associated with this turbulent process cannot be used

to explain the arm / inter-arm Hy difference.

A corrugation effect has been observed in the distribution of H i gas in the spiral arms

(Quiroga 1974, 1977; Spicker & Feitzinger 1986). This effect is associated only with the arms

and is observed along their length. Every young object is affected (OB stars, H ii regions,

H i) but not molecular clouds. Arms are displaced alternatively at both sides of the galactic

plane. The data is somewhat scarce, but Spicker & Feitzinger (1986) estimate wave patterns

at scales 1 kpc < λ < 2 kpc, 4 kpc < λ < 8 kpc, and λ > 13 kpc. None were found for

λ < 1 kpc. The amplitudes range between 145 and 350 pc, they increase with the thickness

of the H i distribution. The physical process at the origin of this phenomenon is unknown.

Gravitational instabilities of a galactic or extra-galactic nature, the excitation of the galactic

warp, magnetic fields have been brought forward but, to our knowledge, no model has been

presented. The scale of our observations (1 to 7 kpc in length) is similar to that of the

corrugations. It may be the “smoothing factor” we are looking for if spiral arm kinematics

have a minor influence on vertical motion.

Martos & Cox (1998) modeled the interarm-to-arm transition in the Galactic disk. They

took a magnetohydrodynamical point of view since gas flows through the spiral perturbation.

Under such a view hydraulic bores (jumps in height) ensue as long-lived phenomena since

magnetic fields facilitate vertical perturbations. Their calculations predict that the arms will

be thicker than the inflowing interarm gas with associated vertical and circulating motions.

Their Fig. 15 is a very good illustration of the predicted phenomena. The midplane density
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is not uniform showing ridges that may be caused by gravity waves. The difference in large

scale anisotropy we measured may be the detection of this phenomena.

Finally, turbulence may have a role to play in the measured anisotropy. Numerous obser-

vational and theoretical studies propose the ubiquity of turbulence in the ISM. Its signature

has been found in all phases of the ISM (Franco & Carramiñana 1999; Falgarone & Passot

2003) using a large set of different statistical tools (for example see Lazarian & Pogosyan

(2004) and references therein). A few groups are takling the numerical simulation of turbu-

lence in a compressible, magnetized ISM (Mac Low (2003), Vázquez-Semadeni (2003), see

also the reviews by Elmegreen & Scalo (2004) and Scalo & Elmegreen (2004) for a more com-

plete list of the relevant litterature). The Mexican group (e.g. Passot, Vázquez-Semadeni

& Pouquet (1995) and Avila-Reese & Vázquez-Semadeni (2001)) is doing calculations closer

to the theme of this paper, i.e., examining if large scale (1 kpc) turbulence (if present) plays

a role in the current structure and evolution of the Galaxy. The answer is not definitive yet

but results are encouraging and seem to support such a role. In a different work, Wada,

Meurer & Norman (2002) have shown through 2D numerical calculations that gravity-driven

turbulence in differentially rotating galactic disks reaches a quasi-steady state in a few ro-

tational periods with the energy (E(k)) cascade starting at � 200 pc. No energy feedback

is needed (i.e. supernovae). Hence different studies come up with similar results. However

many theoreticians favor shock dominated turbulence instead of a Kolmogorov-like energy

cascade. For 2D Kolmogorov turbulence, the cascade follows a slope of −5/3; the slope is −2

for shock dominated turbulence. Hence adding supernovae to the Wada, Meurer & Norman

(2002) calculations may change the slope and thus the scales at which the phenomena inter-

acts with the gas. Interestingly, work by De Avillez & Mac Low (2002) on chemical mixing in

a supernova-driven ISM has shown that turbulent mixing dominates at the same large scales

as predicted by Wada, Meurer & Norman (2002), i.e., ∼ 100 pc. If we accept that turbulence

has an impact at large galactic scales (see also Scalo & Elmegreen (2004)) it is not clear yet

how it would imprint anisotropy on the ISM. In recent papers (Esquivel et al. 2003; Cho &

Lazarian 2003, 2005) have shown that the presence of a magnetic field in a turbulent medium

would make the turbulent cascade anisotropic. This suggestion on the role of turbulence is

an hypothesis that has to be verified since anisotropy has been measured on small scales but

not large ones. For example, Roux, Arneodo & Decoster (2000) applied the WTMM method

to terrestrial clouds and found exactly such a behavior. Terrestrial clouds have Reynolds

numbers close to what we find in the ISM however they are multifractal; large convective

roles dominate the large scale dynamic. The best way to test our hypothesis would be to

apply the WTMM method to MHD turbulence simulations of the ISM.

Unfortunately, the noise level of the DRAO data is too strong to allow a thorough

investigation of the smallest scales (a → 0+) of the mosaics, where the number of statistics
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(i.e. the number of WTMMM, which behave as ∼ a−2) are plentiful enough to allow a study

of individual sub-regions instead of the averaging methods presented here. With more,

cleaner data, one could easily investigate the angle of anisotropy (from the position of the

peaks in the pdfs Pa(A)) as a function of the galactic longitude (from sub-region to sub-

region). Such an analysis could confirm the presence or absence of the corrugation of the

H i in the galactic plane.

7. CONCLUSION

7.1. The Galactic H i

The 2D WTMM method was used to analyze five H i column densities mosaics, corre-

sponding to the Local, Perseus, and Outer spirals and the two inter-arm regions in between.

The formalism was first tested on synthetic surfaces. It was shown that the 2D WTMM

method could quantitatively characterize isotropic monofractal and multifractal surfaces,

as well as anisotropic monofractal surfaces with great accuracy. The characterization of

anisotropic structures, by way of the directional Hurst exponents 0 ≤ Hx, Hy ≤ 1 is novel.

The results presented in this paper show that the roughness of the H i mosaics, as

characterized by the global Hurst exponent, H , looks stronger in the inter-arm regions than

in the spiral arms. However, having access to the smallest scales would yield similar global

Hurst exponents for both arms and inter-arms. The main difference between arms and

inter-arms is the discovery of two types of anisotropic structures. For the spiral arms, the

anisotropic signature is scale-dependent while it is scale-independent for the inter-arms.

Indeed, the spiral arms have different directional Hurst exponents (Hx ∼ 0.4 and Hy ∼ 0.5)

while the inter-arms have similar directional Hurst exponents (Hx ∼ Hy ∼ 0.43). The

anisotropic signature found in the inter-arms is caused only by the vertical distribution of

the H i, which is much more variable than the horizontal distribution.

Several hypotheses were investigated to provide a physical explanation: the scale-height

gradient, the density wave, star formation activity, photo-levitation of dusty clouds, random

motion of H i clouds, corrugation, and turbulence.

7.2. Future Work

The synthetic surfaces presented in §4 were only used to test and calibrate the 2D

WTMM methodology. They are not presented as potential models of spiral or inter-arms.
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However, a future study will be dedicated to the construction of algorithms capable of

modelling the mosaics presented here. By imposing a greater variability (for the fluctuations)

in the vertical (y) direction than in the horizontal (x) direction, one should be able to obtain

M ∼ amax(Hx,Hy) on the same range of scales that were available here, while the analysis of

the smallest scales (a → 0+) would yield M ∼ amin(Hx,Hy). Such an analysis will provide

two very interesting models (spiral and inter arms) of column density mosaics. Furthermore,

the study of these models could help understand the physical processes responsible for the

quantitative fractal and anisotropic properties discussed in this paper.

The “Lockman” scale-height function should be investigated to find out whether or not

it can be mathematically changed to a more singular (fractal) version, where H ∈ [0, 1],

instead of the actual, infinitely smooth version (H = ∞). Such a new function could, at

least partly, explain the anisotropic signature found in the H i mosaics.

An exploration of the recently observed “Cepheus flare” extension of the CGPS will

yield very interesting complementary results for high-latitude H i structures (5◦ � b � 17◦).
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Table 1. Five H i Mosaics

Mosaic Distance Galactic Longitude Velocity Range

(pc) (◦) (km/s)

Local ∼ 1000 [98, 146] [0.19, -20.43]

Inter I ∼ 2500 [98, 146] [-20.43, -34.44]

Perseus ∼ 3500 [98, 146] [-34.44, -50.11]

Inter II ∼ 4700 [98, 115] [-77.31, -88.03]

[115, 119] [-74.02, -83.08]

[119, 123] [-71.54, -81.44]

[123, 127] [-69.07, -78.96]

[127, 130] [-66.60, -76.49]

[130, 146] [-64.12, -74.84]

Outer ∼ 6300 [98, 103] [-88.86, -111.12]

[103, 107] [-88.86, -107.82]

[107, 111] [-88.86, -105.35]

[111, 115] [-88.86, -102.05]

[115, 119] [-83.91, -100.40]

[119, 123] [-82.26, -97.10]

[123, 127] [-79.79, -95.45]

[127, 130] [-77.31, -92.15]

[130, 146] [-74.02, -85.56]
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Table 2. Hurst Exponents for the Five H i Mosaics

Mosaic Distance Physical Scalea Global H (Gau) (Hx, Hy) (Gau) (Hx, Hy) (Mex)

(pc) (pc) (±0.03) (±0.03) (±0.03)

Local ∼ 1000 ∼ 2 - 4 0.52 (0.42, 0.52) (0.41, 0.52)

Inter I ∼ 2500 ∼ 6 - 16 0.44 (0.45, 0.44) (0.41, 0.43)

Perseus ∼ 3500 ∼ 8 - 24 0.53 (0.42, 0.52) (0.40, 0.50)

Inter II ∼ 4700 ∼ 11 - 43 0.45 (0.42, 0.45) (0.42, 0.45)

Outer ∼ 6300 ∼ 14 - 44 0.51 (0.43, 0.52) (0.41, 0.48)

a. Range of physical scales used to estimate the scaling exponents with the 2D WTMM

method.
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Table 3. Power Spectral Indices as a Function of the Number of Velocity Channels for the

Local Arm H i Mosaic over the range 1 � log2(k) � 4

# of Channels Avg β from ind. slopes σ β from avg slopes

1 2.98 0.22 2.98 ± 0.08

2 3.02 0.20 3.02 ± 0.08

3 3.02 0.17 3.02 ± 0.08

4 3.01 0.14 3.01 ± 0.08

5 3.00 0.12 3.00 ± 0.09

6 2.98 0.12 2.98 ± 0.09

7 2.97 0.12 2.97 ± 0.10

8 2.97 0.13 2.97 ± 0.10

9 2.97 0.13 2.97 ± 0.09

10 2.97 0.13 2.97 ± 0.09

11 2.97 0.13 2.97 ± 0.09

12 2.97 0.12 2.97 ± 0.09

13 2.97 0.12 2.97 ± 0.09

14 2.97 0.11 2.97 ± 0.09

15 2.98 0.10 2.98 ± 0.09

16 2.98 0.11 2.98 ± 0.10

17 2.99 0.11 2.99 ± 0.10

18 2.99 0.10 2.99 ± 0.10

19 3.00 0.08 2.99 ± 0.10

20 2.99 0.06 2.99 ± 0.10

21 2.99 0.06 2.99 ± 0.10

22 2.98 0.06 2.98 ± 0.10

23 3.00 0.07 3.00 ± 0.10

24 2.98 0.07 2.98 ± 0.10

25 2.98 0.07 2.98 ± 0.10

26 2.98 0.07 2.98 ± 0.10
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Table 4. Power Spectral Indices as a Function of the Number of Velocity Channels for the

Local Arm H i Mosaic over the range 1 � log2(k) � 5

# of Channels Avg β from ind. slopes σ β from avg slopes

11 2.93 0.15 2.93 ± 0.05

12 2.91 0.15 2.91 ± 0.05

13 2.91 0.14 2.91 ± 0.05

14 2.92 0.12 2.92 ± 0.05

15 2.93 0.11 2.93 ± 0.05

16 2.94 0.10 2.94 ± 0.05

17 2.95 0.09 2.95 ± 0.05

18 2.96 0.09 2.96 ± 0.05

19 2.96 0.08 2.96 ± 0.05

20 2.95 0.07 2.95 ± 0.05

21 2.96 0.07 2.96 ± 0.05

22 2.96 0.07 2.96 ± 0.05

23 2.95 0.08 2.95 ± 0.05

24 2.95 0.08 2.95 ± 0.05

25 2.95 0.08 2.95 ± 0.05

26 2.95 0.07 2.95 ± 0.05
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Table 5. Power Spectral Indices for the Five H i Mosaics

Mosaic Avg β from ind. slopes σ Smallest β Largest β β from avg slopes

Local 2.95 0.07 2.80 ± 0.06 3.10 ± 0.08 2.95 ± 0.05

Inter I 2.93 0.08 2.78 ± 0.04 3.08 ± 0.06 2.93 ± 0.05

Perseus 2.97 0.10 2.81 ± 0.04 3.19 ± 0.05 2.97 ± 0.04

Inter II 2.94 0.09 2.80 ± 0.06 3.09 ± 0.06 2.94 ± 0.05

Outer 2.94 0.06 2.89 ± 0.08 3.08 ± 0.07 2.94 ± 0.05

The values for the β indices were taken from the fitted slopes of the power spectra, over the

range 1 � log2(k) � 5.
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Fig. 1.— From top to bottom, the mosaics Local, Inter I, Perseus, Inter II, and Outer.

The range of intensities (from white to black), which vary from one mosaic to another, are

[22, 85], [2, 87], [2, 103], [0, 50], and [0, 41] K km s−1 respectively. White rectangles represent

the sub-areas analyzed (see text for a discussion on the choice of these sub-areas).



– 58 –

Fig. 2.— The first-order analyzing wavelets (a) ψ1 and (b) ψ2 defined in §3.1, obtained from

a Gaussian smoothing function φGau (Eq. (1)). Third-order analyzing wavelets (c) ψ1 and

(d) ψ2 defined in §3.1, obtained from the Mexican hat smoothing function φMex (Eq. (4)).

Figure taken from Arneodo, Decoster & Roux (2000).
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Fig. 3.— FBm surfaces BH(x) generated with the Fourier transform filtering synthesis

method. H = 0.2 (left); H = 0.5 (center); H = 0.8 (right).
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Fig. 4.— Fourier analysis of the 512 × 512 central parts of 32 (1024 × 1024) monofractal

and multifractal rough surfaces. (a) Some contour plots of ln |B̂0.2(k)|. (b) The power

spectrum S(|k|) vs |k| in a logarithmic representation for the fBm surfaces BH=0.2(x) (�)
and the multifractal surfaces (◦) respectively. The solid lines correspond to the power-law

theoretical predictions. In (b), the curve corresponding to the multifractal surfaces (◦) was

shifted vertically.
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Fig. 5.— 2D wavelet transform analysis of BH=0.2(x). ψ is a first-order radially symmetric

analyzing function (see Fig. 2). (a) 32 grey-scale coding of the original image. In (b)

a = 22.9σW , (c) a = 21.9σW and (d) a = 23.9σW (where σW = 13 pixels), are shown the

maxima chains; the local maxima of Mψ along these chains are indicated by (•) from which

originate an arrow whose length is proportional to Mψ and its direction (with respect to the

x-axis) is given by Aψ. In (b), the smoothed image φb,a ∗ BH=0.2 (Eq. (3)) is shown as a

grey-scale coded background from white (min) to black (max).



– 62 –

Fig. 6.— Determination of the τ(q) and D(h) spectra of 2D fBm BH(x) (�,
, �) and

multifractal (◦, •) rough surfaces with the 2D WTMM method. (a) log2 Z(q, a) vs log2 a;

(b) h(q, a) vs log2 a. The solid lines in (a) and (b) correspond to the theoretical predictions.

(c) τ(q) vs q for BH(x) with H = 0.2 (�), 0.5 (
) and 0.8 (�); the solid lines correspond

to linear regression fit estimates of H . (d) D(h) vs h for BH(x) as obtained from the

scaling behavior of h(q, a) and D(q, a) vs log2 a (Eqs. (20) and (21)); the symbols have the

same meaning as in (c). (e) τ(q) vs q for the multifractal surfaces. (f) D(h) vs h for the

multifractal surfaces. The solid lines in (e) and (f) correspond to the theoretical spectrum

and its Legendre transform respectively. The analyzing wavelet is the first-order (�,
, �, ◦)
and third-order (•) radially symmetric analyzing wavelets defined in Figure 2. These results

correspond to an averaging over 32 (1024 × 1024) images. a is expressed in σW units, with

σW = 13 pixels. In (a) and (b), all curves were shifted vertically.
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Fig. 7.— Pdfs of the WTMMM coefficients as computed at different scales a = 1 (full line),

2 (�), 4 (
), 8 (�) (in σW = 13 units) with the first-order analyzing wavelet shown in Figure

2. FBm rough surfaces BH=0.2(x): (a) Pa(M) vs M; (b) Pa(A) vs A. FBs anisotropic

surfaces BHx=0.10,Hy=0.50(x): (c) Pa(M) vs M; (d) Pa(A) vs A. These results correspond to

averaging over 32 (1024 × 1024) images.



– 64 –

Fig. 8.— Pdfs of the WTMMM coefficients of BH=0.2(x) as computed at different scales

a = 1, 2, 4, 8 (in σW = 13 units). a−qHMqPa(M) vs M/aH for q = −3 (a), q = −1 (b),

q = 2 (c), and q = 4 (d). Same 2D WTMM computations for BH=0.2(x) as in Figure 7.
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Fig. 9.— Fourier analysis of the 512 × 512 central parts of 32 (1024 × 1024) synthetic

anisotropic fBs surfaces BHx=0.10,Hy=0.50(x). (a) Contour plots of ln |B̂Hx=0.10,Hy=0.50(k)|.
(b) The power spectrum S(|k|) vs |k| in a logarithmic representation. (c) The averaged

power spectrum of the one-dimensional x-cuts. (d) The averaged power spectrum of the

one-dimensional y-cuts. The solid lines in (b), (c), and (d) correspond to the power-law

theoretical predictions β = 2 min(Hx, Hy) + 2, βx = 2Hx + 1, βy = 2Hy + 1 respectively.
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Fig. 10.— 2D wavelet transform analysis of BHx=0.10,Hy=0.50(x). ψ is the first-order radially

symmetric analyzing function shown in Figures 2a and 2b. (a) 32 grey-scale coding of the

original image. In (b) a = 22.9σW , (c) a = 21.9σW and (d) a = 23.9σW (σW = 13 pixels), are

shown the maxima chains; the local maxima of Mψ along these chains are indicated by (•)
from which originate an arrow whose length is proportional to Mψ and its direction (with

respect to the x-axis) is given by Aψ. In (b), the smoothed image φb,a ∗ BHx=0.10,Hy=0.50 is

shown as a grey-scale coded background from white (min) to black (max).
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Fig. 11.— Determination of the τ(q) and D(h) spectra of the fBs BHx=0.10,Hy=0.50(x) with the

2D WTMM method. (a) log2 Z(q, a) vs log2 a; the solid lines correspond to the theoretical

predictions τ(q) = qH − 2 (Eq. (30)) with H = min(Hx, Hy) = 0.10. (b) h(q, a) vs log2 a;

the solid lines correspond to the theoretical slope H = min(Hx, Hy) = 0.10. (c) τ(q) vs q;

the solid line corresponds to a linear regression fit estimate of H . (d) D(h) vs h as obtained

from the scaling behavior of h(q, a) and D(q, a) vs log2 a (Eqs. (20) and (21)). These results

correspond to an averaging over 32 (1024 × 1024) synthetic rough surfaces. The analyzing

wavelet is the radially isotropic first-order analyzing wavelet (Figs. 2a and 2b); a is expressed

in σW = 13 units.
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Fig. 12.— Pdfs of the x and y components of the WTMMM coefficients of BHx=0.10,Hy=0.50(x)

as computed with the first-order wavelet at the scales a = 1, 2, 4, and 8 (in σW = 13 units).

(a) ln (Pa(Tψ1)) vs Tψ1 ; (b) ln (Pa(Tψ2)) vs Tψ2 . In (c) and (d), Tψ1 and Tψ2 are rescaled by

aHx and aHy with Hx = 0.11 and Hy = 0.49 respectively.
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Fig. 13.— Pdfs of the x and y components of the WTMMM coefficients of BHx=0.41,Hy=0.44(x)

as computed with the first-order wavelet at the scales a = 1, 2, 4, and 8 (in σW = 13 units).

(a) ln (Pa(Tψ1)) vs Tψ1 ; (b) ln (Pa(Tψ2)) vs Tψ2 . In (c) and (d), Tψ1 and Tψ2 are rescaled by

aHx and aHy with Hx = 0.41 and Hy = 0.44 respectively.
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Fig. 14.— Rescaled pdfs of the x components of the WTMMM coefficients of

BHx=0.41,Hy=0.44(x) as computed with the first-order wavelet at the scales a = 1, 2, 4, and

8 (in σW = 13 units). Figure 13c is reported in (a). (b) is a zoom-in corresponding to the

dashed rectangle in (a). In (c)-(f), Tψ1 is rescaled with neighboring values of Hx, namely

Hx − 2σ, Hx − σ, Hx + σ, and Hx + 2σ, with σ = 0.01.
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Fig. 15.— 512 × 512 sample noise images. DRAO noise (left); Synthetic noise (right).
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Fig. 16.— Fourier analysis of the 512 × 512 central part of the DRAO (�) and synthetic

(•) noise surfaces. (a) A contour plot of the Fourier transform of a synthetic noise surface.

(b) The power spectra S(|k|) vs |k| in a logarithmic representation. (c) The averaged power

spectra of the one-dimensional x-cuts. (d) The averaged power spectra of the one-dimensional

y-cuts. The solid lines correspond to the power-law theoretical predictions for the synthetic

noise. These results correspond to an averaging over 16 surfaces (instead of the usual 32).
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Fig. 17.— Determination of the τ(q) and D(h) spectra of the DRAO (�) and synthetic (•)
noise mosaics with the 2D WTMM method. (a) log2 Z(q, a) vs log2 a. (b) h(q, a) vs log2 a.

τ(q) vs q for the DRAO (c) and synthetic (d) noise surfaces; the solid lines corresponds to

a linear regression fit estimate of H . D(h) vs h as obtained from the scaling behavior of

D(q, a) vs log2 a (Eq. (21)) for the DRAO (e) and synthetic (f) noise surfaces. First-order

analyzing wavelets. These results correspond to an averaging over 16 (1024×1024) surfaces.

a is expressed in σW units, where σW = 13 pixels.
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Fig. 18.— Pdfs of the WTMMM coefficients of the DRAO noise surfaces as computed at

different scales a = 1 (full line), 2 (�), 4 (
), 8 (�) (in σW = 13 units). (a) Pa(M) vs M.

(b) Pa(A) vs A; ψ is the first-order analyzing wavelet. (c) Pa(M) vs M. (d) Pa(A) vs A;

ψ is the third-order analyzing wavelet. These results correspond to an averaging over 16

(1024 × 1024) surfaces.
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Fig. 19.— Fourier analysis of the Local (�), Perseus (
), and Outer (�) arm subregions.

(a) Contour plots of the 2D Fourier transform of the Local subregions similar to Figure 4a,

where a black circle was added to help the reader see the slight ellipticity of the contours. (b)

The power spectrum S(|k|) vs |k| in a logarithmic representation; the solid lines correspond

to power-law fits with exponents β = 2.95 (�), 2.97 (
), and 2.94 (�). (c) The averaged

power spectra of the one-dimensional x-cuts; the solid lines correspond to power-law fits

with exponents βx = 1.82 (�), 1.91 (
), and 1.76 (�). (d) The averaged power spectra

of the one-dimensional y-cuts; the solid lines correspond to power-law fits with exponents

βy = 1.97 (�), 2.03 (
), and 1.94 (�). The dashed curves in (b), (c), and (d) represent the

corresponding results obtained from the unfiltered data (Local arm). In (b), (c), and (d),

the curves corresponding to the Perseus (
) and Outer (�) mosaics were shifted vertically.
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Fig. 20.— 2D wavelet transform analysis of one Local arm subregion. ψ is the first-order

radially symmetric analyzing function shown in Figures 2a and 2b. (a) 32 grey-scale coding

of the original image. In (b) a = 22.9σW , (c) a = 21.9σW and (d) a = 23.9σW (σW = 13 pixels),

are shown the maxima chains; the local maxima of Mψ along these chains are indicated by

(•) from which originate an arrow whose length is proportional to Mψ and its direction (with

respect to the x-axis) is given by Aψ. In (b), the smoothed image is shown as a grey-scale

coded background from white (min) to black (max).
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Fig. 21.— Determination of the τ(q) and D(h) spectra of the Local (�), Perseus (
), and

Outer (�) arm subregions with the 2D WTMM method. (a) log2 Z(q, a) vs log2 a. (b) h(q, a)

vs log2 a. (c)-(e) τ(q) vs q; the solid lines correspond to the linear spectrum τ(q) = qH − 2,

with H = 0.52 (�), H = 0.53 (
), H = 0.51 (�). (f)-(h) D(h) vs h as obtained from the

scaling behavior of h(q, a) and D(q, a) vs log2 a (Eqs. (20) and (21)); the vertical dashed

lines correspond to the values of H found in (c), (d), and (e) respectively. These results

correspond to an averaging over all subregions outlined in white in Figures 1a, 1c, and 1e

respectively. The analyzing wavelet is the radially symmetric first-order analyzing wavelet

(Figs. 2a and 2b). a is expressed in σW = 13 units. In (a) and (b), all curves were shifted

vertically.
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Fig. 22.— Pdfs of the WTMMM coefficients of the Local arm subregions as computed at

different scales a = 21.0 (full line), 21.5 (�), 22.0 (
), 22.5 (�) (in σW units, where σW = 13

pixels). (a) Pa(M) vs M; (b) Pa(A) vs A, where ψ is the first-order analyzing wavelet (Figs.

2a and 2b). (c) Pa(M) vs M. (d) Pa(A) vs A, where ψ is the third-order analyzing wavelet

(Figs. 2c and 2d). These results correspond to an averaging over all subregions outlined in

white in Figure 1a.
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Fig. 23.— Pdfs of the WTMMM coefficients of the Perseus and Outer arm subregions as

computed at different scales a = 21.0 (full line), 21.5 (�), 22.0 (
), 22.5 (�) (in σW units).

Perseus arm: (a) Pa(M) vs M; (b) Pa(A) vs A. Outer arm: (c) Pa(M) vs M. (d) Pa(A)

vs A, with the third-order analyzing wavelet (Figs. 2c and 2d). These results correspond to

an averaging over all subregions outlined in white in Figures 1c and 1e respectively.
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Fig. 24.— Pdfs of the x and y components of the WTMMM coefficients of the Local arm

subregions as computed at the scales a = 21.0, 21.4, 21.8, 22.2, and 22.6 (in σW units, where

σW = 13 pixels). First-order analyzing wavelet: (a) ln (Pa(Tψ1)) vs Tψ1 ; (b) ln (Pa(Tψ2)) vs

Tψ2 ; in (c) and (d), Tψ1 and Tψ2 are rescaled by aHx and aHy with Hx = 0.42 and Hy = 0.52

respectively. Third-order analyzing wavelet: (e) and (f), Tψ1 and Tψ2 are rescaled by aHx

and aHy with Hx = 0.41 and Hy = 0.52 respectively.
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Fig. 25.— Pdfs of the WTMMM coefficients for the Local arm mosaic as computed at

different scales a = 21.0, 21.5, 22.0, 22.5 (in σW = 13 units). a−qHMqPa(M) vs M/aH for

q = −1 (a), q = 1 (b), q = 2 (c), and q = 3 (d). Same 2D WTMM computations as in Figure

22.
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Fig. 26.— Fourier analysis of the Inter I (�) and Inter II (
) subregions. (a) Contour plots

of the 2D Fourier transform of the Inter I subregions, where a black circle was added to

help the reader see a slight ellipticity of the contour. (b) The power spectrum S(|k|) vs |k|
in a logarithmic representation; the solid lines correspond to power-law fits with exponents

β = 2.93 (�) and 2.94 (
). (c) The averaged power spectrum of the one-dimensional x-cuts;

the solid lines correspond to power-law fits with exponents βx = 1.90 (�) and 1.85 (
). (d)

The averaged power spectrum of the one-dimensional y-cuts; the solid lines correspond to

power-law fits with exponents βy = 1.89 (�) and 1.89 (
). In (b), (c), and (d), the curves

corresponding to the Inter II subregions (
) were shifted vertically.
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Fig. 27.— Determination of the τ(q) and D(h) spectra of the Inter I (�) and Inter II (
) subregions
with the 2D WTMM method. (a) log2 Z(q, a) vs log2 a; (b) h(q, a) vs log2 a. (c, d) τ(q) vs q; the
solid lines correspond to the linear spectrum τ(q) = qH − 2, with H = 0.44 (�) and 0.45 (
). (e,
f) D(h) vs h as obtained from the scaling behavior of h(q, a) and D(q, a) vs log2 a (Eqs. (20) and
(21)); the vertical dashed lines correspond to the values of H found in (c) and (d) respectively.
These results correspond to an averaging over all subregions outlined in white in Figures 1b and
1d. The analyzing wavelet is the radially symmetric first-order analyzing wavelet; a is expressed in
σW = 13 units. In (a) and (b), all curves were shifted vertically.
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Fig. 28.— Pdfs of the WTMMM coefficients of the Inter I subregions as computed at different

scales a = 21.0 (full line), 21.5 (�), 22.0 (
), 22.5 (�) (in σW units, where σW = 13 pixels). (a)

Pa(M) vs M; (b) Pa(A) vs A, where ψ is the first-order analyzing wavelet. (c) Pa(M) vs

M; (d) Pa(A) vs A, where ψ is the third-order analyzing wavelet. These results correspond

to an averaging over all subregions outlined in white in Figure 1b.
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Fig. 29.— Power Spectral Indices as a Function of the Number of Velocity Channels for the

Local Arm H i Mosaic over the range 1 � log2(k) � 5 (�) and 1 � log2(k) � 4 (
), where

the latter values were shifted vertically.


