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ABSTRACT

The increase of computational resources has recently allowed high resolution,

three dimensional calculations of planets embedded in gaseous protoplanetary

disks. They provide estimates of the planet migration timescale that can be com-

pared to analytical predictions. While these predictions can result in extremely

short migration timescales for cores of a few Earth masses, recent numerical

calculations have given an unexpected outcome: the torque acting on planets

with masses between 5 M⊕ and 20 M⊕ is considerably smaller than the analytic,

linear estimate. These findings motivated the present work, which investigates

existence and origin of this discrepancy or “offset”, as we shall call it, by means
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of two and three dimensional numerical calculations. We show that the offset

is indeed physical and arises from the coorbital corotation torque, since (i) it

scales with the disk vortensity gradient, (ii) its asymptotic value depends on the

disk viscosity, (iii) it is associated to an excess of the horseshoe zone width. We

show that the offset corresponds to the onset of non-linearities of the flow around

the planet, which alter the streamline topology as the planet mass increases:

at low mass the flow non-linearities are confined to the planet’s Bondi sphere

whereas at larger mass the streamlines display a classical picture reminiscent of

the restricted three body problem, with a prograde circumplanetary disk inside a

“Roche lobe”. This behavior is of particular importance for the sub-critical solid

cores (M . 15 M⊕) in thin (H/r . 0.06) protoplanetary disks. Their migration

could be significantly slowed down, or reversed, in disks with shallow surface

density profiles.

Subject headings: Planetary systems: formation — planetary systems: proto-

planetary disks — Accretion, accretion disks — Methods: numerical — Hydro-

dynamics

1. Introduction

Ever since it was realized that the torque exerted by a protoplanetary disk onto an

orbiting protoplanet could vary its semi-major axis on a time scale much shorter than the

disk lifetime (Goldreich & Tremaine 1979), many efforts have been made to determine the

direction and rate of this semi-major axis change, referred to as planetary migration. During

two decades, this problem was essentially tackled through linear analytical estimates of the

disk torque onto a point-like perturber. The torque on a planet in a circular orbit can be

split into two components: the differential Lindblad torque and the corotation torque. Early

work on planetary migration consisted in determining the sign and value of the differen-

tial Lindblad torque in a two-dimensional disk (Ward 1986), since this torque, in the linear

regime, typically exceeds the coorbital corotation torque and therefore dictates the direc-

tion and timescale of planetary migration. This work indicated that planetary migration

in most cases corresponds to an orbital decay towards the center, and that it is a fast pro-

cess, thus posing a threat for the survival of protoplanets embedded in protoplanetary disks.

Later efforts focused on the corotation torque (Ward 1989) and on the disk’s vertical extent

and pressure effects on the differential Lindblad torque (Artymowicz 1993). The analytical

predictions in the linear regime were checked by numerical integration of the differential

equations (Korycansky & Pollack 1993). Finally, Tanaka et al. (2002) have given an ex-
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pression of the tidal torque, in the linear regime, that takes into account both the Lindblad

and coorbital corotation torques, and that fully takes into account the three dimensional

structure of the disk. These analytical or semi-analytical studies all consider small mass

planets, for which a linear approximation of the disk response is valid. Other studies dealt

with a strongly non-linear case, that of embedded giant planets (Lin & Papaloizou 1986a,b).

They showed that a giant planet tidally truncates the disk by opening a gap around its

orbit, and that it is then locked in the viscous disk evolution, a process that was much later

referred to as type II migration (Ward 1997). A more recent work (Masset & Papaloizou

2003) considers the case of sub-giant planets (planets which have a mass of the order of a

Saturn mass, if the central object has a solar mass) embedded in massive disks. This work

shows that the coorbital corotation torque may have a strong impact on the migration, and

can lead to a runaway of the latter, either inwards or outwards. As this mechanism heavily

relies upon the finite width of the horseshoe region, it also corresponds to a non-linear mech-

anism. The onset of non-linear effects should therefore occur below a sub-giant planet mass,

but the first manifestation of these effects and their impact on planetary migration have not

been investigated thus far. Korycansky & Papaloizou (1996), by writing the flow equations

in dimensionless units, have shown that the flow non-linearity is controlled by a parameter

M = q1/3/h, where q = Mp/M∗ is the planet mass to star mass ratio and h = H/r is the

disk aspect ratio. The linear limit corresponds to M → 0, while the condition M > 1 has

been considered as a necessary condition for gap clearance, and has sometimes been referred

to as the gap opening thermal criterion, although a recent work by Crida & al. (2006) has

revisited the conditions for gap opening.

In the last few years, the increase of computational resources has made possible the

evaluation of the disk torque exerted on an embedded planet by means of hydrodynamical

calculations, both in two dimensions (Lubow et al. 1999; Nelson et al. 2000; D’Angelo et

al. 2002; Masset 2002; Nelson & Benz 2003a,b) and three dimensions (D’Angelo et al. 2003;

Bate et al. 2003), both for small mass planets and for giant planets. In particular, the case

of small mass planets allows comparison with analytical linear estimates. This was done by

D’Angelo et al. (2002, 2003) and Bate et al. (2003), who compared the torques they measured

with the estimate by Tanaka et al. (2002). Although D’Angelo et al. (2002) and Bate et

al. (2003) found results in good agreement with linear expectations, D’Angelo et al. (2003)

found a significant discrepancy for planet masses in the range 5–20 M⊕. Namely, they found

that migration in this planet mass range may be more than one order of magnitude slower

than expected from linear estimates. In the same vein, Masset (2002) found that planetary

migration for the same planet masses can be much slower, or even reversed, compared to

linear estimates. Since the migration of protoplanetary cores of this mass constitutes a bot-

tleneck for the build up of giant planets cores (as this build up is slow, while the migration of
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these cores is fast), it is fundamental to establish whether this effect is real and, if confirmed,

to investigate the reasons of this behavior. We shall hereafter refer to this discrepancy as

the offset.

We adopt for the presentation of our results a heuristic approach that consists first

in presenting the set of properties that we could infer from our calculations, and then in

interpreting and illustrating them through the appropriate analysis. Besides its pedagogical

interest, this approach also closely follows our own approach to this problem.

In section 2.4, we describe the two independent codes that we used to check the proper-

ties of the offset, and we give the numerical setup used by each of these codes. In section 3 we

list the set of properties of the offset that our numerical experiments allowed us to identify,

namely:

• The offset scales with the vortensity gradient (the vortensity being defined as the

vertical component of the vorticity divided by the surface density).

• The offset value varies over the horseshoe libration timescale, and tends to small values

at small viscosity, whereas it remains large at high viscosity.

• The maximum relative offset occurs for a planet mass that scales as h3.

We then interpret these properties as due to a non-linear behavior of the coorbital corotation

torque that exceeds its linearly estimated value. Using the link between coorbital corotation

torque and horseshoe zone drag (Ward 1991, 1992; Masset 2001, 2002; Masset & Papaloizou

2003), we perform in section 4 a streamline analysis in order to check whether the coorbital

corotation torque excess is associated to a horseshoe zone width excess. We find that this

is indeed the case. In section 5, we relate this width excess of the horseshoe region to a

transition of the flow properties in the planet vicinity, from the linear regime to the large

mass case in which a circumplanetary disk surrounds the planet. We finally discuss in

section 6 the importance of these properties for the migration of sub-critical solid cores. We

sum up our results in section 7.

2. Hydrodynamical codes and numerical set up

We used two independent hydro-codes to perform our tidal torque estimates. One of

these codes is the 3D nested grid code NIRVANA, the other one is the 2D polar code FARGO.

The use of these codes was complementary: while FARGO suffers from the 2D restriction

and its outcome is plagued by the use of a gravitational softening length, it enables one to
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perform a wide exploration of the parameter space (mainly, in our case, in term of planet

mass, surface density slope, disk thickness and viscosity). The properties suggested by the

FARGO runs can later be confirmed by much more CPU-demanding 3D runs with NIRVANA.

2.1. The NIRVANA code

This code is a descendant of an early version of the MHD code NIRVANA (Ziegler &

Yorke 1997), hence the name. For the current application, the magnetic terms in the MHD

equations are excluded. The code features a covariant Eulerian formalism that allows to work

in Cartesian, cylindrical, or spherical polar coordinates in one, two, or three dimensions. The

MHD equations are solved on a staggered mesh, with a constant spacing in each coordinate

direction via a directional splitting procedure, whereby the advection part and the source

terms are dealt with separately. The advection of the hydrodynamic variables is performed

by means of a second-order accurate scheme that uses a monotonic slope limiter (van Leer

1977), enforcing global conservation of mass and angular momentum. Viscous forces are

implemented in a covariant tensor formalism. The code allows a static mesh refinement

through a hierarchical nested-grid structure (D’Angelo et al. 2002, 2003). The resolution

increases by a factor 2 in each direction from a sub-grid level to the next nested level. When

employed in a 3D geometry, this technique produces an effective refinement of a factor 8

from one grid level to the next one.

2.2. The FARGO code

The FARGO code is a staggered mesh hydro-code on a polar grid, with upwind transport

and a harmonic, second order slope limiter (van Leer 1977). It solves the Navier-Stokes and

continuity equations for a Keplerian disk subject to the gravity of the central object and

that of embedded protoplanets. It uses a change of rotating frame on each ring that enables

one to increase significantly the time step (Masset 2000a,b). The hydrodynamical solver of

FARGO resembles the widely known one of the ZEUS code (Stone & Norman 1992), except

for the handling of momenta advection. The Coriolis force is treated so as to enforce angular

momentum conservation (Kley 1998). The mesh is centered on the primary. It is therefore

non-inertial. The frame acceleration is incorporated in a so-called potential indirect term.

The full viscous stress tensor in cylindrical coordinates of the Navier-Stokes equations is

implemented in FARGO. A more detailed list of its properties can be found on its website4.

4See: http://www.maths.qmul.ac.uk/∼masset/fargo
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2.3. Units

As is customary in numerical calculations of disk-planet tidal interactions, we use the

planet orbital radius a as the length unit, the mass of the central object M∗ as the mass unit,

and (a3/GM∗)
1/2 as the time unit, where G is the gravitational constant, which is G = 1 in

our unit system. Whenever we quote a planet mass in Earth masses, we assume the central

object to have a solar mass. We note Mp the planet mass and q = Mp/M∗ the planet to star

mass ratio.

2.4. Numerical Set up

Both codes use an isothermal equation of state with a given radial temperature (or sound

speed) profile. If P is the (vertically integrated for FARGO) pressure and ρ the (vertically

integrated for FARGO) gas density, then the equation of state is P = c2
sρ. The disk vertical

scale-height is H(r) = cs(r)/Ω(r), where Ω(r) is the disk angular frequency at radius r. The

disk aspect ratio, h(r) = H(r)/r, is taken uniform in the disks that we simulate, and it varies

from h = 0.03 to h = 0.06 depending on the runs.

The softening length is applied to the planet potential in the following manner:

Φp = − GMp
√

r2
p + ε2

, (1)

where Φp is the planet potential, rp the distance to the planet, and ε is the softening

length.

In all the runs presented in this work, the planet is held on a fixed circular orbit. More-

over, there is no gas accretion onto the planet. This is quite different from the prescription

of D’Angelo et al. (2003) and Bate et al. (2003). However, we shall see that the effect we

investigate is related to the coorbital corotation torque, which itself is related to the horse-

shoe dynamics. In the case in which accretion is allowed, the flow topology in the planet

vicinity is more complex than in a non-accreting case, with an impact on the horseshoe zone

and on the coorbital corotation torque value. In order to retain only the physics relevant to

the effect we are interested in, we discard gas accretion onto the planet. It should however

be kept in mind that this is not realistic for planet masses Mp & 15 M⊕. Nonetheless, the

phenomenon we describe does persist, and indeed was originally observed, when planetary

cores are allowed to accrete.

In our runs the disk surface density is initially axisymmetric and has a power-law profile:
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Σ(r) = Σ0(r/r0)
−α, where r0 = 1 is the radius at which the surface density is Σ0. The

kinematic viscosity has a uniform value over the disk. We have adopted a reference set

up which closely resembles the one of D’Angelo et al. (2003) or Bate et al. (2003). Its

characteristics are listed in Table 1. Whenever we vary one disk parameter (e.g. aspect ratio

or viscosity), we adopt for the other parameters the reference values. For a given set of disk

parameters, we perform several calculations with different planet masses.

We list below the details specific to each code:

• In the 3D-NIRVANA runs, the computational domain is a spherical sector [Rmin, Rmax]×
[θmin, θmax] × 2π, whose radial boundaries are Rmin = 0.4, Rmax = 2.5. Symmetry is

assumed relative to the disk mid-plane and only the upper half of the disk is simu-

lated, hence θmax = 90◦. The minimum co-latitude, θmin, varies from 80◦ to 82.5◦,

according to the value of the aspect ratio h. The vertical extent of the disk com-

prises at least 3 pressure scale-heights. Outgoing-wave (or non-reflecting) boundary

conditions are used at the inner radial border (Godon 1996). In order to exploit the

mirror symmetry of the problem with respect to the disk equatorial plane (the disk

and the planet orbit are coplanar), a symmetry boundary condition was used at the

disk mid-plane, which enables us to simulate only the upper half of the disk. Fi-

nally, reflecting boundary conditions were used at the outer radial border, which is

located sufficiently far from the orbit so that the wake reflection will not alter our

torque evaluation, and at θ = θmin, were the matter is so rarefied that the choice of

the boundary condition has virtually no impact on the flow properties on the bulk of

the disk. The reference frame has its origin on the center of mass of the star-planet

system and corotates with the planet. The grid hierarchy consists of a basic mesh

with (NR, Nθ, Nφ) = (143, 13, 423) grid zones and 4 additional sub-grid levels centered

at the planet’s position, each with (64, 12, 64) grid zones. The initial vertical den-

Table 1. Disk parameters for the reference calculations. There is no accretion onto the

planets.

Parameter Notation Reference value

Aspect ratio h 0.05

Surface density slope α 1/2

Viscosity ν 10−5
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sity distribution is that of an unperturbed disk in hydrostatic equilibrium, which in

spherical coordinates reads ρ(t = 0) = ρ0(R) exp [(sin θ − 1)/h2]/(sin θ)(α+1), where

ρ0 ∝ 1/R(α+1) and the sound speed is assumed to scale as cs ∝ h/
√

R sin θ. Such

density profile is stationary in the limit Mp → 0. The initial surface density, obtained

by integrating the mass density in θ, is Σ = Σ0(a/R)α, where Σ0 = 2.9× 10−4. Calcu-

lations were performed for many values of the planet to star mass ratio, from q = 10−6

to q = 2× 10−4, in disks with various values of the initial density slope α, aspect ratio

h, and kinematic viscosity ν. Simulations were run for up to 140 orbital periods to

measure (partially) saturated coorbital corotation torques. Shorter runs (10 orbits)

were used to monitor (partially) unsaturated corotation torques. In 3D calculations,

torques arising from the Roche lobe are not very sensitive to the choice of the softening

parameter, ε, in the planet gravitational potential, as long as it is a small fraction of

the Hill radius RH = a(q/3)1/3. We used ε = 0.1RH . However, some models were also

run with a smaller softening length and produced no significant differences.

• In the 2D-FARGO runs, the mesh inner boundary is at Rmin = 0.5 and the mesh

outer boundary is at Rmax = 2.1. A non-reflecting boundary condition was used

at each boundary. The resolution is of Nrad = 153 zones in radius and Nφ = 600

zones in azimuth. The mesh spacing is uniform both in radius and in azimuth. The

frame corotates with the planet. The value of Σ0 is 6 · 10−4. The potential softening

length is ε = 0.3H . This value is quite low. Preliminary calculations have shown that

the offset is much larger at small potential softening length value, which is why we

adopted this value. For a given set of disk parameters, we performed 35 calculations

with 35 different planet masses, in geometric sequence and ranging from q = 10−6 to

q = 10−3.5: qi = 10−6+2.5i/34, 0 ≤ i ≤ 34. Most of the calculations are run for 100

orbits, in order for the coorbital corotation torque to saturate if the disk parameters

imply its saturation. We have also performed series of short runs for 10 orbits, in order

to have an unsaturated corotation torque.

2.5. Torque evaluation

• In the 3D runs, the gravitational torques acting on the planet are evaluated either

every 5 orbits (long-run simulations) or every orbit (short-run simulations). In the

first case, the total torque is averaged over the last 30 orbital periods of the calculation

whereas, in the second case, it is averaged from t = 7 and t = 10 orbits. As mentioned

in section 2.4, accretion onto the planetary core is not allowed. In the low mass limit,

this leads to the formation of a gas envelope around the planet. The size of the

envelope depends on the core mass and is a fraction of RH . To avoid the envelope
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region, torque contributions from within the Hill sphere were discarded. This choice

may occasionally result in some corotation torques being unaccounted for. When this

happens, the departure from the linear regime may be underestimated. However,

tests performed by excluding torques from a region of radius 0.5RH
5 indicate that the

effects would not significantly change the results of this study. Therefore, this choice is

conservative since it may occasionally underestimate the excess of coorbital corotation

torques but assures that our analysis is not affected by spurious torques from material

possibly bound to the core.

• In FARGO, the torque exerted by the disk onto the planet is evaluated every 1/20th of

orbit. In the long runs case (100 orbits), the torque value is averaged from t = 40 to t =

100 orbits, in order to discard any transient behavior at the beginning of the calculation,

due to corotation torque (possibly partial) saturation on the libration timescale. In

the short runs case, we generally take (unless otherwise stated) the torque average

between t = 6 and t = 7 orbits. We also entertained the issue whether the Roche

lobe material must be taken into account. The FARGO code, in its standard version,

outputs both the torque exerted by the totality of the disk onto the planet, without

a special treatment of the Roche lobe material, and the torque obtained by tapering

the torque arising from the Roche lobe and its surroundings by 1 − exp[−(rp/RH)2],

where rp is the zone center distance to the planet. We show in section 3 that taking or

not the Roche lobe content into account does make a difference, but that qualitatively

one obtains the offset properties in both cases. We have chosen to include the Roche

lobe content in the torque evaluation for the FARGO calculations presented in this

work. There is another reason for this choice, namely that the material that should be

discarded in the torque calculation should be the one pertaining to the circumplanetary

disk: one would define the system of interest as {the planet + the circumplanetary

disk}. If the circumplanetary disk has a radius that scales with RH and that amounts

to several 0.1RH for large planet masses, this is not true for the small planet masses

that represent most of the mass interval over which we perform the calculations. For

these small masses, the circumplanetary disk has a radius much smaller than a few

0.1RH , or may not even exist, as we shall see in section 5.

5The net torque exerted by material deep inside the Hill sphere of a non-accreting planet is negligible if

density gradients are appropriately resolved (D’Angelo et al. 2005).
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3. Offset properties

3.1. Reference run

3.1.1. 2D results

Fig. 1 shows the results of the reference run, corresponding to the parameters of Table 1,

both with and without Roche lobe tapering. Both curves show the offset near q = 10−4.

However the curves do not coincide, and the offsets have slightly different shapes, which

indicates that it is due to material located inside of the Hill sphere or in its immediate

vicinity.

As mentioned in the Introduction, previous two-dimensional simulations by D’Angelo

et al. (2002) have apparently missed the offset feature shown in Figure 1. The most likely

reason why this happened is the use of an extremely small softening parameters (on the

order of 0.02RH), associated with the action of torques deep inside the planet’s Hill sphere

(at distances from the planet rp . 0.2RH). We shall see in section 5 that for such a small

softening length we should expect the offset feature to peak at q < 10−6, which is not in the

mass range covered by D’Angelo et al. (2002). Furthermore, their analysis is complicated

by the inclusion of accretion and the presence of a gap or dip in the initial surface density

profile. We also performed a set of calculations with NIRVANA in 2D mode, using the

reference parameters and adopting a setup similar to that of FARGO. The resulting specific

torque versus the planetary mass is consistent with the solid line with diamonds in Figure 1.

3.1.2. 3D results

The behavior of the total specific torque exerted by the planet on a three-dimensional

disk, for the parameters given in Table 1, is illustrated in Figure 1. The departure from

the total torque predicted by the linear theory is largest at q = 5 × 10−5. A comparison

between Figure 1 and Figure 6 in D’Angelo et al. (2003) allows to evaluate the impact of

core accretion on the excess of corotation torques. This represents an important issue since

around 10 M⊕ the runaway gas accretion phase is most likely to occur (e.g., Wuchterl 1993;

Pollack et al. 1996; Hubickyj, Bodenheimer, & Lissauer 2005). Accretion on the planet seems

to enhance the excess of coorbital corotation torques, over the predictions based on the linear

regime, since it affects the width of the horseshoe region. The location where the offset is

maximal recedes from q = 5 × 10−5, when cores are non-accreting, to q = 3 × 10−5, when

cores accrete at maximum rate.
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Fig. 1.— Negative specific torque acting on the planet, as a function of its mass, in the

reference disk for the 2D case. The solid line with diamonds shows the torque computed

with Roche lobe tapering, while the dashed line shows the torque computed without special

treatment of the Roche lobe zones. The solid line with stars shows the results of the three

dimensional calculations, scaled by Σ2D
0 /Σ3D

0 = 60/29. We note that the offset depth is

larger in the 3D case.
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3.2. Dependence on the vortensity gradient

3.2.1. 2D results

Fig. 2a shows the results of a set of calculations with four different disks, having different

surface density slopes. The set that exhibits the smallest departure to a linear trend (straight

line) corresponds to α = 3/2, i.e. to a flat vortensity profile, since d log(Σ/B)/dr = 3/2−α.

Fig. 2b shows the quantity

Eα(q) = 1 − Tα(q)

q2

q2
min

Tα(qmin)
, (2)

where Tα(q) is the disk torque on the planet with planet to star mass ratio q when the

disk surface density slope is α, and qmin is the minimal mass ratio in our sample (here

qmin = 10−6). Whenever the disk response is linear, the torque scales with q2 and Eα

vanishes. The quantity Eα(q) is therefore a measure of the departure from linearity6 of the

torque. It reaches unity when the total torque cancels out, and exceeds one when migration is

reversed. From Fig. 2b we can see that for q > 10−4, the torque value differs from its linearly

extrapolated value, regardless of the vortensity slope. For smaller masses, the departure from

the linearly predicted value is larger for larger vortensity slopes. Although the flat surface

vortensity profile (α = 3/2) does not have a vanishing Eα, it is nevertheless the profile that

exhibits the smallest departure to linear prediction (by at most 10 % up to q ∼ 1.5 · 10−4).

The dashed and dotted line show the curve of E0 for the flat surface density profile (maximal

vortensity slope) respectively scaled by 2/3 and 1/3. These curves show that the departure

to linearity approximately scales with the vortensity slope.

3.2.2. 3D results

The left panel of Figure 3 shows the specific torque exerted by the disk on the planet,

obtained from 3D calculations with different surface density slopes, α. Torques are (partially)

saturated, which means that they have reached their steady state value, which is a fraction

of their initial (unsaturated) value. The behavior of the quantity Eα is illustrated in right

panel for the same models. As observed in the 2D results, the departure from the linear

(type I) regime, increases with increasing vortensity gradient.

6By this we mean the departure from the torque value predicted by a linear analysis of the disk-planet

interaction. Naturally, it is also the departure from the linear scaling of the torque with q2.
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Fig. 2.— 2D results. Left: Negative of specific torque acting on the planet, as a function of

its mass, for four values of the surface density slope: α = 0 (diamonds), α = 1/2 (reference

calculation, triangles), α = 1 (squares) and α = 3/2 (crosses). The hole in the data for the

flat surface density profile corresponds to a torque reversal. Right: departure from linearity

for the same surface density slopes (same symbols). The meaning of the additional lines is

explained in the text.

Fig. 3.— 3D results. Left. Negative of the specific torque exerted on the planet, as a

function of its mass, for different values of the surface density slope: α = 0 (asterisks),

α = 1/2 (diamonds), α = 3/4 (triangles), and α = 3/2 (pentagons). The gap in the data for

the α = 0 case corresponds to situations where the total torque is positive. Right. Departure

from linearity (Eq. 2) for the same values of α (same symbols identify same models).
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3.3. Dependence on the viscosity

The previous section suggests that the offset is linked to the coorbital corotation torque,

since it scales with the vortensity gradient across the orbit. For the vortensity slopes con-

sidered, the coorbital corotation torque acting on the planet is positive. Note that as the

offset corresponds to a positive value added to the linearly expected torque value, this would

suggest that the offset corresponds to a corotation torque larger than predicted by the linear

analysis. If the offset is indeed due to the corotation torque, then it should depend on the

disk viscosity, since the corotation torque depends on it (Ward 1992; Masset 2001, 2002;

Balmforth & Korycansky 2001; Ogilvie & Lubow 2003). We have undertaken additional sets

of calculations, in which we take the reference values of Table 1, except that we vary the

disk viscosity ν.

3.3.1. 2D results

We have taken twice the viscosity reference value (ν = 2 · 10−5), and half the reference

value (ν = 5 · 10−6). The results are presented in Fig. 4. The trend observed on this figure

is compatible with the saturation properties of the corotation torque. The largest offset is

observed for the early torque value, i.e. the unsaturated one, while as the viscosity decreases

the departure from linearity decreases as well. Quantitatively, the behavior observed is

also in agreement with a corotation torque saturation. The latter depends on the ratio of

the libration timescale in the horseshoe region and the viscous timescale across it (Ward

1992; Masset 2001, 2002). We can for instance evaluate how saturated the corotation torque

should be for q = 10−4. The horseshoe zone half width xs for such planet mass in a disk with

h = H/r = 0.05 can be estimated by equating the linear estimate of the coorbital corotation

torque (Tanaka et al. 2002) and the horseshoe drag (Ward 1991, 1992; Masset 2001). One

is led, in a two-dimensional disk, to:

xs = 1.16a

√

q

h
. (3)

This yields here xs = 0.052. The ratio R defined by Masset (2001) is therefore R = 0.07 for

the reference run, R = 0.14 for the larger viscosity run, and R = 0.035 for the lower viscosity

run. To within a numerical factor, R represents the ratio of the libration timescale to the

viscous timescale across the horseshoe region, and therefore indicates whether the corotation

torque should saturate (at low R) or remain unsaturated (at higher R). From Fig. 2 of

Masset (2002), one can infer that the coorbital corotation torque should be about 40 % of

its unsaturated value for the smaller viscosity calculation, 60 % for the reference calculation,
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and 80 % for the larger viscosity calculation. The scatter of the curves of Fig. 4b is roughly

compatible with these expectations. We note in passing that (i) this estimate is only an order

of magnitude estimate, since we inferred the value of xs from linear calculations, whereas

we suspect the offset to be due to a corotation torque value that differs from the linear

estimate and (ii) it is by chance that the reference calculation, which takes the parameters

of D’Angelo et al. (2003) and Bate et al. (2003), corresponds precisely to a corotation torque

that is half saturated, so that varying slightly the viscosity with respect to the reference one

yields a strong variation of the offset amplitude. We finally note that the saturation of the

corotation torque depends on the planet mass, for a fixed viscosity. The smaller the planet

mass, the less saturated is the corotation torque. We observe this behavior in Fig. 4b. Quite

surprisingly however, the torque is found to depend (weakly) on the viscosity at very small

q, whereas one would expect the corotation torque to be unsaturated. The evolution of the

surface density profile is too weak to account for this observation. We have not investigated

further this behavior, which we believe to be of minor importance for the work presented

here. Nevertheless, we suggest that it is linked to a drop of the coorbital corotation observed

by Masset (2002), when the viscosity is larger than the so-called cut-off viscosity, which

corresponds to the viscosity for which the time needed by a fluid element to drift from the

separatrix to the corotation is also half the libration time of this fluid element. This limit

viscosity νl is given by νl ∼ x2
sΩp/4π (Masset 2001, 2002). Using Eq. (3), this translates

into νl ∼ 0.1a2Ωpq/h. We should observe a drop of the corotation torque (and therefore a

dependence of the torque on the viscosity) for ν & νl, i.e. for q . ql ∼ 10hν/(a2Ωp). For

the reference calculation, we have ql ∼ 5 · 10−6, while we get twice and half this value for the

higher and lower viscosity runs, respectively. The curves of Fig. 4a are roughly compatible

with these expectations, although around q ∼ 10−5 it is difficult to disentangle this effect

from the onset of the departure from linearity of the torque.

3.3.2. 3D results

As explained above, torques evaluated at early times contain coorbital corotation torques

that are unsaturated and thus their effect is the strongest. At later evolutionary times, the

effects of corotation torques may tend to weaken. Figure 5 illustrates the behavior of satura-

tion on the total specific torque, as a function of the planet mass, obtained from calculations

with a flat initial surface density (α = 0). The asterisks represent torques measured around

100 orbits, when corotation torques are partially saturated whereas diamonds refer to torques

measured between 7 and 10 orbits, before saturation occurs. The offset reduces as corota-

tion torques saturate. The planet mass for which the offset is maximum shifts towards larger

values and the range of masses in which the total torque is positive shrinks (see Fig. 5). How-
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ever, a finite mass interval persists in which the departure from the linear regime can still

be very large.

3.4. Dependence on the disk thickness

The two previous sections strongly suggest that the offset is indeed a physical effect,

independent on the code used, and that it is linked to an excess of the coorbital corotation

torque with respect to its linearly estimated value. This therefore implies that the offset

corresponds to the onset of non-linear effects in the flow. The flow non-linearity depends on

the parameter M = q1/3/h (Korycansky & Papaloizou 1996). The onset of this behavior

should therefore be observed for a planet to primary mass ratio q ∝ h3. We have undertaken

additional series of calculations in which we take the reference parameters of Table 1, except

that we vary the disk aspect ratio.

3.4.1. 2D results

We ran series of calculations with h = 0.035, h = 0.04, h = 0.045, h = 0.055 and

h = 0.06, in addition to the reference calculation with h = 0.05. For each series, we estimate

the mass for which the departure to linearity given by Eq. 2 is maximal. We refer to this mass

as the critical mass, and we denote qc its ratio to the primary mass. This mass is determined

from a parabolic interpolation of the data point which has the largest departure and its two

neighbors. Since the disk viscosity is kept constant and equal to its reference value in all

these calculations, and since the critical mass varies between two sets of calculations, we

expect different saturation levels of the coorbital corotation torque at the critical mass, on

the long term. This could mangle our analysis, and it is therefore important to take the

unsaturated torque value. This is why the Eα(q) values in the analysis of this section are

evaluated using the torque value averaged between t = 3 and t = 5 orbits. The results are

presented in Fig. 6. We see on this figure that there is an excellent agreement between the

results of the calculations and the expectation qc ∝ h3. This is a strong point in favor of our

hypothesis that this behavior is due to the onset of non-linear effects.

3.4.2. 3D results

In order to examine the dependence of the offset on the disk aspect ratio, we set up 3D

models with an initial surface density slope equal to α = 0 and a relative disk thickness h
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ranging from 0.03 to 0.06. For each value of h, a series was built by varying the planet to

star mass ratio, q, from 10−6 to 2 × 10−4. The specific torque as a function of the planet

mass, for selected disk aspect ratios, is shown in Figure 7. In thinner (i.e., colder) disks,

the offset of corotation torques moves towards smaller planetary cores. When h = 0.03, the

effects of the offset are dominant between q ≈ 10−5 (or about 3 M⊕) and q ≈ 2 × 10−5

(or about 6 M⊕), regardless of the saturation level of corotation torques. From each series,

the critical mass ratio qc was estimated by means of a parabolic interpolation, as done for

the 2D calculations. For this analysis we used total torques averaged between t = 7 and

t = 10 orbits, i.e. before the corotation torque possibly saturate, for the reasons clarified

in the previous section. The dependence of the critical mass ratio on the disk thickness

is illustrated in Figure 8, along with the curve qc/qc(h = 0.03) = (h/0.03)3 (dashed line).

The error bars indicate the sampling of the data points around the critical mass and thus

represent the largest possible error on the estimates of qc. It is evident that 3D numerical

results accurately reproduce the h3-scaling expected to arise from non-linear effects in the

corotation region.

4. Streamline analysis

The calculations shown at the previous section strongly suggest that the offset is a

physical effect, and that non-linear effects boost the corotation torque value with respect to

its linearly estimated value. There is a link between the coorbital corotation torque and the

so-called horseshoe drag (Ward 1991, 1992; Masset 2001, 2002), which is the torque arising

from all the fluid elements of the horseshoe region. Although the corotation torque and the

horseshoe drag have same dependency on the disk and planet parameters, and although the

horseshoe drag may result in a very effective concept for some aspects of planetary migration

related to coorbital material (Masset & Papaloizou 2003), there is no reason why these two

quantities should be exactly the same. In particular, in the low mass regime, the horseshoe

region can be arbitrarily radially narrow, while the corotation torque always arises, in the

linear limit, from a region of width ∼ H , which corresponds to the length-scale over which

the disturbances in the corotation vicinity are damped. Nevertheless, it is instructive to

investigate whether the behavior found is linked to a boost of the horseshoe region width

w.r.t. its linearly estimated width. We recall the horseshoe drag expression (Ward 1991,

1992; Masset 2001):

ΓHS =
3

4
x4

sΩ
2
pΣ · d log(Σ/B)

d log r
, (4)
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where xs is the half width of the horseshoe region, Ωp is the planet orbital frequency and

Σ is the disk surface density at the orbit. Since, in the linear limit, the torque scales with

the square of the planet mass, we expect the dependency xs ∝ q1/2 (see also Ward (1992)).

On the large mass side we may expect, that the horseshoe region has a behavior similar to

the one of the restricted three body problem (RTBP) and that we have the scaling xs ∝ q1/3.

We performed an automatic streamline analysis on the flow of the 2D reference runs7, in the

frame corotating with the planet, after t = 10 orbits (an early stage in order to avoid, on

the large mass side, a radial redistribution of the disk material that alters the streamlines

and hence the horseshoe zone width, but still sufficiently evolved so that the flow can be

considered steady with a good approximation in the corotating frame), in order to find the

separatrices of the horseshoe region by a bisection method. We show in Fig. 9 the half width

of the horseshoe region as a function of the planet mass. We see on this figure that:

• the horseshoe zone width indeed scales as q1/2 as long as the planet mass remains

sufficiently small, since the data points and the dashed line have same slope for q <

3 · 10−5;

• there is a correct agreement between the coorbital corotation torque and the horseshoe

drag, since the data points and the dashed curve, obtained from Eq. (3) by assuming

a strict equality between horseshoe drag and linearly estimated coorbital corotation

torque, nearly coincide on this mass range.

• We also see how the horseshoe zone width scales with q1/3 on the large mass side, as

expected. The width displayed on the dotted line however differs from the horseshoe

width of the RTBP. The latter is xs =
√

12a(q/3)1/3, while we find that the data

points are correctly fitted by xs ' 2.45a(q/3)1/3, i.e. the horseshoe width is ∼ 1.4

times narrower than in the RTBP.

• In between the linear range and the q1/3 scaling range, that is for 3·10−5 < q < 1.5·10−4,

the horseshoe zone width falls between the two regimes, which makes it larger than its

linearly estimated value for any q > 3 · 10−5. This corresponds precisely to the mass

for which migration becomes slower than linearly estimated.

7The runs on which the streamline analysis was performed differ slightly from the reference runs of

section 2.4: (i) the resolution was increased, with Nrad = 386 and Nφ = 1728, and the radial interval was

narrowed, from Rmin = 0.6 to Rmax = 2.0; (ii) the sound speed, instead of the aspect ratio, was taken

uniform, so that H(r = 1) = 0.05. Everything else corresponds to the reference runs.
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In order to finally assess whether the torque offset can indeed be due to the excess of the

horseshoe zone width, we can directly estimate the excess of horseshoe drag (w.r.t. the

linearly extrapolated value):

∆ΓHS(q) = ΓHS(q) − ΓHS(qmin)

(

q

qmin

)2

, (5)

and compare it to the total torque excess:

∆T (q) = T (q) − T (qmin)

(

q

qmin

)2

=
|T (qmin)|

q2
min

Eα(q). (6)

The results are displayed in Fig. 10, in which we divide the torque values by q2. We see that

the horseshoe drag excess and the total torque excess exhibit the same behavior and have a

very similar value in the mass range 10−4 < q < 2 ·10−4, which is a quantitative confirmation

that the torque excess of the offset maximum is attributable to the horseshoe zone width

excess. We note that although the two curves display a similar behavior for q < 10−4, they

do not coincide on this mass range, and that the total torque excess is systematically larger

than the horseshoe drag excess. It is precisely for this mass range (q < 10−4 ∼ h3/1.162, see

Eq. 3) that the horseshoe zone width is narrower than the disk thickness, so that not all the

coorbital corotation torque arises from the horseshoe region.

5. Flow transition

The previous section shows that the torque offset is due to a transition of the corotational

flow, which has a horseshoe zone width ∝ q1/2 in the linear regime whereas it scales as q1/3

in the large mass regime. Fig. 11 shows the streamline topology for different masses (A:

q = 5.44 · 10−6; B: q = 2.96 · 10−5; C: q = 8.16 · 10−5; D: q = 2.67 · 10−4). The linear

case (A) shows two stagnation points8 located almost at corotation, and offset in azimuth

from the planet. These two stagnation points are not symmetric w.r.t. the planet, and are

not located on the same streamline. As long as we are in the linear regime, they remain

essentially at the same location. Then, as the planet mass increases, both stagnation points

move towards the planet. The central libration region defined by the separatrix of the right

stagnation point shrinks until it disappears, in which case we only have one stagnation point

8We restrict ourselves to the case of hyperbolic points (X-type), as these lie on the separatrices of the

libration region. The flow also features elliptic stagnation points (O-type) such as the ones that can be found

inside the region of closed streamlines in case (A) or (D). Since those are not connected to separatrices, they

are not relevant to the present discussion.
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(case B). As the planet mass still increases, this unique stagnation point moves towards

smaller azimuth while it recedes radially from the orbit (case C), then for larger masses one

gets two stagnation points practically on the star-planet axis, which yields a picture very

similar to the RTBP, where the stagnation points are reminiscent of the Lagrange points

L1 and L2, and a prograde circumplanetary disk appears within the “Roche lobe” (case D).

This corresponds to the regime in which the horseshoe zone width scales with q1/3.

One could argue that despite the larger resolution adopted for the streamline analysis,

the radial resolution δr = (Rmax − Rmin)/Nrad = 3.63 · 10−3 is still too coarse to properly

describe the corotational flow of the small mass planets, as it amounts to a significant fraction

of the horseshoe zone width. Fig. 12 shows the flow for q = 5.44 · 10−6 (case A) run with

ten times higher a radial resolution (Nrad = 3860, hence δr = 3.63 · 10−4). The excellent

agreement between the streamlines obtained with the two different radial resolutions confirms

a fact already noted by Masset (2002), that even a low or mild radial resolution associated

with a bilinear interpolation of the velocity fields allows to capture correctly the features of

the corotation region.

These flow properties are illustrated in Fig. 13, which shows both the azimuth and the

distance to corotation of the stagnation point(s). We see that for q < 2 · 10−5 we have two

stagnation points located at corotation and on each side of the planet (i.e. one at negative

azimuth, and one at positive azimuth). Around q ∼ 2 · 10−5, the stagnation points coalesce

on a narrow mass interval. Up to q ∼ 10−4, there is a unique stagnation point located

slightly beyond corotation and at a small, negative azimuth. Finally, at q ≈ 10−4, another

bifurcation occurs, and one recovers two stagnation points on either side of corotation, and

almost aligned with the star (|φs| � |rs − rc|/a).

For a given finite potential softening length, there is a mass limit under which a 2D

flow is linear everywhere, even at the planet location. A simple estimate of this mass limit

can be found as follows. The effective potential that dictates the motion of fluid elements

is Φ̃ = Φ + η, where Φ is the gravitational potential and η is the gas specific enthalpy. The

latter reads η = η0 +η′, where η0 is the fluid specific enthalpy of the unperturbed flow, which

is a uniform quantity as the disk has initially a uniform sound speed and a uniform surface

density, and where η′ = c2
s log(Σ/Σ0) is the perturbation of the specific enthalpy introduced

by the planet. Similarly, the gravitational potential can be written as Φ = Φ∗ + Φp, where

Φ∗, the gravitational potential of the central star, corresponds to the unperturbed flow and

where Φp, the gravitational potential of the planet, corresponds to the perturbation. Hence

the effective potential can be decomposed as Φ̃ = Φ̃0 + Φ̃′, where Φ̃0 = Φ∗ + η0 is its value

in the unperturbed flow while Φ̃′ = Φp + η′ is its perturbed value.

Figure 14 shows that the two quantities Φp and η′ are of the same order of magnitude
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and of opposite sign in the planet vicinity, so that the perturbed effective potential reduces

to a tiny fraction of the absolute value of either quantity. A condition for the flow linearity is

that |Σ−Σ0|/Σ0 � 1, which therefore translates into |η′|/c2
s � 1, or, at the planet location,

into:

rB � ε, (7)

where

rB =
GMp

c2
s

(8)

is the planet’s Bondi radius. The flow linearity in the planet vicinity in a 2D calculation

is therefore controlled by the ratio of the potential softening length to the Bondi radius.

Fig. 15 shows the absolute value of the azimuth of the left stagnation point as a function of

mass, for the runs described below as well as for a similar set of runs with a smaller softening

length (ε = 0.1H = 0.005). In both cases, we see that as long as the planet’s Bondi radius is

much smaller than the softening length, the stagnation point has an almost fixed and large

value, so that it resides far from the planet, whereas it lies within the Bondi radius when the

latter is larger than the potential softening length. The departure from linearity therefore

occurs at lower mass in the smaller softening length case. Assuming that the horseshoe zone

separatrix does not intersect any shock (a reasonable assumption for small mass planets),

one can use the invariance of the Bernoulli constant in the corotating frame, in the steady

state, to relate the perturbed quantities at the stagnation point to the horseshoe zone width.

The Bernoulli constant reads:

J =
u2 + r2(Ω − Ωp)

2

2
+ Φ − r2Ω2

p/2 + η. (9)

This expression reduces, at a stagnation point located on the orbit, to:

Jstag = Φ∗(a) + η0 + Φ̃′

S − a2Ω2
p/2, (10)

while it reads

Jsep = (a + xs)
2[Ω(a + xs) − Ωp]

2/2 + Φ∗(a + xs) + η0 − (a + xs)
2Ω2

p/2 (11)

on the separatrix, far from the planet, where the effective potential essentially reduces to its

unperturbed value Φ∗ + η0. Equating Eqs. (10) and (11) and expanding Eq. (11) to second

order in (xs/a) yields:

xs =
1

Ωp

√

−8

3
Φ̃′

S . (12)

The horseshoe zone half width is therefore simply related to the value of the Bernoulli

constant at the stagnation point. We can understand the boost of the horseshoe region

width in the transition region as follows:
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• as long as the flow remains linear, the stagnation point is located at a fixed position

far from the planet. It therefore samples a value of the perturbed Bernoulli constant

that simply scales with q, hence the horseshoe zone width scales with q1/2.

• When rB ∼ ε, the stagnation point begins to move towards the planet (see Fig. 15),

which implies that |Φ̃′

S|/q is no longer a constant but increases with q, as the stagnation

point goes deeper into the effective potential well of the planet. As a consequence the

horseshoe zone width increases faster than q1/2 in this regime.

The above discussion is valid for a 2D situation with a finite potential softening length.

Under these circumstances, the dimensionless parameter that controls the flow linearity is

ε/rB. In a three dimensional case with a point-like mass, we can gain some insight on the

condition for the flow linearity assuming a horizontal, layered motion for each slice of disk

material. Although we know that this is not strictly the case (D’Angelo et al. 2003), it is

nevertheless a useful approximation that relates the three dimensional case to the above

discussion. In each slice, the planet potential is the one of a 2D situation with a potential

softening length |z|, where z is the slice altitude. Therefore, if over most of the disk’s vertical

extent, the flow is linear (that is, if over most of the disk’s vertical extent, |z| � rB, which

amounts to the condition H � rB) then most of the torque acting on the planet arises from

slices which contribute linearly to the torque, hence the total torque nearly amounts to its

linearly estimated value, whereas if the Bondi radius amounts to a significant fraction of

the disk’s vertical extent, the layers with altitude |z| < rB have an excess of horseshoe zone

width and contribute significantly to the total torque value, which therefore has a significant

offset w.r.t the linear estimate. The condition for the appearance of the offset in a 3D case

is therefore rB ∼ H , which also reads q ∼ h3, or using, the notation of Korycansky &

Papaloizou (1996), M ∼ 1. This is consistent with the dimensional analysis of Korycansky

& Papaloizou (1996) and with our findings of section 3.4. We make the following comments:

• Although the Bondi sphere and the Hill sphere have different expression and scaling

with the planet mass, they happen to coincide with the disk thickness at roughly the

same planet mass (within a factor of 3), so that characterizing the flow non-linearity by

comparing the Hill radius to the disk thickness also amounts to comparing the Bondi

radius to the disk thickness.

• Although we probably do not have a sufficient resolution to properly characterize the

flow within the Bondi radius (when the softening length is shorter than this radius),

it seems that there is no trapped region of material librating about the planet within

this radius. Indeed, in Fig. 11B or C, we see that the unique stagnation point, within

the Bondi radius, splits the disk material in its vicinity into four regions: the inner
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and outer disk, and the two ends of the horseshoe region. This may have important

consequences for the numerical simulations of embedded planets in non self-gravitating

disks: in such disks, a common (and still debated) practice consists in truncating the

torque summation so as to reject the contributions from the circumplanetary material

(e.g. Masset & Papaloizou 2003), which is considered to form, together with the planet,

a relevant system that migrates as a whole, and the migration of which is accounted

for by the external forces applied (hence the truncation). In the case of embedded

small mass planets however, should it be confirmed that no trapped circumplanetary

material exists in the planet vicinity, then no torque truncation should be performed

when evaluating the torque.

• The offset displays a remarkable amplitude in 3D calculations, not even reproduced

with the relatively small softening length that we adopted in our 2D calculations (ε =

0.3H). A possible explanation for this is the vertical motion of the disk material in

the planet vicinity described by D’Angelo et al. (2003), which results in a bent of the

horseshoe streamlines towards the planet. As a result, the stagnation point associated

to the horseshoe separatrix with altitude z far away from the planet has an altitude

|zs| < |z|. Therefore, this stagnation point is closer to the planet than it would be

in a sliced horizontal motion approximation, hence the perturbed Bernoulli constant

at that point is larger than given by the horizontal motion approximation, and the

associated horseshoe separatrix is wider, yielding a larger contribution to the coorbital

corotation torque.

6. Discussion

6.1. Consequences for planetary migration

To analyze the effect of the torque offset from linearity on the evolution of planets in

disks we have performed a set of test simulations. We start from the linear relation for the

change in semi-major axis of a planet as given by Tanaka et al. (2002) for the 3D case which

can be written in the following form

ȧLin = − 2(1.364 + 0.541α)
Σa2

M∗

q a Ωp/h
2, (13)

which, in our system of units, can be recast as

ȧLin = − 2(1.364 + 0.541α) Σ0 q a3/2−α/h2, (14)

where ȧLin is now given in units of AU/yrs, and in which we used M∗ = 1 M� and r0 = 1 AU.

In Eq. 14, Σ0 denotes the surface density at r0 in units of M∗/r
2
0. To model deviations from
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linearity the above ȧLin is modified by our numerically found offset Eα(q) as defined by

Eq. (2), while the scaling law for the critical mass qc ∝ h3 (cf. Sect. 3.4) is included, in the

following manner:

ȧ = ȧLin

[

1 − Eα

(

qh3
0

h3

)]

, (15)

where h0 = 0.05 is the disk aspect ratio for which we have sampled the dimensionless offset

Eα(q) by 3D calculations.

To make the simulations numerically simpler the hydrodynamically found data points

are approximated by analytical functions, where we find a combination of two Lorentzians

matched at q = qc very useful. In addition we use, for demonstration only, a linear growth

law for the planetary mass q = q0 t/tgrow. To integrate the equation a standard 4th order

Runge-Kutta scheme is used.

As an illustrative example we have performed simulations for the intermediate case

α = 1/2, and in Fig. 16 our results are displayed. The left panel shows the offset for the 3D

case for the unsaturated and partially saturated torques (ν = 10−5) with h = 0.05, where

the symbols refer to the hydrodynamical models described above and the lines refer to the

analytical fit formulae. In the right panel we display our results on the migration of a planet

in the presence of an offset from linearity, using q0 = 10−5 and tgrow = 105yrs. For the flaring

of the disk we use h ∝ r0.28 with h = 0.07 at r = 5.2AU and a value of Σ = 300g/cm2 at

r0 = 1AU, translating to Σ0 = 3.4 × 10−5.

The dashed line refers to the standard linear case, the dotted line to the partially

saturated case, and the solid line to the unsaturated case. Clearly the offset yields an

extended migration time scale. In the partially saturated case, where Eα remains always

smaller than unity, the total migration time (to reach r = 0) is increased by roughly 50%.

In the unsaturated case, where Eα is larger than unity at the critical qc, we find indeed a

reversal of the migration. This is possible if during the migration process of a planet the

local h(r) is such that the actual mass of the planet is above the minimal mass for migration

reversal [i.e. the mass qmin for which Eα(qmin) = 1].

We have also thoroughly investigated the migration reversal domain in the flat surface

density case (α = 0), for the unsaturated case (short runs) and partially saturated case (long

runs with ν = 10−5). The results are displayed in Fig. 17. In this figure one can see that

the reversal domain, for h = 0.03 − 0.05, typically corresponds to masses representative of

sub-critical solid cores of giant planets.
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6.2. Corotation torque saturation issues

As we already mentioned in section 3.3, in the absence of any process that allows angular

momentum exchange between the horseshoe region and the rest of the disk, the coorbital

corotation torque saturates after a few libration timescales (Balmforth & Korycansky 2001;

Masset 2002). Such exchange cannot be provided by pressure waves excited by the planet,

as these wave corotate with the planet and are evanescent in the coorbital region. The

viscous stress at the separatrices of the horseshoe region gives rise to a net flux of angular

momentum from this region to the inner or outer disk. In principle, some amount of disk

viscosity should therefore be able to prevent the corotation torque saturation. An estimate

of the minimum viscosity required to prevent the torque saturation can be determined as

follows: the saturation results from the libration, which tends to flatten out the vortensity

profile across the horseshoe region (in an inviscid 2D flow, the vortensity is conserved along

a fluid element path), while viscous diffusion tends to restore the large scale vortensity

gradient, if any. It succeeds in doing so if the viscous timescale across the horseshoe region

is shorter than the libration timescale (Ward 1992; Masset 2001, 2002). This yields:

νm = 0.035
( q

h

)3/2

a2Ωp, (16)

where νm is the minimal viscosity to avoid the coorbital torque saturation (Masset et al.

2006). As can be seen in Eq. (16), it is easier to desaturate the corotation torque of lower

mass planets (the minimal viscosity required to do so is smaller). The reason for this is

twofold: as the planet mass decreases, the horseshoe zone width decreases, therefore (i)

the libration time increases, (ii) the viscous timescale across the horseshoe region decreases.

Recast in terms of an α-parameter9, Eq. (16) reads:

αm = 0.035q3/2h−7/2, (17)

We can use the fact that the mass ratio q at the maximum of the offset is a linear function

of h3, that reads:

q ≈ 0.56h3, (18)

as can be easily found from Fig. (8). Using Eq. (18) to substitute either h or q in Eq. (17),

we obtain either:

αm ≈ 0.018q1/3, (19)

or

αm ≈ 0.015h. (20)

9In this section only, α denotes in a standard manner the effective kinematic viscosity in units of H2Ω, as

introduced by Shakura & Sunyaev (1973), rather than the surface density slope index, as previously defined.
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These equivalent expressions give the minimal viscosity required to prevent the saturation

of the corotation torque for a planet mass for which the offset is maximal, i.e. for which

migration could be significantly slowed down or reversed, provided the corotation torque

amounts to a sizable fraction of its unsaturated value. In a disk with h = 0.04, this yields:

αm = 6 · 10−4, which falls in the range of the α values inferred from observations of T Tauri

stars, for which α = 10−4 − 10−2.

The molecular viscosity of the gas is however orders of magnitude too low to account

for such values of α. It is generally admitted that a large fraction of a protoplanetary

disk is subject to the magnetorotational instability or MRI (Balbus & Hawley 1991), the

non-linear outcome of which is a turbulent state which endows the disk with an effective

kinematic viscosity of the order of magnitude of the viscosity needed to account for the mass

accretion rate inferred from observations of T Tauri disks. In such disks, however, the torque

exerted by the gas on an embedded protoplanet displays large temporal fluctuations that

tend to yield a random walk of the planet semi-major axis, rather than a steady drift of

the latter (Nelson & Papaloizou 2004; Nelson 2005). Nelson (2005) has shown that even

for planet masses of the order of 10 − 30 M⊕ (in a disk with h = 0.07, with no vertical

stratification), the random fluctuations of the semi-major axis overcome the effects of type I

migration on timescales of the order of O(102) orbits, while Johnson et al. (2006) argue that

such diffusive migration systematically lowers the planet lifetimes, even if it allows a small

fraction of protoplanets to “survive” migration over the disk lifetime. In MHD turbulent

disks, the stochastic nature of the turbulent viscosity, although largely sufficient to maintain

the corotation torque unsaturated, would certainly hide the effect that we describe in this

work, at least over O(102) orbits. Should the random fluctuations average out over longer

timescales, so that a systematic drift could be reliably measured, the effect of migration slow

down of sub-critical solid cores should become noticeable10.

There are other situations, yet numerically unexplored, in which the disk’s turbulent

state could prevent the corotation torque saturation and yet be sufficiently mild that the

planet would undergo a systematic rather than stochastic migration. This could be the case

of the so-called dead zone, a region of the disk where the gas ionization fraction is too low to

allow the coupling of the gas to the magnetic field and where the MRI does not occur. The

disk upper layers above a dead zone are sufficiently ionized by external irradiation of cosmic

rays or high-energy photons to be subject to the MRI and therefore to be turbulent (Gammie

1996). This turbulence generates velocity fluctuations at the disk midplane, within the dead

zone, which is therefore not completely “dead” and has an α value several times smaller

10Provided that the total torque, in a turbulent disk, can be considered as the sum of the fluctuations

arising from turbulence and of the laminar torque, which remains to date an open question.
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than that of the active layers (Fleming & Stone 2003; Reyes-Ruiz et al. 2003; Fromang &

Papaloizou 2006). It is likely that within the dead zone, the torque convergence is reached,

over a given timescale, at a smaller planet mass than in an MHD turbulent disk, which

suggests that sub-critical solid cores could undergo a steady migration, significantly slowed

down, or reversed, within the dead zone.

It is also possible that weaker forms of turbulence may exist that are still able to

prevent the corotation torque saturation, such as the hydrodynamics turbulence triggered

by the global baroclinic instability (Klahr & Bodenheimer 2003). However, the turbulence

resulting from the Kelvin Helmholtz instability due to the gas vertical shear arising from the

dust sedimentation (Johansen et al. 2005) seems to be too weak to desaturate the corotation

torque for planet masses larger than ∼ 1 M⊕, as it yields an α-value of the order of 10−6.

We close this section with the following comment: all what is needed to avoid the

corotation torque saturation is to bring “fresh” vortensity from the inner or outer disk to the

horseshoe region in less than a libration timescale. The standard approach based upon the

comparison of the libration and viscous timescales across the horseshoe region is certainly

correct when the largest turbulent scale is smaller than the horseshoe zone width, so that

the vortensity enters the horseshoe region in a diffusive manner, but it is unlikely to be

adequate when the turbulence scale is larger than the horseshoe region width. In this case,

which occurs among others in the case of the MHD turbulence, one rather has to compare

the libration timescale to the advection timescale across the horseshoe region at the average

turbulent speed. This plays in favor of desaturation, and seems to imply that preventing the

corotation torque saturation is much easier than suggested by the libration/viscous diffusion

timescales comparison.

7. Conclusion

By means of two and three dimensional calculations we have found the following:

1. There is a boost of the coorbital corotation torque for sub-critical solid cores (M .

15 M⊕) in thin (H/r . 0.06) protoplanetary disks. In disks with shallow surface

density profiles, i.e. Σ(r) ∝ r−α with α < 3/2, this yields a positive excess of the

corotation torque that leads to a slowing down or reversal of the migration.

2. This boost appears to be the first manifestation of the flow non-linearity (prior to gap

opening, which occurs at larger planet mass).

3. The horseshoe region has a width that scales as M
1/2
p at low planet mass (linear
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regime), whereas it scales as M
1/3
p at large planet mass. At the transition between

the two regimes the horseshoe region is wider than linearly predicted, which yields the

aforementioned boost of the corotation torque.

4. Since this is a non-linear effect, its occurrence is controlled by the dimensionless param-

eter M = RH/H , or rB/H = 3M3. For a disk of given aspect ratio h, the corotation

torque enhancement is maximal for a planet mass Mp given by

Mp ≈ 5

(

M∗

M�

) (

h

0.03

)3

M⊕, (21)

which represents a mass typical for solid cores of giant protoplanets, those for which

the (type I) migration timescale problem is the most acute.

5. The torque reversal, if any, occurs therefore at lower masses in thinner disks (lower

aspect ratio). As a consequence, the migration of a planet of given mass would stop, in

a flaring disk, at a distance from the central object that depends on the planet mass.

Conversely, if an accreting protoplanet, in a flaring disk, reaches a point where the

tidal torque cancels out, it starts to recede from the central object at a rate dictated

by its mass growth rate.

6. This effect has been unnoticed thus far in 2D calculations probably owing to the large

softening length adopted or to strong torques arising from within the Roche lobe of

accreting planets. Poor mass sampling may have also played a role.

7. Small mass planets do not have a Roche lobe (i.e. a prograde circumplanetary disk

extending over a fraction of the Hill radius). They have a Bondi sphere, that is smaller

than their Roche lobe. There is presently an issue about the torque evaluation in

calculations with non self-gravitating disks. In these calculations, it is still debated

whether one must include the Roche lobe content (D’Angelo et al. 2005) or not (Masset

& Papaloizou 2003) in the sum of the elementary contributions to the torque of the disk

material. Regardless of the correct answer to this question, numericists who truncate

the torque summation in the planet vicinity should be aware that the sum should only

exclude at most the (small) Bondi sphere rather than the Roche lobe when simulating

deeply embedded (rB � H) protoplanets.

8. In 2D calculations, the dimensionless parameter that determines the flow linearity in

the planet vicinity is rB/ε. If ε ∝ H (a prescription that we chose for the 2D runs

presented in this work) or ε ∝ RH , this dimensionless parameters scales as a function

of q/h3 and the flow non-linearities in such 2D calculations also appear for mass ratios

q ∝ h3.
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We suggest that the findings listed above could motivate future work on the following points:

1. The flow transition exhibited in this work could be studied in the simplified framework

of the shearing sheet approximation. Then the asymmetry between the left and right

stagnation points (which we believe to be a feature of minor importance, despite its

robustness) would disappear, and they would lie on the same separatrix. This study

could be undertaken using the method of Korycansky & Papaloizou (1996). A quanti-

tative study of the flow transitions (planet mass for which the left and right stagnation

points coalesce, and planet mass for which a Roche lobe appears) would provide a very

valuable insight on the dynamics of the flow in the planet vicinity.

2. Although we have seen that in the low mass case (deeply embedded core, or rB � H)

the flow non-linearities are confined to the Bondi sphere, we do not have undertaken

a study of the flow within this sphere. Characterizing this flow, possibly by means of

very high (nested grid) numerical simulations, would be of great interest.

3. The role of accretion has been neglected in the present analysis, while the mass range

for which the offset is observed, depending on the disk thickness, may involve accret-

ing cores. It seems that accretion enhances the offset (D’Angelo et al. 2003), but a

quantitative analysis of its impact remains to be done.

4. We have emphasized the role played by dissipation, which must be present to prevent

the corotation torque saturation. As the present study deals with small mass planets,

it should be relatively easy to prevent this saturation. So far the only self consistent

calculations of a turbulent disk with embedded planets deal with a fully turbulent disk

subject to the MRI. A study characterizing the ability of other forms of turbulence

(such as the global baroclinic instability, or the residual turbulence of the dead zone

in a layered accretion disk) to desaturate the corotation torque of small mass planets

would be very valuable.

The computations with NIRVANA reported in this paper were performed using the UK

Astrophysical Fluids Facility (UKAFF). The computations with FARGO were performed

at the Centre de Calcul de l’IN2P3. GD acknowledges support from the Leverhulme Trust

through a UKAFF Fellowship, from the NASA Postdoctoral Program, and in part from

NASA’s Outer Planets Research Program through grant 811073.02.01.01.20. The authors

are indebted to Hidekazu Tanaka for bringing to their attention the role played by the Bondi

radius.
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Fig. 4.— Left: Specific torque acting on the planet as a function of the planet mass for

different disk viscosities: ν = 5·10−6 (triangles), ν = 10−5 (reference calculations, diamonds),

ν = 2 · 10−5 (squares). The curve with crosses shows the torque of the reference calculations

averaged between t = 6 and t = 7 orbits, i.e. the early value of the torque, before it possibly

saturates. Right: The value of Eα (given by Eq. 2) for these calculations (same symbols).
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Fig. 5.— Negative of the specific torque acting on the planet, as a function of its mass,

for models with α = 0. Asterisks indicate torques, from long-run simulations, for which

corotation torques are saturated. Diamonds represent torques at early times (between 7 and

10 orbits), hence corotation torques are unsaturated.
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Fig. 6.— Critical mass qc for maximal offset as a function of the disk thickness, for the 2D

runs. The dotted, dashed and dot-dashed lines show respectively the relationships qc ∝ h2,

qc ∝ h4 and qc ∝ h3 that pass through the leftmost data point. The error bars indicate the

sampling of data points around the critical mass.
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Fig. 7.— Negative of the specific torque acting on the planet as a function of the planet

to primary mass ratio, for different values of h: 0.06 (asterisks), 0.05 (triangles), 0.04 (dia-

monds), and 0.03 (circles). Torques are measured at early times (between 7 and 10 orbits) so

that corotation torques are unsaturated. Gaps in the curves identify the ranges of planetary

masses for which the total torque is positive.
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Fig. 8.— Critical mass versus the relative disk thickness obtained from 3D calculations. At

q = qc, the offset is the largest. The error bars indicate the sampling of the data points

around the critical mass. The dashed line identifies the relationship qc ∝ h3 passing through

the data point with minimum h.
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Fig. 9.— Horseshoe zone half width as a function of the planet mass for the 35 planets of the

reference calculations. The dashed line represents the horseshoe zone half width expected

from Eq. (3). It scales with q1/2. The dotted line shows the relationship xs ∝ q1/3 that

passes through the large mass data points.
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Fig. 10.— Horseshoe drag (dashed line) and total torque (solid line) normalized excesses as

a function of planet mass. The shaded area shows the uncertainty on the horseshoe drag,

arising from the uncertainty on the horseshoe zone width. If one calls x−

s (resp. x+
s ) the

distance of the inner (resp. outer) separatrix to the corotation, then the upper (resp. lower)

limit of the shaded zone is given by using max(x−

s , x+
s ) (resp. min(x−

s , x+
s )) in Eq. (4), while

the dashed line uses (1/2)(x−

s + x+
s ).
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Fig. 11.— Streamline appearance for the four planet masses quoted in text, at t = 10 orbits.

The radial range is the same for cases A and B, and for cases C and D. It is ten times larger

for the latter than from the former. The aspect ratio is 1 : 1 for the cases C and D.
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Fig. 12.— Streamline appearance for the planet mass A quoted in text, at t = 10 orbit, with

a radial resolution ten times higher than in Fig. 11. The streamlines appearance and the

position of the stagnation points is almost indistinguishable from the lower resolution case.

The square shows a zone from the high resolution mesh.
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Fig. 13.— Azimuth φs of the stagnation point(s) (solid line) and radial distance to corotation

(rs−rc) of the fixed point(s) (dashed line) as a function of the planet mass. The gray shaded

zone shows the mass interval over which there is a unique stagnation point. The four vertical

dot-dashed lines show the masses for which the flow topology is sketched in Fig. 11.
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Fig. 14.— This graph shows log(Σ/Σ0) (dotted line), Φp/c
2
s (dashed line) and their sum

(Φ̃′/c2
s, solid line) as a function of azimuth at r = 1 for the case A (planet mass q = 5.44·10−6)

with the very high radial resolution (Nrad = 3860). We note in passing that the close up

shows two relative extrema (shown by vertical dotted lines) which correspond to the position

of the stagnation points shown in Fig. 11. The Bondi radius to softening length ratio for this

planet is rB/ε = 0.145 � 1, which implies that the flow is linear even at the planet location.

We see that indeed the maximum value of |Σ − Σ0|/Σ0 ≈ log(Σ/Σ0) is of the order of the

above ratio.
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Fig. 15.— Negative of the azimuth of the left stagnation point as a function of the planet

mass for the standard softening length case (ε = 0.3H , solid line) and for a three times

smaller softening length case (ε = 0.1H , dash-dotted line). The dashed line shows the Bondi

radius as a function of the planet mass. The horizontal dotted line shows the standard

softening length (ε = 0.015) while the horizontal three-dot-dashed line shows the shorter

softening length (ε = 0.005). The vertical lines show the mass for which the planet’s Bondi

radius is equal to the potential softening length in both cases. We see that the stagnation

point enters the Bondi sphere when rB ≈ ε.
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Fig. 16.— Left: The departure from linearity for 3D models with α = 1/2 for the unsaturated

(stars) and saturated (squares) case. The solid and dashed lines are the corresponding

analytical fit formulae used for evolving the planet. The dashed line (E1/2 = 0) refers to the

linear case. Right: The evolution of an embedded planet in the disk using these analytical

formulae (solid: unsaturated, dotted: saturated, dashed: linear).
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Fig. 17.— Domain of migration reversal, in the (h, q)-plane, in the unsaturated case (solid

curves) and partially saturated case (dashed curve). For each line style (solid or dashed),

the lower curve represents the minimal mass for migration reversal while the upper curve

represents the maximal mass for migration reversal. At low h (hence low q), the partially

saturated and unsaturated results almost coincide, since the corotation is very weakly sat-

urated (we work with a constant kinematic viscosity), while the reversal domain is more

narrow at large h, owing to the increasing corotation torque saturation. The right axis

labeling assumes a solar mass central object.


