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Abstract—This paper presents a new Finite Element numerical 
method to analyze the coupling between twisted filaments in a 
superconducting multifilament composite wire. To avoid the 
large number of elements required by a 3D code, the proposed 
method makes use of the energy balance principle in a 2D code. 
The relationship between superconductor critical current density 
and local magnetic flux density is implemented in the program 
for the Bean and modified Kim models. The modeled wire is 
made up of six filaments twisted together and embedded in a low-
resistivity matrix. Computations of magnetization cycle and of 
the electric field pattern have been performed for various twist 
pitch values in the case of a pure copper matrix. The results 
confirm that the maximum magnetization depends on the matrix 
conductivity, the superconductor critical current density, the 
applied field frequency, and the filament twist pitch. The 
simulations also lead to a practical criterion for wire design that 
can be used to assess whether or not the filaments are coupled. 
 

Index Terms—Coupling currents, energy balance principle, 
magnetization, superconducting multifilament composite wire, 
twist. 

I. INTRODUCTION 

HE numerical simulation allowed to find the coupling-
decoupling phenomena between superconducting 

filaments. We have shown in Ref. [1] that the magnetization 
obtained in the case of uncoupled superconducting filaments is 
smaller than the one obtained for coupled superconducting 
filaments. 

In practical multifilament composite wires, the 
superconducting filaments are embedded in a low-resistivity 
matrix that is much less conducting than the superconductor, 
for example, OFHC copper. Then, there are currents 
circulating between the filaments via the conducting matrix, 
which result in a filament coupling. This coupling can be 
greatly reduced by twisting the filaments together [2]. The 
shorter the twist pitch, the less coupled the filaments. An 
electromagnetic theory of this problem is presented in Ref. [3]. 

This paper deals with the electromagnetic coupling under 
external field, under self field the coupling is different and the 
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twisting plays no part. We use a method based on the principle 
of energy balance to solve the problem of twisted filaments. 
We also study how the dependence of the current density on 
the magnetic flux density affects the magnetization of twisted 
superconducting filaments. 

II. TWISTED WIRE MODEL 

In order to understand the influence of the twisting on the 
magnetization, we start by considering a composite wire made 
up of six superconducting filaments, twisted together and 
embedded in a low-resistivity matrix. 

Let us consider the 2D representation given in Fig. 1 of the 
currents and voltages along a sixth of the filament twist pitch, 
p, as well as the positions of the six filaments in the planes z 
= 0 and z = ±p/12 illustrated in Fig. 2. Given the problem 
geometry, we assume that the electrical potential, Vi, along 
filament i, is of the form  
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where V0 is a reference potential. 
In addition, for the currents, we assume that  

 )()6/(1 zIpzI kk =++      for k, 1 ≤ k ≤ 5 (2) 

 )()6/( 61 zIpzI =+ . (3) 

In order to avoid a three-dimensional modeling, we divide 
the wire into elementary sections of (p/6) length. Given the 
weak slope of the filaments, we assume that, in each section, 
the problem can be treated as two-dimensional and that the Ik 
currents are independent of z. Then, the difference of the 
currents in the filaments for two successive sections is equal to 
the current circulating in a section of matrix of (p/6) length 
subjected to the adequate potentials. 

By using the principle of energy balance [4] in the plane z = 
±p/12 in Fig. 1, we derive  
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where P is the power dissipated in a section of conducting 
matrix. In this case, we simply have  
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where σ is the electrical conductivity of the matrix and λ0 is a 
dimensionless parameter obtained by solving the 2D harmonic 
Laplace equation, which in our formulation corresponds to: Δu 
= 0. The equation is solved by the finite element method with 
the boundary conditions  
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By substituting the voltages in Eq. (4), we obtain get  
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Equation (8) can be re-written in the following matrix form  
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where 
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where d is defined in Fig. 3 and I is the current vector in the 
filaments at z = 0. The currents can be derived from [1]  
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with 
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where µ0 is the magnetic permeability of vacuum, E is the 
electrical field vector, and [Aev0] and [Av0] are matrices whose 
dimensionless coefficients take into account the wire 
geometry. 

The matrix system resulting from the discretization of 
Maxwell’s equations in the case of the twisted filaments is [1]  
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where J is the current density vector, F is the source vector, 
[M] is the mass matrix, and [Ae0] is a dimensionless matrix. 

On the left side of Eq. (15), we find that, if the first term is 
very small compared to the second term, we are in the case of 
uncoupled filaments. Conversely, if the first term is very large 
compared to the second term, we are in the case of coupled 
filaments [1]. 

In addition, the current density in the conducting matrix can 
be derived from  
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0
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Fig. 1.  2D representation of six-filament wire over one sixth of a twist pitch. 

 

 
 
Fig. 2.  Position of six filaments in the planes 0=z  and 12/pz ±= . 

 

 
 
Fig. 3.  Definition of the distance d for one sixth of a twist pitch. 

 

 
Fig. 4.  Current density distribution in conducting matrix (in A/m2). 
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Figure 4 shows the simulation results in the plane z = +p/12. 
In order to compute the total magnetization of a 

multifilament wire, let us consider the 2D drawing of the 
currents in Fig. 5. We find that there are two contributions: 
one from the currents in the filaments, and one from the 
currents in the conducting matrix. 

The total magnetization per superconductor unit volume is  
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where L is the wire length and S is the superconductor cross-

sectional area, and filamentsM
r

 and 
matrix

M

r
 are the 

magnetizations due to the currents circulating in the 
superconducting filaments and in the conducting matrix. 

In our case, it can be shown that  
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which yields 
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where j depends on the filament twist pitch. 

III. SIMULATION RESULTS AND DISCUSSION 

The finite elements code applied for superconductors was 
developed by LGEP. Our work is based on this code. The 
method consists in using a model with two slopes instead of 
Bean’s model [5]. But for the superconductors at high critical 
temperature, the real characteristic )(JE  differs rather clearly 

from that of Bean’s model, a more realistic model can be 
obtained by a progressive function [6]. We modeled a wire 
made up of six superconducting filaments twisted together and 

embedded in an OFHC copper matrix ( 9
1082.8 !="  S/m at 

4.2 K). A time-varying magnetic flux density was applied 
vertically with a maximum amplitude of 1 T and a frequency 
of 1 Hz. Initially, the simulations were made according to 
Bean’s model and assuming a constant critical current density 
of 7×1010 A/m2. In order to study the influence of twisting on 
the coupling between filaments and on the magnetization, we 
varied the filament twist pitch of the filaments, p, from 
0.03 mm to 300 mm. Figure 6 illustrates the current density 

distributions in the six filaments in the plane z = 0 for two 
extreme twist pitch values. In Fig. 6(a) (p = 300 mm), we can 
see the case of perfectly coupled filaments, while in Fig. 6(b) 
(p = 0.03 mm), we can see the case of perfectly decoupled 
filaments. When decoupled, the filaments carry their own go 
and return currents, whereas coupled filaments behave like 
one monofilament conductor. For intermediate p values, we 
can observe cases of partial filament coupling. 

In order to take into account the dependence of the critical 
current density on the magnetic flux density, a second set of 
simulations were carried out using Kim’s model, 
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 with 10107)0( !=
c
J  A/m2 and 

1.0
0
=B  T [1]. The modeled domain, the matrix conductivity 

value and the applied magnetic flux densities are the same 
ones as those used previously. Figure 7 shows the current 
density distributions in the six filaments in the plane z = 0 for 
the same two extreme cases, where again observe perfect 
coupling and decoupling [2]. 

Figures 8 and 9 compare the magnetization cycles obtained 
using Bean’s and Kim’s model for three different twist pitch 
values. We can clearly see the deformation of the cycle in the 
case of partially coupled filaments compared to the extreme 
cases of perfect coupling and uncoupling. In the case of Kim’s 
model, the deformation is more important at high magnetic 
flux densities than at low magnetic flux densities. This 
deformation is due to the current density distribution in the 
filaments [4]. 

From the magnetization cycles, we can deduce the 
maximum magnetization value. According to our 
computations, we have confirmation that this value depends 
on the electrical conductivity of the conducting matrix, on the 
critical current density, on the frequency of the applied 
magnetic induction, and on the twist pitch of the filaments. 
From Eq. (15), it appears that a good intrinsic parameter to 
characterize the effect of twisting for a given critical current 

density is: fp2
0
!µ  or: !/p , where δ is the skin effect in the 

conducting matrix. Figure 10 shows that, for Bean’s model 

with 10
107!=

c
J  A/m2, the filaments are coupled together 

when !/p  is higher than 5.60. On the other hand, if this 

value is lower than 0.056, the filaments can be considered as 
decoupled. Then, in practice, if copper is used for the 
conducting matrix, it is necessary that the filament twist pitch 
be lower than 1 mm to unsure that so that the superconducting 
filaments are decoupled. When relying on Kim’s model, the 
filaments are coupled if the !/p  value is higher than 1.90, 

and decoupled if the !/p  value is lower than 0.056. Note that 

this lower limit is the same as the one obtained with Bean’s 
model, and that in our computation where 

10
cc 107)0( !== JJ  A/m2, we find that the maximum 

magnetization obtained by Kim’s model is always smaller 
than that obtained by Bean’s model. The difference between 
two values is more important in the case of coupled filaments 
than for uncoupled filaments. 

 
 
Fig. 5.  2D drawing of currents in wire with twisted filaments. 
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IV. CONCLUSION 

We studied the effects of superconducting filament twisting 
in composite wires. We proposed a method based on the 
principle of energy balance to solve this problem in 2D. 
Simulations were carried out using Bean’s model and Kim’s 
model. In both cases, we could express the maximum 
magnetization as a function of a reduced parameter directly 
proportional to the filament twist pitch. The value of this 
parameter enables to assess the where or not the 
superconducting filaments are coupled together through the 
low-resistivity matrix of the wire. 
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Fig. 8.  Magnetization cycles obtained from Bean’s model. 

 

 
Fig. 9.  Magnetization cycles obtained from Kim’s model. 

 

 
Fig. 10.  Maximum magnetization versus !/p  ratio. 

      
(a)                                                             (b) 

 
Fig. 6.  Current density distributions at 4/Tt = for (a) 300=p mm and (b) 

03.0=p mm (using Bean’s model). 

 

      
(a)                                                             (b) 

 
Fig. 7.  Current density distributions at Tt = for (a) 300=p mm and (b) 

03.0=p mm (using Kim’s model). 


