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Abstract In the framework of the IPHI project (High 

Intensity Proton Injector), the RFQ cavity is divided into 

6 sections of 1 meter each, which are assembled in 3 

coupled segments. We present the tuning procedure of the 

IPHI aluminium cold model, that is (i) adjusting coupling 

capacitances and dipole rods for optimum stability and (ii) 

tuning the 96 slugs to achieve constant inter-vane voltage. 

Fields inside RFQ quadrants are measured by a fully 

automated bead-pull system. Tuning this 6-meter long 

cold model is a comprehensive training in view of the 

future tuning of the copper RFQ with the variable voltage 

profile. 

THE IPHI COLD MODEL 

A 6-meter aluminum cold model has been built to 

validate the tuning procedure of the IPHI RFQ. To tune it, 

several devices have to be adjusted at different steps of 

machining and assembling. 

The cold model can be divided in 2-meter long 

segments with capacitive coupling in-between which can 

be set by additional shims (Figure 1). The tuning of the 

segment end regions is made by machining the thickness 

of the end and coupling plates, and by dipole rods length 

adjustments. Finally, irregular tuners distribution and RF 

inputs will be used to achieve the setting of the inter-vane 

voltage. Here, we will work with 24 slug tuners and 2 RF 

ports (used as slugs) per quadrant for the tuning procedure 

of the model (Figure 2).  

Moreover a fully automated test bench has been 

developed to measure the field distribution [1]. Based on 

the perturbation method, a bead is guided successively 

through 4 quadrants and field distribution of excited mode 

is obtained. This test bench will be used to identify modes 

for the stability analysis and then for the tuning process of 

a constant voltage profile.  

   
Figure 1 left: cold model with test bench Right: coupling 

cell with dipolar rods and 0.8mm shims on either side 
 

 
Figure 2. 6-meter cold model. C,A,B,E,D and F: 1-meter 

sections names; X: coupling cell. 

4-WIRE LINE MODEL 

Eigen-value-dependent boundary conditions.  

A loaded, lossless 4-wire transmission line model [2] is 

used to relate differences between measured and desired 

inter-vane voltages, to tuning devices dimensions (dipole 

rods, end plates, coupling plates, and slugs). Voltages 

between adjacent vanes u = |u1,u2,u3,u4|, expressed in U = 

|UQ,US,UT| basis 

u1:=+UQ+US, u2:=−UQ+UT, u3:=+UQ−US, u4:= −UQ−UT, 

are solution of  −∂2
U/∂z

2 
+ AU = λU, where the A matrix 

contains line inductance and capacitance (derived from 

2D  simulations) vs. abscissa z, and λ = (ω/c)
2
. Boundary 

conditions (BC) are ∂Ua/∂z
 
 = −saUa , ∂Ub/∂z
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coupling cell z = ci. The operator thus defined has a pure 

point spectrum with real eigen-values [2]. Eigen-space is 

the direct sum of one quadrupole subspace with eigen-

pairs {λQi,|VQi(z),0,0|}, and two dipole subspaces 

{λSj,|0,VSj(z),0|} and {λTk,|0,0,VTk(z)|}. BC matrixes sa, sb 

and sci are directly proportional to equivalent circuit 

admittances. Quadrupole eigen-frequencies can be safely 

predicted with constant s values, because load terms are 

resonant (s # 0); then the differential problem is Sturm-

Liouville (SL), and is straightforwardly solved by linear 

algebra techniques. The case of dipole modes is quite 

different, because rods make load either resonant (when 

rod length is an even number of quarter 

wavelengths−including 0), either anti-resonant (rod 

length being an odd number of quarter wavelengths). The 

field of solving SL problems with eigen-value-dependent 

BC is still open [3] [4]; however we may take advantage 

of the underlying microwave circuit: (i) Foster's reactance 

theorem [5] states that any realizable admittance y 

verifies ∂ Im(y)/∂ω > 0; (ii) Richard's theorem [6] states 

that the admittance of a microwave circuit is a rationale 

function of exp(2jωq/ν), where q is the shortest 

commensurate-length line in the circuit, (ν = wave 

celerity). With (i), (ii), and the model of monopole 

antennas in mind, load BC can be expressed as 

s(ω) = tan σ(ω), where σ is a polynomial strictly 

increasing with ω. The SL problem may be solved 

continuously vs. ω, and its eigen-values λQi(ω), λSj(ω), 

λTk(ω) are continuous with ω. Note that mode index 

(number of voltage nodes in a segment) is not continuous 

on a given continuity branch: for a single segment RFQ, 

index jump may be 1 (resp. 2)  when one (resp. both) end 

load go through infinity. Problem solutions are finally 

obtained by solving the 3 sets of characteristic equations  

λQi(ω) = (ω/c)
2
,  λSj(ω) = (ω/c)

2
,  λTk(ω) = (ω/c)

2
. 

Numerical inputs to the model.  

First, dipole modes voltages have been measured in the 



300-600 MHz range for each RFQ segment. sa, sb and 

mode index are obtained by fitting cosine function 

(Gauss-Newton-Levenberg-Marquardt non-linear least-

squares)  to measured voltage, and σa, σb by 3
rd

 degree 

polynomial fit (Figure 3). Anti-resonances of rods are 

found to be close to quarter-wavelength, with  LRod/λ = 

0.220 ±0.005 (Figure 4). In Table 1, quadrupole modes 

are computed with constant BC, and show the regular 

progression of mode index n, as predicted by Sturm's 

alternation theorem. Dipole modes are computed with 

dispersive BC: clearly the alternation theorem no more 

applies, and two more modes show up in the 300-

600 MHz band.  
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Figure 3. BC fit vs. frequency (350 to 600 MHz) for 

segment ca_x; left: end 1, right: end 2; top: σ functions; 

bottom: s functions. Dots: measurements, lines: fit.  Rod 

lengths 155 mm. 

 
Figure 4. s fit vs. frequency (350 to 600 MHz) for 

segment ca_x; End 1 at left: rod lengths 135, 140, 144, 

150 and 155 mm (right to left). End 2 at right: rod lengths 

135, 140, 145, 150 and 155 mm (right to left).  

Table 1. Eigen-frequencies and mode index of ca_x 

segment, with 155 mm rods at both ends. *signal-to-noise 

ratio too low for proper index identification. 
 Dipole eigen-modes Quadrupole eigen-modes 
 BEAD-PULL MODEL BEAD-PULL MODEL 

####    MHz n MHz n MHz n MHz n 

1 337.35 0 337.18 0 348.75 0 350.83 0 

2 343.05 1 342.41 1 355.95 1 358.70 1 

3 362.10 2 361.89 2 378.75 2 381.33 2 

4 387.00 3 388.14 3 411.60 3 416.30 3 

5 411.60 * 413.10 4 458.40 4 460.79 4 

6 435.15 3 437.90 3 504.45 5 512.27 5 

7 474.00 4 472.92 4 567.30 6 568.81 6 

8 516.00 5 519.03 5     

9 571.95 6 568.55 6     

STABILITY ANALYSIS 

Let C1, C2, C3, C4 be the inter-vane capacitances per unit 

length, and let's define CQQ, CSQ, CTQ and CSSTT by 

C1 := CQQ + CSQ + CSSTT,  C2 := CQQ − CTQ − CSSTT, 

C3 := CQQ − CSQ + CSSTT,  C4 := CQQ + CTQ − CSSTT. 

Analysis shows that CQQ, CSQ, CTQ perturbations induce 

first order perturbations of resp. the Q, S and T 

components of voltage. CSSTT induces second order 

perturbations, which are neglected. Assume 

dCQQ(z) = ∆CQQ.δ(z−z0), where δ is the Dirac 

distribution. The resulting voltage perturbation of some 

Q-mode VQi is dVQi(z) = |(dVQi)Q,0,0|. Define function 

hQQ(z,z0) and norm ||hQQ|| by  
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with similar definitions for  ||hSQ|| and ||hTQ||. Note that 

using quadrant inductances for the analysis would lead to 

virtually identical quantities. ||hQQ|| is minimized by 

selecting the optimum value of coupling capacitance CC 

(here 1 pF, which required additional 0.8 mm shims to be 

added on either side of coupling plates), and ||hSQ||, ||hTQ|| 

by choosing proper end loads (here matched), given 

optimum CC (Figure 5).  

 
Figure 5. Stability analysis of  3-segment  RFQ model. 

 

Table 2. Dipole rod tuning summary. 

LRod ca_x x_be_x x_df 

135 -25.05 -32.35 +20.46 

140 -30.10 -34.41 0 

145 -38.23 -38.22 -23.60 

150 -44.90 -45.66 -33.36 

155 -52.69 -52.67 -42.50 

160 -60.02 -59.43 -49.96 

required -50.58 -50.00 -50.58 

tuned LRod 152 152 155* 

* preferred to 160 for mechanical stability. 

 

 

 

DIPOLE RODS TUNING 

Most critical for dipole component stability is D1 mode, 
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Figure 6. RFQ resonances after rod tuning and segment 

assembly. Quadrupole (red) and dipole excitations. 
a D 0−0−0 h D 2+1−2 γ Q 0+0+0 

b D 0−1−0 i D 2+2+2 δ Q ?±?±?* 

c D 0+0+0 j D 3−3±?* ε Q 1+1−1 

d D 1−1−1 k D 3±3±?* ζ Q 1+1+1 

e D 1+1−1 l D 3±3±?* η Q 2−2−2 

f D 1+1+1 α Q 0−0−0 ϑ Q 2+1−2 

g D 2−2−2 β Q 0−1−0 ι Q 2+2+2 

* signal-to-noise ratio too low for discrimination. 



because D1+1+1 is closest to accelerating Q0+0+0. Quadratic 

separation ϕ = sign [fD1−fQ0] . sqrt |fQ0
2
 − fD1

2
| has been 

measured vs. LRod for each segment, and LRod is 

interpolated for the required ϕ  computed from model 

(Table 2). Figure 6 shows the spectrum of coupled 

structure, with modes distributed as expected. 

SLUG TUNERS 

Tuners are modelled by stepped parallel inductance 

functions, having one "rectangular pulse" per slug. The 

line model relates the space of inductance perturbations 

(via the A matrix), to the space of voltage perturbations. 

First order perturbation analysis shows that eigen-

functions are a basis for voltage perturbation space; 

inductance basis functions can be built, having a one-to-

one correspondence with the VQi, VSj, VTK. The tuning 

process is then straightforward: first, measure RFQ 

voltage, compute error relative to objective, and expand 

error in the voltage basis. Use transfer function to 

transform voltage coefficients into inductance 

coefficients. Apply these to inductance basis functions, 

eventually with some gain coefficient, sum for each slug, 

and apply to RFQ. Several iterations of this process are 

usually necessary, since an eigen-problem is essentially 

non-linear.  

Twenty-six tuners per quadrant are used to tune the 6-

meter RFQ  model, so there are 26 inductance basis 

functions in each subset (Figure 7). Note that dummy RF 

ports are included to achieve stable sampling.  

 
Figure 7. Left: first six inductance basis functions of the 

Q-subset vs. abscissa; right: spectra vs. mode index. 

Spectral purity is perfect in the subspace spanned by the 

26 first eigen-modes. Some aliasing due to sampling is 

visible at higher indices. 

 

 
Figure 8. Left: first six filter sequences of the Q-subset vs. 

sample index; right: transmittances vs. mode index. 

Transmittance of  filter channels is perfect in the subspace 

spanned by the 24 first eigen-modes. Some aliasing due to 

sampling is visible at higher indices. 

Voltages are derived from bead-pull measurements of 

quadrants magnetic field. A small fraction only of the 

2001 samples acquired along the RFQ is usable, because 

of 3D local effects close to slugs, segment ends, etc. 

Linear sampling filters are used to derive voltage basis 

coefficients from measured samples. Sampling stability is 

highly conditioned by the number and positions of range 

samples; here 24 samples are used to build a 24-channel 

filter (Figure 8). 

CONCLUSION 

A total number of six iterations was enough to reduce 

voltage errors within ±1% (Table 3, Figure 9-left). Loop 

gain was set to 0.8, and bandwidth to 3 x 12 modes, in 

order to reject high-frequency noise. Figure 9-right shows 

that spurious components are at least 45 dB down the 

accelerating component, the loop being able to reduce 

major components by at least 30 dB. No spectral re-

growth was found above pass-band (indices > 12).   

Table 3. Tuning performance. 
 un-tuned tuned 

fQ0+0+0 348.897 MHz 351.979 MHz 

Q −31.    ~  +45  % −1.30 ~  +1.00  % 

S   −7.1  ~  +19  % −0.86 ~  +0.56  % 

T −32.    ~  +22  % −0.76 ~  +1.18  % 
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Figure 9. Left: Q, S and T components of accelerating 

mode Q0+0+0 vs. abscissa; blue: un-tuned, red: tuned, 

black: intermediate steps. Curves are normalized 

according to  ∫ VQ
2
 dz = 1. Right: spectral coefficients of 

Q, S and T components (dB) vs. mode index.  
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