1	Spectroscopy around ${}^{36}Ca^*$
2	A. Bürger ¹ , F. Azaiez ² , M. Stanoiu ³ , Zs. Dombrádi ⁴ ,
3	A. Algora ⁴ , A. Al-Khatib ¹ , B. Bastin ⁵ , G. Benzoni ⁶ ,
4	R. Borcea ⁷ , Ch. Bourgeois ² , P. Bringel ¹ , E. Clément ⁸ ,
5	JC. Dalouzy ⁹ , Z. Dlouhý ¹⁰ , A. Drouart ⁸ , C. Engelhardt ¹ ,
6	S. FRANCHOO ² , Zs. Fülöp ⁴ , A. Görgen ⁸ , S. Grévy ⁹ , H. Hübel ¹ ,
7	F. Ibrahim ² , W. Korten ⁸ , J. Mrázek ¹⁰ , A. Navin ⁹ , F. Rotaru ⁷ ,
8	P. ROUSSEL-CHOMAZ ⁹ , MG. SAINT-LAURENT ⁹ , G. SLETTEN ¹² ,
9	D. SOHLER ⁴ , O. SORLIN ⁹ , C. TIMIS ¹¹ , CH. THEISEN ⁸ , D. VERNEY ² AND
10	S. WILLIAMS ¹¹ .
11	¹ Helmholtz-Institut für Strahlen- und Kernphysik, Univ. Bonn, Germany
12	² Institut de Physique Nucléaire, IN2P3-CNRS, Orsay, France
13	3 GSI, Darmstadt, Germany
14	⁴ Institute of Nuclear Research, Debrecen, Hungary
15	⁵ Laboratoire de Physique Corpusculaire, Caen, France
16	⁶ Università degli studi e INFN sezione di Milano, Italy
17	⁷ IFIN-HH, Bucharest-Magurele, Romania
18	⁸ DAPNIA/SPhN, CEA Saclay, France
19	⁹ GANIL, Caen, France
20	¹⁰ Nuclear Physics Institute of ASCR, Řež, Czech Republic
21	¹¹ Department of Physics, University of Surrey, UK
22	¹² Niels Bohr Institute, University of Copenhagen, Denmark

An experiment was performed to study excited states in neutron-deficient nuclei around Ca. A one-neutron knockout reaction was used to produce ³⁶Ca ions from a ³⁷Ca secondary beam, and in-beam γ -rays were measured. The 2⁺ energy in ³⁶Ca is compared to the mirror nucleus ³⁶S to deduce information on the isospin dependence of the nuclear force near the proton drip line. The energy of the first excited 2^+ state in 36 Ca and the cross section for the 1-neutron knock-out reaction from 37 Ca at $\approx 45 \cdot A \text{ MeV}$ were obtained. Furthermore, for two other $T_z = -2$ nuclei, 28 S and 32 Ar, the de-excitaion of the first 2^+ state has been observed.

PACS numbers: 21.10.-k, 23.20.Lv, 27.30+t

^{*} Presented at the 41st Zakopane School of Physics

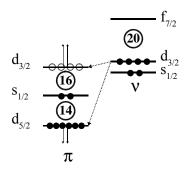


Fig. 1. Illustration of the effect of the $\nu d_{3/2}$ orbital filling in ³⁶S. Due to the tensor interaction, the $\pi d_{3/2}$ level is shifted up and the $\pi d_{5/2}$ level is shifted down in energy.

In recent years, an intensive research activity was devoted to the study 1 of nuclear structure of extremely neutron- or proton-rich nuclei, both the-2 oretically and experimentally. In this context, we aimed in the present 3 experiment to measure the excitation energy of the first 2^+ state in 36 Ca 4 and compare it to its mirror nucleus ${}^{36}S$. In the ground state of ${}^{36}S$, the 5 $\pi d_{5/2}$ and $s_{1/2}$ as well as the $\nu d_{3/2}$ orbitals are completely filled. In ${}^{36}Ca$, 6 the same orbitals are occupied with neutron and proton shells exchanged. 7 Due to the tensor interaction between the proton spin-orbit partners $d_{5/2}$ 8 and $d_{3/2}$ and the neutron $d_{3/2}$ orbital, the proton $d_{5/2}$ orbital becomes more 9 bound whereas the $\pi d_{3/2}$ orbital becomes less bound than for nuclei where 10 the $\nu d_{3/2}$ shell is not completely filled (1). Assuming that the effect of the 11 filling of the $\nu d_{3/2}$ on the $\pi s_{1/2}$ is weak, this enlarges the gaps between the 12 $\pi s_{1/2}$ and $\pi d_{3/2}$ levels and between the $\pi s_{1/2}$ and $\pi d_{5/2}$ levels, as illustrated 13 in fig. 1. These shifts lead to high excitation energies for the first 2^+ states in 14 both ³⁶S and ³⁴Si, which from this point of view reflects a spherical rigidity 15 comparable to the doubly magic nucleus ⁴⁰Ca. For ³⁶Ca, the mirror nucleus 16 of ³⁶S, the same picture should apply with protons and neutrons exchanged, 17 so that also in this case a high excitation energy can be expected for the 2^+ 18 state. 19

The experiment was performed at the GANIL in Caen, France. The 20 two-step fragmentation technique was used (2) to populate excited states in 21 36 Ca. A primary beam of 40 Ca with an energy of 95 A MeV was fragmented 22 on a carbon foil in the SISSI target device (3). The Alpha spectrometer, 23 optimised for ³⁷Ca or, in a different setting, ³⁶Ca, was used to purify the 24 resulting beam cocktail with the help of a degrader. Event-by-event iden-25 tification of the beam particles was achieved using a time measurement 26 between the high frequency of the accelerator and the time signal from a 27 CATS detector (4), that was placed just in front of the secondary target. In 28

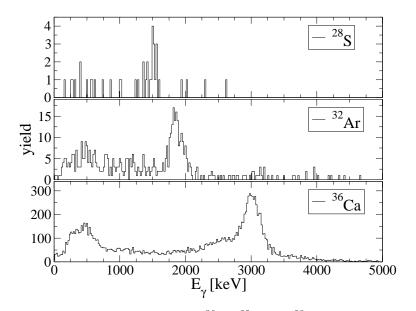


Fig. 2. Gamma-ray spectra for the nuclei 36 Ca, 32 Ar and 28 S. The energies of the 2⁺ states have been determined to be 3036(11) keV, 1873(20) keV and 1525(30) keV, respectively.

the secondary target, a ⁹Be foil of 200 mg/cm^2 thickness, further nucleons were removed at energies between $60 \cdot A$ MeV before and $35 \cdot A$ MeV after the target. Behind the secondary target, the produced fragments were identified through time-of-flight, $B\rho$ and energy-loss measurements in the SPEG spectrometer (5). For some settings, suppression of the secondary beam in the focal plane necessitated the placement of an additional slit in SPEG.

Gamma-ray energies were measured with the *Château de Cristal*, an 7 array of 74 BaF₂ detectors (6), that was placed around the Be target. The γ -ray detectors were calibrated using a ²²Na source and well separated and 8 9 sufficiently intense known transitions in the nuclei ²⁸Si, ³²S, ³⁴Ar, ²⁹Si and 10 ³³Cl, which were also produced in the secondary target from different beam 11 components. The Doppler-correction for γ -ray energies from in-flight decays 12 used the momentum measured in SPEG, assuming that the decays took 13 place in the middle of the target. An add-back procedure was applied to 14 reconstruct Compton-scattered γ -ray energies. Gamma-ray spectra for the 15 three nuclei ³⁶Ca, ³²Ar and ²⁸S are shown in fig. 2. The energy of the 16 2^+ state in ³⁶Ca has been determined to be $E(2^+) = 3036(11) \text{ keV}$, in 17 agreement with the value measured at GSI in a similar experiment (7). The 18 estimated $E(2^+)$ for ²⁸S is $\approx 1525(30)$ keV, and $\approx 1873(20)$ keV for ³²Ar, 19 which is 50 keV above the value reported by Cottle *et al.* (8). 20

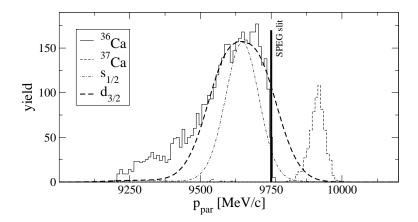


Fig. 3. Inclusive momentum distributions of ³⁶Ca and ³⁷Ca as measured in SPEG. The distribution for ³⁶Ca is cut by a slit that was installed in SPEG to suppress the secondary beam; in the dedicated run for ³⁷Ca this slit was not installed. Included are calculated momentum distributions for one-neutron removal from $d_{3/2}$ or $s_{1/2}$ states, folded with the distribution of the secondary beam.

The measured value for the energy of the first 2^+ state in 36 Ca is 266 keV 1 lower than that in the mirror nucleus, ³⁶S. This is, besides ¹⁴C-¹⁴O where 2 the difference is 422(11) keV, one of the largest mirror energy differences 3 observed so far for a first excited 2^+ state. Qualitatively, this might be 4 explained as the combined effect of: (i) an almost pure ν nature of the 2^+ 5 state in ³⁶Ca due to the Z = 20 gap, (ii) an almost pure π nature of the 2⁺ 6 state in ³⁶S due to the N = 20 gap, (iii) the almost pure 1-particle 1-hole configurations of the 2⁺ states in ³⁶Ca and ³⁶S due to the large Z, N = 167 8 gaps, and (iv) the Coulomb energy difference between typical s and d states. 9 Figure 3 shows the momentum distribution for 36 Ca and a comparison 10 with calculated momentum distributions (9; 10; 11) as expected for neutron 11 knock-out from the valence orbits $d_{3/2}$ and $s_{1/2}$. The width of the inclu-12 sive experimental momentum distribution fits well to the neutron knock-out 13 from a $d_{3/2}$ state. From the integral of the extrapolated distribution, the 14 number of ³⁶Ca ions was determined. Using the number of incident ³⁷Ca 15 ions and the target thickness, a preliminary experimental cross section for 16 the one-neutron removal ${}^{37}\text{Ca} \rightarrow {}^{36}\text{Ca}$ of 5.3 (20) mb was obtained, while the 17 calculated cross section is 18.6 mb assuming a knock-out from $\nu d_{3/2}$. This 18 represents a quenching of $\approx 30\%$ similar to what has been found in the case of one-neutron knockout from 32 Ar, a nucleus which has a similarly large 19 20 neutron separation energy (12). 21

We wish to thank the accelerator crew of GANIL for their smooth running of the secondary beam production and the SPEG technical staff for 2

¹ their support during the experiment.

REFERENCES

- ³ [1] T. Otsuka *et al.*, Phys. Rev. Lett. **95**, 232502 (2005).
- ⁴ [2] M. Stanoiu *et al.*, Eur. Phys. J. A **20**, 95 (2003).
- ⁵ [3] E. Baron, J. Gillet, and M. Ozille, Nucl. Instr. Meth. A **362**, 90 (1995).
- ⁶ [4] S. Ottini-Hustache *et al.*, Nucl. Instr. Meth. A **431**, 476 (1999).
- ⁷ [5] L. Bianchi *et al.*, Nucl. Instr. Meth. A **276**, 509 (1989).
- [6] F. A. Beck, in Nuclear Science Research Conference Series (Harwood, New York, 1984), Vol. 7, p. 129.
- ¹⁰ [7] P. Doornenbal *et al.*, Phys. Rev. C (2006), submitted.
- ¹¹ [8] P. D. Cottle *et al.*, Phys. Rev. C 88, 172502 (2002).
- ¹² [9] C. A. Bertulani and P. G. Hansen, Phys. Rev. C **70**, 034609 (2004).
- ¹³ [10] C. A. Bertulani and A. Gade, Comp. Phys. Comm. **175**, 372 (2006).
- [11] P. G. Hansen and J. A. Tostevin, Ann. Rev. Nucl. Part. Sci. 53, 219
 (2003).
- ¹⁶ [12] A. Gade *et al.*, Phys. Rev. Lett. **93**, 042501 (2004).