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Bethe-HeitlerFIG. 1: Lowest-order QED diagrams for the proess ep !ep, inluding the DVCS and Bethe-Heitler (BH) amplitudes.The external momentum four-vetors are de�ned on the di-agram. The virtual photon momenta are q = k � k0 in theDVCS- and � = q� q0 in the BH-amplitudes. The invariantsare: W 2 = (q+p)2, Q2 = �q2 > 0, t = �2, xBj = Q2=(2p �q),and the DVCS saling variable � = �q2=(q�P ) � xBj=(2�xBj),with q = (q + q0)=2 and P = p+ p0.Kin k0 �e Q2 xBj �q W q0(0Æ)(GeV/) (Æ) (GeV2) (Æ) (GeV) (GeV/)1 3.53 15.6 1.5 0.36 �22:3 1.9 2.142 2.94 19.3 1.9 0.36 �18:3 2.0 2.733 2.34 23.8 2.3 0.36 �14:8 2.2 3.33TABLE I: Experimental ep ! ep kinematis, for inidentbeam energy E = 5:75 GeV. �q is the entral value of theq-vetor diretion. The PbF2 alorimeter was entered on �qfor eah setting. The photon energy for q0 k q is denotedq0(0Æ).tion between DVCS and DIS. Diehl et al. [6℄ showedthat the twist-2 and twist-3 ontributions in the DVCS-BH interferene terms (the �rst two leading orders ina 1=pQ2 expansion) ould be extrated independentlyfrom the azimuthal-dependene of the heliity-dependentross setion. Burkardt [7℄ showed that the t-dependeneof the GPDs is the Fourier onjugate to the transversespatial distribution of quarks in the in�nite momentumframe as a funtion of momentum fration. Diehl [8℄ andBelitsky et al. [9℄ extended this interpretation to the gen-eral ase of skewness � 6= 0.These elegant theoretial onepts stimulated an in-tense experimental e�ort in DVCS. The H1 [10, 11℄ andZEUS [12℄ ollaborations at HERA measured the rosssetion for xBj � 2� � 10�3. The HERMES ollabo-ration measured relative beam-heliity [13℄ and beam-harge asymmetries [14, 15℄. Relative beam-heliity [16℄and longitudinal target [17℄ asymmetries were also mea-sured at the Thomas Je�erson National Aelerator Fa-ility (JLab) by the CLAS ollaboration.We initiated E00-110 in Hall A at JLab to obtain rosssetion measurements with good ontrol of exlusivity totest the hypothesis of twist-2 dominane in the kinemat-is aessible with 6 GeV eletrons. We report here themeasurement of the ross setion of the ~ep ! ep re-ation for positive and negative eletron heliity in the

FIG. 2: Experimental on�guration for the DVCS experi-ment in JLab Hall A. Eletrons sattered from the liquid H2target are deteted in the HRS-L. Photons are deteted in thePbF2 alorimeter. A sample of protons are deteted in thesintillator array.kinematis of Table I. Fig. 1 illustrates the lowest-orderQED diagrams for this proess.Our data were aquired in JLab Hall A [18℄ (Fig. 2).The 5.75 GeV eletron beam was inident on a 15 mliquid H2 target. Our typial luminosity was 1037/m2/swith 76% beam polarization. We deteted the satteredeletrons in the left (as viewed from the beam) High Res-olution Spetrometer (HRS-L). With the use of detetorswith diret view of the target at high luminosity, we tookare to minimize bakground and absorption proessesin the target and surrounding material. We built a newvauum hamber surrounding the liquid hydrogen target,with a spherial form of radius 63 m and of wall thik-ness 1 m Al. The windowless exit beam pipe joined thissphere with an expanded 13 m irular inner aperturearing to math the standard downstream beam pipe at2 m. A thin window faed the entrane window of theHRS-L. Photons (and  oinidenes from �0 deay)were deteted in a 11 � 12 array of 3 � 3 � 18:6 m3PbF2 rystals, whose front fae was loated 110 m fromthe target enter. The PMT signals from the PbF2 el-ements were digitized by a 128 sample � 1GHz wave-form digitizer, based on the Analog Ring Sampler (ARS)memory hip [19℄. A passive splitter also sent eah PbF2signal to a digital trigger-validation iruit. A standardeletron trigger from the HRS-L stopped the ARS a-quisition and triggered a programmable width (typially60 ns) sample-and-hold (SH) integration and digitizationon eah PbF2 hannel in the digital trigger. The trig-ger then omputed all overlapping 2� 2 luster sums. Ifno sum was found over a programmable threshold set to1 GeV equivalent, all ARS and SH bu�ers were learedand aquisition restarted. This validation-reset yle hasa 500 ns deadtime. When the trigger found luster(s)above threshold, all signals in the orresponding ARShannels were digitized and reorded for that event, to-gether with the HRS information. We alibrated the2
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FIG. 3: Missing mass squared for H(e; e0)X events (greenurve) at Q2 = 2:3 GeV2 and �t 2 [0:12; 0:4℄ GeV2, inte-grated over the azimuthal angle of the photon � . The blakurve shows the data one the H(e; e0)X 0 events have beensubtrated. The other urves are desribed in the text.PbF2 array by oinident elasti H(e; e0CalopHRS) data.With (elasti) k0 = 4:2 GeV/, we obtain a PbF2 resolu-tion of 2.4% in energy and 2 mm in transverse position(one-�). The alibration was monitored during the ex-periment by intermittent blue LED sans and by reon-strution of the �0 !  mass from H(e; e0�0)X events.O�ine analysis of the ARS waveforms for eah hannelallowed us to maintain this resolution, even with ai-dental pileup pulses separated by as little as 4 ns.We present in Fig. 3 the missing mass squared ob-tained for H(e; e0)X events, with oinident eletron-photon detetion. After subtration of an aidental o-inidene sample, our data is essentially bakground free:we have negligible ontamination of non-eletromagnetievents in the HRS and PbF2 spetra. In addition toH(e; e0)p, however, we do have the following ompet-ing hannels: ep ! e�0p, ep ! e�0N�, ep ! eN�,ep ! eN�� : : :. From symmetri (lab-frame) �0-deay, we obtain a high statistis sample of H(e; e0�0)X0events, with two photon lusters in the PbF2 alorime-ter. From these events, we determine the statistial sam-ple of [asymmetri℄ H(e; e0)X0 events that must bepresent in our H(e; e0)X data. The M2X spetrum dis-played in blak in Fig. 3 was obtained after subtratingthis �0 yield from the total (green) distribution. Thisis a 14% average subtration in the exlusive windowde�ned by 'M2X ut' in Fig. 3. Depending on the binin � and t, this subtration varies from 6% to 29%.The result shows a lear exlusive peak with a shoul-der from threshold-N� and � prodution, and a on-tinuum rise above the H(e; e0)N�� : : : threshold. Afterour �0 subtration, the only remaining hannels, of typeH(e; e0)N�, N��, et. are kinematially onstrained toM2X > (M +m� )2. This is the value ('M2X ut' in Fig. 3)we hose for trunating our integration. Resolution ef-fets an ause the inlusive hannels to ontribute be-

low this ut. To evaluate this possible ontamination, weused an additional proton array (PA) of 100 plasti sin-tillators. The PA subtended a solid angle (relative to thenominal diretion of the q-vetor) of 18Æ < �p < 38Æand 45Æ < �p = 180Æ � � < 315Æ, arranged in 5rings of 20 detetors. For H(e; e0)X events near theexlusive region, we an predit whih blok in the PAshould have a signal from a proton from an exlusiveH(e; e0p) event. The red histogram is the X = (p + y)missing mass squared distribution for H(e; e0p)y eventsin the predited PA blok, with a signal above an e�etivethreshold 30 MeV (eletron equivalent). The blue urveshows our inlusive yield, obtained by subtrating thenormalized triple oinidene yield from the H(e; e0)Xyield. The (smooth) violet urve shows our simulatedH(e; e0)p spetrum, inluding radiative and resolutione�ets, normalized to �t the data for M2X � M2. Theyan urve is the estimated inlusive yield obtained bysubtrating the simulation from the data. The blue andyan urves are in good agreement, and show that ourexlusive yield has less than 3% ontamination from in-lusive proesses.The following equations reprodue the onsistent ex-pansion of the DVCS ross setion to order twist-3 ofBelitsky, M�uller, and Kirhner [20℄. The azimuthal an-gle � of the deteted photon is de�ned in a right-handed oordinate system with ẑq = q̂ and ŷq paral-lel to k � k0. This de�nition of � agrees with the\Trento-Convention" for � [21℄, and is the de�nition usedin [13℄ and [16℄. Note that this azimuth onvention dif-fers from [20℄ by � = � � �[20℄. In the following ex-pressions, we utilize the di�erential phase spae elementd5� = dQ2dxBjd�edtd� . The heliity-dependent (d�)and heliity-independent (d�) ross setions, are:d5�d5� = 12 �d5�+d5� � d5��d5� �= sin(�)�=1 =m �CI (F)�� sin(2�)�=2 =m �CI (Fe�)�+d5�(jDV CSj2)d5� (1)d5�d5� = 12 �d5�+d5� + d5��d5� �= d5�(jBHj2)d5� + d5�(jDV CSj2)d5�+�<0<e �CI(F)� + �<0;�<e �CI +�CI� (F)� os(�)�<1<e �CI(F)�+os(2�)�<2<e �CI(Fe�)� (2)The �<;=n are kinemati fators whih depend on xBj, Q2,t, � , and s = (k + p)2. Their � dependene arisesfrom the eletron propagators of the BH amplitude. TheCI and �CI amplitudes are the angular harmoni termsde�ned in Eqs. 69 and 72 of [20℄ (we have suppressed the3



C. Mu~noz Camaho et al., DVCS Cross Setionsubsript \unp" sine our measurements are only with anunpolarized target). These angular harmonis depend onthe interferene of the BH amplitude with the set F =fH; E ; ~H; ~Eg of twist-2 Compton form fators (CFFs) orthe related set Fe� of e�etive twist-3 CFFs:CI(F) = F1(t)H(�; t) + �GM(t) ~H(�; t)� t4M2F2(t)E(�; t) (3)CI(Fe�) = F1(t)He�(�; t) + �GM(t) ~He� (�; t)� t4M2F2(t)Ee�(�; t) (4)�CI +�CI� (F) = F1(t)H(�; t)� t4M2F2(t)E(�; t)��2GM (t) [H(�; t) + E(�; t)℄ : (5)Note that �CI +�CI� depends only on H and E . Theusual proton elasti form fators, F1, F2 and GM =F1 + F2 are de�ned to have negative arguments in thespae-like regime. The Compton form fators are de�nedin terms of the vetor GPDs Hf and Ef , and the axialvetor GPDs ~Hf and ~Ef , de�ned for eah avor of quarkf . For example (f 2 fu; d; sg) [20℄:H(�; t) = Xf hefe i2(i� [Hf (�; �; t)�Hf (��; �; t)℄+ P Z +1�1 dx � 2x�2 � x2�Hf (x; �; t)): (6)Twist-3 CFFs ontain Wandzura-Wilzek terms, deter-mined by the twist-2 matrix elements, and dynamiantiquark-gluon-quark twist-3 matrix elements. Thetwist-2 and twist-3 CFFs are matrix elements of quark-gluon operators and are independent of Q2 (up to loga-rithmi QCD evolution). The kinemati suppression ofthe twist-3 (and higher) terms is expressed in powers of�t=Q2 and (tmin � t)=Q2 in the � fators. Also, thetwist-3 terms ouple to the longitudinal polarization ofthe virtual photon. The 'DVCS2' terms in both d� andd� are kinematially suppressed by at least an order ofmagnitude in our kinematis [20℄, beause they are notenhaned by the BH amplitude. For d�, the 'DVCS2'term is the onventional LT 0 term: it is a twist-3{twist-2 interferene and therefore has an additional kinematisuppression. We neglet the DVCS2 terms in our anal-ysis. The heliity-independent ross setion also has aos(3�) twist-2 gluon transversity term. We expet thisterm to be small, and do not inlude it in our analysis.In any ase, the terms we neglet do not a�et the rosssetions we extrat, whih are aurately parametrized,within statistis, by the ontributions inluded in ouranalysis.In our simulation, we generate events uniformly in a�xed eletron phase spae �3�e = �Q2�xBj��e and ina photon phase spae �2� = 2�[tmin(Q2; xBj) � tmax℄.

The bound tmax = �1 GeV2 is an arbitrarily �xed up-per bound, and tmin � �x2BjM2=[1 � xBj℄ is the event-by-event kinemati upper bound on t < 0. We sim-ulate internal bremsstrahlung in the sattering proessand external bremsstrahlung and ionization stragglingin the target and sattering hamber windows. We in-lude spetrometer resolution and aeptane e�ets anda full GEANT3 simulation of the detetor response tothe DVCS photons and protons. The spetrometer a-eptane is de�ned for both the data and simulation bya R-funtion ut [22℄. Radiative orretions for virtualphotons and unresolved real photons are applied aord-ing to the VCS (BH+Born amplitude) spei� presrip-tions of Ref. [23℄. This results in a global orretion fator(independent of � or heliity) of 0:91� 0:02 applied toour experimental yields. Within the quoted unertainty,this orretion is independent of the kinemati setting.Eah kinemati setting has one (Q2; xBj)-bin, four t-bins, and 24 � -bins. For eah (Q2; xBj; t) bin, we �tthe <e and =m parts (as appropriate) of the harmonisCn 2 fCI(F); CI(Fe�); �CI +�CI� (F)g as independentparameters. We minimize:�2 = Xi ��Y Expi � Y Fiti �2 Æ�2i � : (7)The Y Expi are the experimental yields, after aidentaland �0 subtrations, in bin i, with statistial errors �i.The �t yields, Y Fiti = Pn CnKn(i), depend linearly onthe �tting harmonis Cn and the Monte-Carlo integratedkinemati weights:Kn(i) = LNsimXj=1 �3�e�2� (j)N sim �n(j)�(i; j): (8)L is the integrated experimental luminosity and N simis the total number of events in the simulation. Theindiator funtion �(i; j) = 1 if simulation event j landsin experimental bin i, otherwise, �(i; j) = 0. After �ttingthe harmonis Cn to our experimental yields, we extratthe experimental ross setion (and assoiated error bars)d5�Exp(i)d5� = d5�Fit(i)d5� Y Expi =Y Fiti ; (9)where d5�Fit is de�ned by our �tted parameters andEqs. (1{2).In Kin-1 and Kin-2, due to the lower q0 momenta(Table I), our aeptane, trigger, and readout did notreord a omprehensive set of ep ! e�0X events. Forthose events we were able to reonstrut, we found onlya few perent ontribution to d�, but a larger ontri-bution to d�. For Kin-1,2, we only present results ond�. Our systemati errors in the ross-setion measure-ments are dominated by the following ontributions: 3%from HRS�PbF2 aeptane and luminosity; 3% from4



C. Mu~noz Camaho et al., DVCS Cross SetionH(e; e0)X (�0) bakground; 2% from radiative orre-tions; and 3% from inlusive H(e; e0)N� : : : bakground.The total, added in quadrature, is 5:6%. The d� resultsontain an additional 2% systemati unertainty fromthe beam polarization measurement by the Compton Po-larimeter [24℄. In order to ompute the BH ontributionin the d� analysis we used Kelly's parametrization ofform fators [25℄, whih reprodue elasti ross-setionworld data in our t range with 1% error and 90% CL.For one (Q2; xBj; t) bin, Fig. 4 shows the heliity-dependent and heliity-independent ross setions, re-spetively. Table II lists the extrated angular harmon-is. The twist-3 terms make only a very small ontribu-tion to our ross setions. The suppression of the twist-3term Fe� is ontained in the kinemati oeÆient �<;=2(rather than in the extrated values) and is reeted inthe muh larger statistial error. The 'DVCS2' termsgenerate a similar � -dependene as the BH-DVCS in-terferene terms in the DVCS ross setions d� and d�,and annot be extrated independently. Thus the an-gular harmoni terms in Table II may inlude ontribu-tions from bilinear 'DVCS2' terms omitted in our anal-ysis. However, as noted above, these terms are sup-pressed kinematially, espeially in the ross-setion dif-ferene [20℄. In our experiment the aeptane-averagedratios of the kinemati oeÆients of the bilinear DVCSterms to the BH-DVCS terms are below 1.2% for d� andbelow 4.5% for d�. By ombining the ontributions inTable II one obtains a preise determination of the az-imuthal dependene of the ~ep ! ep ross setion, re-gardless of the negleted terms in the analysis.Our �rst major result is the Q2 dependene of the=m[CI℄ angular harmonis. Fig. 5 (Left) shows theresults averaged over our full t domain, with hti =�0:25 GeV2 (varying by �0:01 GeV2 over Kin 1{3). For=m[CI(F)℄, the 3% statistial unertainty sets an upperlimit � 10% to twist-4 and higher ontributions. Thisangular harmoni, =m[CI(F)℄, is then a diret measure-ment of the linear ombination of GPDs of Eq. 3. Fig. 5(Right) displays the twist-2 C angular harmonis of Ta-ble II (Real and Imaginary parts) as funtions of t, withthe preditions from amodel by Vanderhaeghen, Guihonand Guidal (VGG) [26, 27, 28℄. The VGG model (twist-2 ontributions only, pro�le parameter bval = bsea = 1,Regge parameter �0 = 0:8 GeV�2, GPD Ef = 0) is inqualitative agreement with the =m[CI(F)℄ data, but sig-ni�antly under-predits the prinipal-value integrals (<eparts of the angular harmonis). We next note that thetwo twist-2 angular harmonis (Eq. 3, 5) extrated fromthe heliity-independent ross setion d� determine dis-tint ombinations of GPD integrals, with [CI+�CI℄(F)dependent only on H and E . This real part of the BH-DVCS interferene is the same interferene term that anbe obtained by measurements of the di�erene of ele-tron and positron (or ��) DVCS ross setions. Thelarge ontribution of the BH-DVCS interferene term in

FIG. 4: Data and �t to the heliity-dependent ross se-tion d4�= �dQ2dxBjdtd��, and heliity-independent rosssetion d4�= �dQ2dxBjdtd��, as a funtion of � . Bothare in the bin hQ2; ti = (2:3;�0:28) GeV2 at hxBji = 0:36.Error bars show statistial unertainties. Total �ts with one-� statistial error bands are shown in red. The systematiunertainty is given in the text. The green line is the jBHj2ontribution to d4�. The blue lines in d4� and d4� are theontributions from the �tted =m and <e parts of CI(F), re-spetively. The long dashed line is the �tted <e[CI+�CI℄(F)term. The short dashed urves are the �tted =m and <e partsof CI(Fe�).Q2nhti (GeV2) t = �0:33 �0:28 �0:23 �0:17=m 1.5 2:1� 0:3 2:1� 0:3 2:0� 0:2 3:2� 0:2[CI(F)℄ 1.9 1:9� 0:2 2:3� 0:2 2:5� 0:2 3:2� 0:22.3 2:1� 0:2 2:4� 0:2 2:6� 0:2 3:3� 0:3=m 1.5 2:8� 2:0 2:5� 2:0 0:1� 2:1 0:6� 2:4[CI(Fe�)℄ 1.9 0:3� 1:4 3:8� 1:5 �0:9� 1:8 4:7� 2:72.3 5:3� 1:6 0:7� 1:8 0:2� 2:5 4:0� 4:6Q2 = 2:3 GeV2, <e part of Angular HarmonisC(F) �2:4� 0:1 �2:0� 0:1 �1:7� 0:1 �0:7� 0:2[C +�C℄ (F) 0:1� 0:1 0:8� 0:1 1:6� 0:1 2:5� 0:1[C(Fe�)℄ �1:4� 0:5 0:6� 0:6 1:0� 0:8 3:4� 1:4TABLE II: Angular Harmonis �t results, =m and <e parts,and their statistial unertainties.d� (Fig. 4, espeially from 90Æ to 270Æ) indiates thatthe relative Beam Spin Asymmetry BSA = d5�=d5�annot be simply equated to the imaginary part of theBH-DVCS interferene divided by the BH ross setion.Finally, these data support the predition of perturbativeQCD saling in DVCS [1, 2℄, even at the modest Q2 ofthis experiment. This is similar to the phenomenology ofinlusive DIS results in the same xBj range [29℄.We aknowledge essential work of the JLab aelera-tor sta� and of the Hall A tehnial sta�. This workwas supported by DOE ontrat DOE-AC05-06OR231775
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