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Measurements of the CKM angle γ using ADS, GLW and other methods
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On behalf of the BABAR and Belle collaborations, we report on analyses sensitive to the angle γ and the sum

of angles 2β + γ of the Unitarity Triangle.

1. Introduction

The angle γ (or φ3) of the unitarity triangle is
related to the phase of the CKM matrix element
Vub through Vub = |Vub|e

−iγ . We report on two
classes of measurements: time independent mea-
surements in decays B± → D0/D0K± sensitive
to the angle γ; time dependent asymmetries in
decays B0 → D(∗)±π∓ or B0 → D0K0 sensitive
to the sum of angles 2β + γ.

2. Measurement of γ in B± → D0/D0K±

The measurement of γ in charged B decays ex-
ploits the interference between B− → D(∗)0K(∗)−

and B− → D(∗)0K(∗)− (Fig. 1) that occurs when
the D(∗)0 and the D(∗)0 decay to common final
states.
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Figure 1. Feynman diagrams for B− →
D(∗)0K(∗)− and D(∗)0K(∗)−.

Two methods are presented here. In the GLW
method [1] the D0 and the D0 decay to a CP
eigenstate. In the ADS method [2] the D0 from
the favored b → c amplitude is reconstructed in

the doubly-Cabbibo suppressed final state K+π−,
while the D0 from the b → u suppressed ampli-
tude is reconstructed in the favored final state
K+π−. The experimental observables depend
on two additional parameters: the magnitude rB

of the ratio of the amplitudes for the processes
B− → D0K− and B− → D0K− (Fig. 1) and
the relative strong phase δB between these two
amplitudes.

2.1. The GLW method and results
The results of the GLW analyses are ex-

pressed in terms of the ratios of partial rates
RCP± = 2(Γ−

CP± + Γ+
CP±)/(Γ+ + Γ−) and of

the partial-rate charge asymmetries ACP± =
(Γ−

CP± − Γ+
CP±)/(Γ−

CP± + Γ+
CP±), where Γ−

CP± =

Γ(B−→D0
CP±K−), Γ+

CP± = Γ(B+→D0
CP±K+)

and Γ± = Γ(B±→D0K±)
CP+ refers to the CP-even final states π+π−

and K+K− and CP− refers to the CP-odd final
states K0

S
π0, K0

S
φ and K0

S
ω. RCP± and ACP±

are related to the angle γ, the amplitude ratio rB

and the strong phase difference δB through the
relations RCP± = 1 + r2

B ± 2rB cos δB cos γ and
ACP± = ±2rB sin δB sin γ/RCP± [1], thus allow-
ing a determination of the 3 unknowns (rB , δB

and γ) up to an 8 fold ambiguity in γ.
BABAR and Belle have published recently re-

sults, summarized in Table 1, using statistical
samples larger than 200 million BB events [3–6].
The averages have been computed by the HFAG
group [7]. Due to the limited statistics, the GLW
method alone is not able to provide strong con-
straints on γ.
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Table 1
Summary of BABAR and Belle measurements of the GLW observables RCP and ACP .

Mode/Exp ACP+ ACP− RCP+ RCP−

B → D0K/BABAR +0.35± 0.13 ± 0.04 −0.06± 0.13 ± 0.04 0.90 ± 0.12 ± 0.04 0.86 ± 0.10 ± 0.05
B → D0K/Belle +0.06± 0.14 ± 0.05 −0.12± 0.14 ± 0.05 1.13 ± 0.16 ± 0.08 1.17 ± 0.14 ± 0.14
Average +0.22 ± 0.10 −0.09 ± 0.10 0.90 ± 0.10 0.94 ± 0.10

B → D∗0K/BABAR −0.10± 0.23+0.03
−0.04 - 1.06 ± 0.26+0.10

−0.09 -
B → D∗0K/Belle −0.20± 0.22 ± 0.04 +0.13± 0.30 ± 0.08 1.41 ± 0.25 ± 0.06 1.15 ± 0.31 ± 0.12
average −0.15 ± 0.16 +0.13 ± 0.31 1.25 ± 0.19 1.15 ± 0.33
B → D0K∗/BABAR −0.08± 0.19 ± 0.08 −0.26± 0.40 ± 0.12 1.96 ± 0.40 ± 0.11 0.65 ± 0.26 ± 0.08

Table 2
Summary of BABAR and Belle ADS measurements.

Mode/Exp RADS RADS rB rB

90% C.L.limit 90% C.L.limit

B → D0K/BABAR 0.013+0.011
−0.009 < 0.029 rB < 0.23

B → D0K/Belle 0.000 ± 0.008± 0.001 < 0.0139 rB < 0.18

B → D∗0
(D0π0)K/BABAR −0.002+0.010

−0.006 < 0.023 r∗2B < (0.16)2

B → D∗0
(D0γ)K/BABAR 0.011+0.018

−0.013 < 0.045

B → D0K∗/BABAR 0.046± 0.031 ± 0.08 rB = 0.28+0.006
−0.010

2.2. ADS Results
In the ADS method the decays D0 → K+ π−

and D0 → K+ π− are used. The overall effec-
tive branching ratio for the final state B− →
[K+π−]D0K− is expected to be small (∼ 10−7),
but the two interfering diagrams are of the same
order of magnitude and large asymmetries are
therefore expected. The favored decay mode
B− → [K−π+]D0K− is used to normalize the
measurement and cancel many experimental sys-
tematics. The main experimental observables
are the ratio RADS of the suppressed to favored
modes and the B−/ B+ asymmetry:

RADS =
B([K+π−]D0K−) + B([K−π+]D0K+)

B([K−π+]D0K−) + B([K+π−]D0K+)

= r2
D + 2rDrB cos γ cos(δB + δD) + r2

B(1)

AADS =
B([K+π−]D0K−) − B([K−π+]D0K+)

B([K+π−]D0K−) + B([K−π+]D0K+)

= 2rDrB sin γ sin(δB + δD)/RADS , (2)

where rB = |A(B− → D0K−)/A(B− → D0K−)|
and rD = |A(D0 → K+π−)/A(D0 → K−π+)| =
0.060 ± 0.003[8] are the suppressed to favored B
and D amplitude ratios, and δB and δD are the

strong phase differences between the two B and
D decay amplitudes, respectively. RADS is highly
sensitive to r2

B. A summary of the BABAR and
Belle ADS results can be found in Table 2, and
more details on the analysis in Ref.[9–11]. For the
D0K and D∗0K channels limits on RADS and rB

are extracted. BABAR has recently presented an
ADS analysis based on the the three-body decay
mode D0 → K+π−π0. Some complications arise
due to the variations of the amplitude and phase
over the Dalitz phase space. No statistically sig-
nificant signal is observed in the suppressed mode
and the 95% CL upper limits RADS < 0.039 and
rB < 0.185 are set [12].

Similar to the GLW analysis, more statistics is
needed to constraint γ from the ADS method.

3. sin(2β + γ) measurements

Time-dependent asymmetries in B0 → D(∗)π,
D(∗)ρ and B0 → D(∗)0K0 can be used to con-
strain sin(2β + γ)[13]. As β is well known from
b → cc̄s, a constraint on the angle γ follows.
The B0 → D(∗)π method uses an interference be-
tween the usual Cabibbo-favored b → c channel
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and the doubly-Cabibbo suppressed b → u chan-
nel (Fig.2). These two amplitudes have a relative
weak phase of γ, and a weak phase of 2β is pro-
vided by the B0B0 mixing. These modes have the
advantage of a ”large” (∼ 0.5%) branching frac-
tion but the price to pay is the small ratio r of
the suppressed to favored amplitudes,

r =

∣

∣

∣

∣

A(B0 → D(∗)+h−

A(B0 → D(∗)+h−

∣

∣

∣

∣

∝ λ2(∼ 0.02).

This results in small CP-asymmetries. The ratio
r cannot be measured directly, but can be esti-
mated from the recent BABAR measurement [14]
of the branching fractions

B(B0 → D+
s π−) = (1.3 ± 0.3 ± 0.2) × 10−5

B(B0 → D∗+
s π−) = (2.8 ± 0.6 ± 0.5) × 10−5

using theoretical assumptions to obtain:

rDπ = (1.3 ± 0.2(stat) ± 0.1(syst)) × 10−2

rD∗π = (1.9 ± 0.2(stat) ± 0.2(syst)) × 10−2.

For B0 → Dρ, r is estimated in a similar way
from a measurement of B0 → D+

s ρ− [15], yielding
rDρ = (0.3 ± 0.6(stat) ± 0.1(syst)) × 10−2.
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Figure 2. Feynman diagrams for the Cabibbo-
favored decay B0 → D∗−π+ (left) and the
Cabibbo-suppressed decay B0 → D∗−π+ (right).

The experimental observables are the co-
efficients S± and C of the sin(∆m∆t) and
cos(∆m∆t) terms in the time dependent asym-
metries of B0(B̄0) → D(∗)±π∓ (or D(∗)±ρ∓). For
small values of r, the parameter S± is given by
S± ≃ 2r sin(2β + γ ± δ), where δ is the strong
phase difference between the b → u and b → c
decay amplitudes. The parameters S± can be
rewritten in terms of a = 2r sin(2β+γ) cos(δ) and

clept = cos(2β + γ)[2r sin(δ)] for lepton-tagged
events. In the case of kaon tags, CP violation
effects on the tag side pollute the measurement
of the c parameters.

BABAR and Belle use two experimental methods
for reconstructing B0(B0) → D(∗)π and D(∗)ρ
decays. They perform either exclusive recon-
struction, where the hadronic decay modes with
D0 → K−π+, K−π+π0 and K−π+π−π+ are
fully reconstructed, or partial reconstruction of
D∗±π∓, where only the slow π from D∗ → D0π is
reconstructed. BABAR has published results based
on a statistics of 232×106 BB events [16,17] while
Belle has released a new result based on an inte-
grated luminosity of 357fb−1, corresponding to
approximately 386 × 106 BB events [18]. These
results are reported in Fig.3.

BABAR sets the lower limits | sin(2β + γ)| >
0.64 (0.40) at 68% (90%) C.L. The constraints
[19] in the ρ-η plane are shown in Fig. 4.

4. Search for B0 → D
(∗)+
s a−

0(2)

It was recently suggested to use the decays
B0 → D(∗)+a−

0(2) for measuring sin(2β + γ) [20].

These decay can proceed through two diagrams
similar to those of Fig.2 and it is expected that
the Vcb amplitude is significantly suppressed re-
spective to the Vub amplitude, giving significant
CP-asymmetries.

The Vub-mediated part of the B0 → D(∗)+a−
0(2)

decay amplitude can be related to B0 →

D
(∗)+
s a−

0(2) using tan (θCabibbo) = |Vcd/Vcs| and

the ratio of the decay constants f
D

(∗)
s

/fD(∗) .

BABAR finds no evidence for these decays and
set upper limits at 90% C.L. on the branch-
ing fractions [21]: B(B0 → D+

s a−
0 ) < 1.9 ×

10−5, B(B0 → D∗+
s a−

0 ) < 3.6 × 10−5, B(B0 →
D+

s a−
2 ) < 1.9 × 10−4, and B(B0 → D∗+

s a−
2 ) <

2.0 × 10−4. These upper limits suggest that the
branching ratios of B0 → D(∗)+a−

0(2) are too

small for CP -asymmetry measurements given the
present statistics of the B-factories.
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a parameters
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Figure 3. BABAR and Belle sin(2β+γ) results and
HFAG averages [7].
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Figure 4. Constraints in the ρ-η plane from
sin(2β +γ) measurements [19]. The white area
is excluded at the 95% CL.

5. Study of B0 → D(∗)0K(∗)0

In the decay modes B0 → D(∗)0K0 the CP
asymmetry appears as a result of the interference
between two diagrams leading to the same final
state D(∗)0K0

S
.

��d
b

�ds
�uVbB0 D(�)0
K(�)0V �us �d

�b
d�s
�uVubB0 D(�)0
K(�)0V �s

Figure 5. The decay diagrams for the b → c tran-
sition B0 → D(∗)0K0 and the b → u transition
B0 → D(∗)0K0.

A direct determination of the relevant ratio of
decay amplitudes r

(∗)
B is not possible but insight

into the B decay dynamics affecting r
(∗)
B can be
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gained by measuring a similar amplitude ratio
r̃B ≡ |A(B0 → D0K∗0)/A(B0 → D0K∗0)| us-
ing the self-tagging decay K∗0 → K−π+.

BABAR has recently published a new measure-
ment of the B0 → D(∗)0K0

S
, B0 → D0K̄∗0 and

B0 → D̄0K̄∗0 branching fractions, based on a
data sample of 226×106 BB events [22]. Defining
B(B̃0 → D∗0K̃0) ≡ (B(B0 → D∗0K0) + B(B0 →
D∗0K0))/2 and B(B̃0 → D0K̃0) ≡ (B(B0 →
D0K0) + B(B0 → D0K0))/2, the results of this
measurement are:

B(B̃0 → D0K̃0) = (5.3 ± 0.7 ± 0.3)× 10−5

B(B̃0 → D∗0K̃0) = (3.6 ± 1.2 ± 0.3)× 10−5

B(B0 → D0K∗0) = (4.0 ± 0.7 ± 0.3)× 10−5

B(B0 → D0K∗0) < 1.1 × 10−5 at 90% C.L.

From the absence of signal for the Vub mediated
mode B0 → D0K∗0, the limit r̃B < 0.40 at 90%
C.L. is obtained suggesting that a substantially
larger data sample is needed for a competitive
measurement of sin(2β + γ) in these decays.

6. Conclusion and prospects

The angle γ/φ3 is the most difficult to measure
of the Unitarity Triangle angles at the B-factories.
Very promising progress has been made in con-
straining it over the past few years. All the mea-
surements presented here are statistically limited
and will improve with the increase of statistics.
Unfortunately, perspectival studies at the 1 ab−1

horizon indicate that the GLW and ADS analy-
ses will not be competitive with Dalitz (GGSZ)
methods. On the other hand sin(2β + γ) mea-
surements using B0 → D(∗)π provide already in-
teresting constraints in the ρ-η plane and deserve
to be pursued.
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