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Abstract

This paper describes a new method for blind source separation, adapted to the case of sources having different

morphologies. We show that such morphological diversity leads to a new and very efficient separation method,

even in the presence of noise. The algorithm, coined MMCA (Multichannel Morphological Component Analysis),

is an extension of the Morphological Component Analysis method (MCA). The latter takes advantage of the

sparse representation of structured data in large overcomplete dictionaries to separate features in the data based

on their morphology. MCA has been shown to be an efficient technique in such problems as separating an image

into texture and piecewise smooth parts or for inpainting applications. The proposed extension, MMCA, extends

the above for multichannel data, achieving a better source separation in those circumstances. Furthermore, the

new algorithm can efficiently achieve good separation in a noisy context where standard ICA methods fail. The

efficiency of the proposed scheme is confirmed in numerical experiments.
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I. INTRODUCTION

A common assumption in signal or image processing is that measurementsX made typically using an array of

sensors, often consist of mixtures of contributions from various possibly independent underlying physical processes

S. The simplest mixture model is linear and instantaneous andtakes the form:

X = AS + N (1)

whereX andS are random matrices of respective sizesm× t andn× t andA is anm× n matrix. Multiplying

S by A linearly mixes then sources intom observed processes. Thus, the rows ofS, sk, are the sources, and
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the rows ofA, ak, are the mixture weights. Anm × t random matrixN is included to account for instrumental

noise or model imperfections. The problem is to invert the mixing process so as to separate the data back into its

constitutive elementary building blocks.

In the blind approach (where both the mixing matrix and the sources are unknown), and assuming minimal prior

knowledge on mixing process, source separation is merely about devising quantitative measures of diversity or

contrast. Classical Independent Component Analysis (ICA)methods assume that the mixed sources are statistically

independent; these techniques (for example JADE, FastICA,Infomax) have proven to be successful in a wide

range of applications (see [1]–[4], and references therein). Indeed, although statistical independence is a strong

assumption, it is in many cases physically plausible.

An especially important case is when the mixed sources are highly sparse, meaning that each source is rarely

active and mostly (nearly) zero. The independence assumption in such case implies that the probability for two

sources to be significant simultaneously is extremely low, so that the sources may be treated as having nearly disjoint

supports. This is exploited for instance in sparse component analysis [5]. Indeed, it has been already shown in [6]

that first moving the data into a representation in which the sources are assumed to be sparse greatly enhances the

quality of the separation. Possible representation dictionaries include the Fourier and related bases, wavelet bases,

and more. Working with combinations of several bases or withvery redundant dictionaries such as the undecimated

wavelet frames or the more recent ridgelets and curvelets [7] could lead to even more efficient representations.

However, finding the smallest subset of elements (that linearly combine to reproduce a given signal or image)

is a hard combinatorial problem. Nevertheless, several pursuit algorithms have been proposed that can help build

very sparse decompositions [8], [9]. In fact, a number of recent results prove that these algorithms will recover

the unique optimal decomposition provided that this solution is sparse enough and the dictionary is sufficiently

incoherent [10], [11].

In another context, the Morphological Component Analysis (MCA) described in [12] uses the idea of sparse

representation for the separation of sources from a single mixture. MCA constructs a sparse representation of

a signal or an image considering that it is a combination of features which are sparsely represented by different

dictionaries. For instance, images commonly combine contours and textures: the former are well accounted for using

curvelets, while the latter may be well represented using local cosine functions. In searching a sparse decomposition

of a signal or imagey, it is assumed thaty is a sum ofn components,sk, where each can be described as

sk = Φkαk with an over-complete dictionaryΦk and a sparse representationαk. It is further assumed that for any

given component the sparsest decomposition over the properdictionary yields a highly sparse description, while

its decomposition over the other dictionaries,Φk′ 6=k, is highly non sparse. Thus, the differentΦk can be seen as
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discriminating between the different components of the initial signal. Ideally, theαk are the solutions of :

min
{α1,..., αn}

n
∑

k=1

‖αk‖0 subject to y =
n

∑

k=1

Φkαk. (2)

However, as thè0 norm is non-convex, optimizing the above criterion is combinatorial by nature. Substituting the

`0-norm by an`1, as motivated by recent equivalence results [10], and relaxing the equality constraint, the MCA

algorithm seeks a solution to

min
y1,...,yn

λ

n
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k=1

‖αk‖1 +
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∥

∥

∥

∥
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n
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∥

∥

∥

∥
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with sk = Φkαk. (3)

A detailed description of MCA is given in [12] along with results of experiments in contour/texture separation in

images and inpainting. Note that there is no mixing matrix tobe estimated in the MCA model and the mixture

weights are absorbed by the source signalssk.

The purpose of this contribution is to extend the MCA to the case of multi-channel data, as described in the

next section. In handling several mixtures together, the mixing matrix becomes an unknown as well, which adds

some complexity to the overall problem. On the other hand, having more than one mixture is expected to help

the separation, leading to better performance compared to regular MCA. Section III illustrates the performance of

MMCA, and demonstrates its superiority over both MCA and several ICA techniques. We should note that our

method could also be considered as an extension of the algorithm described in [6], with two major differences:

(i) while [6] uses a a single transform to sparsify the data, our technique assumes the use of different dictionaries

for different sources; (ii) the numerical scheme that we lead to in the construction of the algorithm is entirely

different. Interestingly, a similar philosophy has been employed by [13] for audiophonic signals. Their method

assumes that an audio signal is mainly made of a ’tonal’ part (sparse in a discrete cosine dictionary), a transient

part (well sparsified by a wavelet transform) and a residual.However their decomposition algorithm is not based

on an iterative scheme, which is a major difference with MMCA. Indeed, experiments show that such an iterative

process is needed when the considered transforms are far from being incoherent (for instance DCT and curvelet

transform).

II. M ULTICHANNEL MCA

We consider the mixing model (1) and make the additional assumption that each sourcesk is well (i.e. sparsely)

represented by a specific and different dictionaryΦk. Assigning a Laplacian prior with precisionλk to the

decomposition coefficients of thekth sourcesk in dictionary Φk is a practical way to implement this property.

Here,sk denotes the1× t array of thekth source samples. Classically, we assume zero-mean Gaussianwhite noise.
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This leads to the following joint estimator of the source processesS =
[

sT
1 , . . . , sT

n

]T
and the mixing matrixA:

{Ŝ, Â} = Arg min
S,A
‖X−AS‖2F +

∑

k

λk‖skTk‖1, (4)

where‖M‖2F = trace
(

M
T
M

)

is the Frobenius norm. In the above formulation we defineTk = Φ
+

k , implying

that the transform is applied in an analysis mode of operation, very much like in the MCA [12]. Unfortunately,

this minimization problem suffers from a lack of scale invariance of the objective function: scaling the mixing

matrix by A ← ρA, and an inverse scaling of the source matrix,S ← 1

ρ
S, leaves the quadratic measure of fit

unchanged while deeply altering the sparsity term. This problem can be alleviated by forcing the mixing matrix

to have normalized columnsak, implying that each of the source signals is scaled by a scalar. Practically, this

can be achieved by normalizing these columns at each iteration (ak+
← ak−/‖ak−‖2), and propagating the scale

factor to the corresponding source bysk
+ ← ‖ak−‖2sk

−. We propose solving (4) by breakingAS into n rank-1

terms,AS =
∑n

k=1
aksk, and updating one at a time. Define thekth multichannel residualXk = X−

∑

k′ 6=k ak′

sk′

as corresponding to the part of the data unexplained by the other couples{ak′

, sk′}k′ 6=k. Then, minimizing the

objective function with respect tosk assumingak is fixed as well as allsk′ 6=k andak′ 6=k leads to:

sk =
1

‖ak‖2
2

(

akT
Xk −

λk

2
Sign(skTk)T

T
k .

)

(5)

This is a closed-form solution, known as soft-thresholding, known to be exact for the case of unitary matrices

Tk. As Tk becomes a redundant transform, we keep this interpretationas an approximate solution, and update the

source signalsk by soft-thresholding the coefficients of the decompositionof a coarse version(1/‖ak‖22)a
kT

XkTk

with a scalar thresholdλk/(2‖a
k‖22) (see [14] for more details on the justification of this step).Then, considering

a fixedsk, the update onak follows from a simple least squares linear regression. The MMCA algorithm is given

below:

1. Set number of iterations Lmax & thresholds ∀k, δk = Lmax · λk/2

2. While δk > λk/2,

For k = 1, . . . , ns:

• Renormalize ak, sk and δk

• Update sk assuming all sk′ 6=k and ak
′

are fixed:

– Compute the residual Xk = X−
P

k′ 6=k
ak

′

sk′

– Project Xk: s̃k =
1

‖ak‖2

2

akT

Xk

– Compute αk = s̃kTk

– Soft threshold αk with threshold δk, yielding α̂k

– Reconstruct sk by sk = α̂kT
T

k

• Update ak assuming all sk′ and ak
′ 6=k are fixed:

– ak
=

1

‖sk‖2

2

Xksk
T

Lower the thresholds: δk = δk − λk/2.
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At each iteration,coarse(i.e. smooth) versions of the sources are computed. The mixing matrix is then estimated

from sources that contain the most significant parts of the original sources. The overall optimization proceeds by

alternately refining both the sources and the mixing matrix.The use of a progressive thresholding scheme with a

set of thresholdsδk decreasing slowly towardsλk/2 enforces a certain robustness to noise. Indeed, both alternate

projections and iterative thresholding define a non trivialpath for the variables to estimate (sources and mixing

matrix) during the optimization. This optimization schemeleads to a good estimation as underlined in [12]. MMCA

benefits from the potential of overcomplete dictionaries for sparse representation. In comparison with the algorithm

in [6], which uses a single sparsifying transform and a quadratic programming technique, our method considers

more than just one transform and a shrinkage-based optimization. In the case where we have only one channel

and the mixing matrix is known and equal to(1 · · · 1) then we can see that MMCA is equivalent to MCA. The

next section will illustrate the efficiency of the MMCA algorithm when the sources to be separated have different

morphologies.

III. R ESULTS

A. Experiment 1: One-dimensional toy example

We start by illustrating the performance of MMCA with the simple BSS experiment on one-dimensional data.

The two source signals at the top-left of Figure 1 were linearly mixed to form the three synthetic observations

shown at the top-right. A Gaussian noise withσ = 0.05 was also added to the mixtures (note that each channel

has a unit variance). The two sources are morphologically different: one consists of four bumps and the other is

a plain sine-wave. Source separation was conducted using the above MMCA algorithm, using the Fourier and the

trivial basis as the representing dictionaries. For the sake of comparison, a publicly available implementation of the

JADE algorithm was also tested1. As can be seen, MMCA is clearly able to efficiently separate the original source

signals. Note that denoising is an intrinsic part of the algorithm.

B. Experiment 2: Blind separation of images

We now turn to use MMCA to separate efficiently two-dimensional data. In Figure 2, the two left pictures are

the sources. The first source image is composed of three curves which are well represented by a curvelet transform.

We use the global discrete cosine transform (DCT) to represent the second source image. Although the resulting

representation may not be extremely sparse, what is significant here is that contrastingly the representation of the

first component using the global DCT is not sparse. The mixtures are shown in the second image pair. A Gaussian

noise has been added to these mixtures, using different noise variances for the different channels. Finally the two

images in the last column show the MMCA source estimates. Visually the MMCA performs well.

1Taken fromhttp://www.tsi.enst.fr/ cardoso/guidesepsou.html.
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Fig. 1. Experiment 1:Top left: The two initial source signals.Top right: Three noisyobservedmixtures.Bottom left: The two source
signals reconstructed using MMCA.Bottom right: The two source signals reconstructed with Jade.

We compare the MMCA with two standard source separation techniques: JADE and FastICA [1]. As the original

JADE algorithm has not been devised to take into account additive noise, we apply denoising on its outputs (using

a standard wavelet denoising technique assuming that the noise variances are known). Note that we could denoise

the data before separation; however the non-linear waveletdenoising erases the coherence between the channels,

so that an ICA-based method would fail to separate the sources from the denoised data. We also compare MMCA

with a more recent method based on sparse representations which is described in [15]. We also estimate the mixing

matrix using the Relative Newton Method after a 2D-wavelet transform of the mixtures. The graphs in Figure 3

show the correlation between the original sources and theirestimates as the data noise variance increases. One can

note that both JADE and FastICA have similar performance. Asthe data noise variance increases, MMCA clearly

achieves better source estimation, and shows clear robustness compared to non-denoised ICA-based methods and

to the Relative Newton Method. We also observed that the Relative Newton Method [15] seems rather unstable as

the noise variance increases. MMCA provides a similar behavior compared to denoised versions of the classical

ICA-based algorithms.

As the noise variance increases, the mixing matrices estimated using ICA-based methods are biased and thus

these methods fail to correctly estimate the sources. Moreover, denoising after the separation process softens the

separation error. Hence, the denoised versions of the JADE and FastICA seem to perform as well as MMCA.

As a consequence, a more efficient criterion is needed. A natural way of assessing the separation quality is to

compare the estimated and original mixing matrices. Quantitative results are shown in Figure 4, where the mixing
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matrix estimation error is defined asρA = ||I − Λ
−1

Ã
−1

A||1 (vector norm).A is the true mixing matrix,Ã is

the estimated one andΛ is a matrix which restores the right scaling and permutationon the estimated matrix. If

Ã = ΛA (i.e Ã is equal toA up to scaling and permutation) thenρA = 0; thus ρA measures a deviation from

the true mixture. Contrasting with standard ICA methods, MMCA iteratively estimates the mixing matrixA from

coarse (i.e. smooth) versions of the sources and thus is not penalized by the presence of noise. As a consequence,

MMCA is clearly more robust to noise than standard ICA methods even in the case of very noisy mixtures. Indeed

it can be noticed in Figure 3 and 4 that when the noise varianceincreases, standard ICA-based methods fail whereas

MMCA still performs well. MMCA also performs better than a sparsity-based algorithm described in [15].

Fig. 2. Experiment 2 (using curvelet and DCT):First column: The original sources of variance 1.Second column: their mixtures
(a Gaussian noise is added :σ = 0.4 and 0.6 for channels1 and 2 respectively. The mixtures are such thatx1 = 0.5s1 − 0.5s2 and
x2 = 0.3s1 + 0.7s2).Third column: sources estimated by MMCA.

Fig. 3. Experiment 2: Correlation between the true source signals and the sources estimated by JADE (dotted line), denoised JADE (dashed
line), FastICA (�), denoised FastICA (+), the Relative Newton Method (dashdot) and MMCA (solid), as a function of the noise powerσ.
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Fig. 4. Experiment 2: Mixing matrix error (defined viaρA) for JADE (dotted line), FastICA (�), the Relative Newton Method (dashdot)
and MMCA (solid), as a function of the noise powerσ.

C. Experiment 3: MMCA versus MCA

Morphological Component Analysis [12] has been devised to extract both texture and cartoon components from

a single image. We describe here an experiment where we use MMCA for a similar purpose in order to compare

the two methods. Note that MCA is applied when only one mixture (m = 1) is provided. Let us point out that

the main difference between these methods is the estimationof the mixing matrix in MMCA which is not needed

in MCA. Figure 5 features two original pictures: the first oneis mainly a cartoon well sparsified by a curvelet

transform; the other is a texture represented well by global2D-DCT. Two noisy mixtures are shown in the second

column. We applied MCA to the sum of the two original sources,and MMCA to a random number of mixtures

(between 2 and 10 channels). The last column of Figure 5 features the two sources estimated by MMCA based on

10 mixtures. Quantitatively, Figure 6 shows the correlation between the original sources and those estimated using

MMCA as the number of mixtures increases. Clearly, the amount of information provided by the multichannel data

improves source estimation, as expected.

IV. CONCLUSION

The MCA algorithm provides a powerful and fast signal decomposition method, based on sparse and redundant

representations over separate dictionaries. The MMCA algorithm described in this paper extends MCA to the

multichannel case. For blind source separation, this extension is shown to perform well provided the original

sources are morphologically different, meaning that the sources are sparsely represented in different bases. We also

demonstrated that MMCA performs better than standard ICA-based source separation in a noisy context. We are

currently working on improvements and generalizations of MMCA where each source can be modelled as a linear



8

Fig. 5. Experiment 3 (using curvelet and DCT):First column: The original sources. They have been normalized to unit variance.Second
column: mixtures of the initial sources. A Gaussian noise of variance σ = 0.3 was added to each channel.Third column: sources estimated
by MMCA from 10 mixtures.

combination of morphologically different components.
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