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Abstract

This paper describes a new method for blind source separaiéapted to the case of sources having different
morphologies. We show that such morphological diversigdieto a new and very efficient separation method,
even in the presence of noise. The algorithm, coined MMCA I{fighannel Morphological Component Analysis),
is an extension of the Morphological Component Analysis hodt (MCA). The latter takes advantage of the
sparse representation of structured data in large overebendictionaries to separate features in the data based
on their morphology. MCA has been shown to be an efficientrtieghe in such problems as separating an image
into texture and piecewise smooth parts or for inpaintingliaptions. The proposed extension, MMCA, extends
the above for multichannel data, achieving a better soueparation in those circumstances. Furthermore, the
new algorithm can efficiently achieve good separation in synoontext where standard ICA methods fail. The

efficiency of the proposed scheme is confirmed in numericpéBrents.
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. INTRODUCTION

A common assumption in signal or image processing is thasoreanentsX made typically using an array of
sensors, often consist of mixtures of contributions fromoues possibly independent underlying physical processes

S. The simplest mixture model is linear and instantaneoustakess the form:
X=AS + N Q)

whereX andS are random matrices of respective sizes< t andn x t and A is anm x n matrix. Multiplying

S by A linearly mixes then sources intom observed processes. Thus, the rowsSofs;, are the sources, and
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the rows ofA, ag, are the mixture weights. Am x ¢ random matrix\N is included to account for instrumental
noise or model imperfections. The problem is to invert th&ing process so as to separate the data back into its

constitutive elementary building blocks.

In the blind approach (where both the mixing matrix and therees are unknown), and assuming minimal prior
knowledge on mixing process, source separation is meratytatbevising quantitative measures of diversity or
contrast. Classical Independent Component Analysis (I@A)hods assume that the mixed sources are statistically
independent; these techniques (for example JADE, Fastl@#max) have proven to be successful in a wide
range of applications (see [1]-[4], and references thgrdémleed, although statistical independence is a strong

assumption, it is in many cases physically plausible.

An especially important case is when the mixed sources a@lyhsparse, meaning that each source is rarely
active and mostly (nearly) zero. The independence assampti such case implies that the probability for two
sources to be significant simultaneously is extremely lowhat the sources may be treated as having nearly disjoint
supports. This is exploited for instance in sparse compoaealysis [5]. Indeed, it has been already shown in [6]
that first moving the data into a representation in which th&rses are assumed to be sparse greatly enhances the
quality of the separation. Possible representation dhaties include the Fourier and related bases, wavelet bases
and more. Working with combinations of several bases or wgtty redundant dictionaries such as the undecimated
wavelet frames or the more recent ridgelets and curvelgtsdudld lead to even more efficient representations.
However, finding the smallest subset of elements (that lipemombine to reproduce a given signal or image)
is a hard combinatorial problem. Nevertheless, severayiualgorithms have been proposed that can help build
very sparse decompositions [8], [9]. In fact, a number okeréaesults prove that these algorithms will recover
the unique optimal decomposition provided that this solutis sparse enough and the dictionary is sufficiently

incoherent [10], [11].

In another context, the Morphological Component Analy$i&CA) described in [12] uses the idea of sparse
representation for the separation of sources from a singktura. MCA constructs a sparse representation of
a signal or an image considering that it is a combination afuiees which are sparsely represented by different
dictionaries. For instance, images commonly combine aostand textures: the former are well accounted for using
curvelets, while the latter may be well represented usioglloosine functions. In searching a sparse decomposition
of a signal or imagey, it is assumed thay is a sum ofn componentss;, where each can be described as
s = Pray with an over-complete dictionarg,, and a sparse representation It is further assumed that for any
given component the sparsest decomposition over the pitipgonary yields a highly sparse description, while

its decomposition over the other dictionarids,. ., is highly non sparse. Thus, the differe®j, can be seen as



discriminating between the different components of théahsignal. Ideally, then, are the solutions of :

“ min : > llakllo subjectto y=> Py (2)
Lo k=1 k=1

However, as thé” norm is non-convex, optimizing the above criterion is comaltdrial by nature. Substituting the
/-norm by an/!, as motivated by recent equivalence results [10], and irdathe equality constraint, the MCA

algorithm seeks a solution to
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A detailed description of MCA is given in [12] along with rd&uof experiments in contour/texture separation in
images and inpainting. Note that there is no mixing matrb#&estimated in the MCA model and the mixture
weights are absorbed by the source signals

The purpose of this contribution is to extend the MCA to theecaf multi-channel data, as described in the
next section. In handling several mixtures together, theingi matrix becomes an unknown as well, which adds
some complexity to the overall problem. On the other handjngamore than one mixture is expected to help
the separation, leading to better performance compareelgioar MCA. Section Il illustrates the performance of
MMCA, and demonstrates its superiority over both MCA andesalICA techniques. We should note that our
method could also be considered as an extension of the thlgpdescribed in [6], with two major differences:
(i) while [6] uses a a single transform to sparsify the data, technique assumes the use of different dictionaries
for different sources; (ii) the numerical scheme that wallé@ in the construction of the algorithm is entirely
different. Interestingly, a similar philosophy has beenptayed by [13] for audiophonic signals. Their method
assumes that an audio signal is mainly made of a 'tonal’ [moarée in a discrete cosine dictionary), a transient
part (well sparsified by a wavelet transform) and a residdalvever their decomposition algorithm is not based
on an iterative scheme, which is a major difference with MM@Adeed, experiments show that such an iterative
process is needed when the considered transforms are fartfeing incoherent (for instance DCT and curvelet

transform).

Il. MULTICHANNEL MCA

We consider the mixing model (1) and make the additionalragsion that each sourcsg; is well (i.e. sparsely)
represented by a specific and different dictiond@y. Assigning a Laplacian prior with precision; to the
decomposition coefficients of the" sources;, in dictionary ®; is a practical way to implement this property.

Here,s;, denotes the x ¢ array of thek™ source samples. Classically, we assume zero-mean Gaugsiamoise.



This leads to the following joint estimator of the sourceqassess = [s] ... sT]T and the mixing matrixA.:

. . )
{S;A} = Arg Iél’ngX_ASHF—i_Zk:)‘kHSkaHh (4)

where | M||%, = trace(M”M) is the Frobenius norm. In the above formulation we deflhe= ®;, implying
that the transform is applied in an analysis mode of opearatiery much like in the MCA [12]. Unfortunately,
this minimization problem suffers from a lack of scale inaace of the objective function: scaling the mixing
matrix by A «— pA, and an inverse scaling of the source matBx+— %S, leaves the quadratic measure of fit
unchanged while deeply altering the sparsity term. Thidlerm can be alleviated by forcing the mixing matrix
to have normalized columng®, implying that each of the source signals is scaled by a scBfactically, this
can be achieved by normalizing these columns at each ﬂer&tFJ’ — a*” /||a*" ||2), and propagating the scale
factor to the corresponding source by" « [|a* " ||2s,~. We propose solving (4) by breakingS into n rank-1
terms,AS = }"}'_, a*s;, and updating one at a time. Define #& multichannel residuak;, = X —=;,; a*'sps

as corresponding to the part of the data unexplained by thercoIoupIes{a"f',sk,}k,#k. Then, minimizing the

objective function with respect tg, assuming:” is fixed as well as alk;, ;. and a¥'# leads to:

1 T Ak .
S = TP) ak X — —kS|gn(ska)Tf (5)
lla® ]2 2

This is a closed-form solution, known as soft-thresholdikigown to be exact for the case of unitary matrices
Tj. As T, becomes a redundant transform, we keep this interpretaicaan approximate solution, and update the
source signas;, by soft-thresholding the coefficients of the decompositiba coarse versior{l/||a"f||§)akTXka
with a scalar threshold,/(2||a*||2) (see [14] for more details on the justification of this steff)en, considering

a fixed sy, the update om* follows from a simple least squares linear regression. ThQW algorithm is given

below:

1. Set number of iterations Lmax & thresholds Vk, 6, = Lmax - Ax/2
2. While 6, > A\i/2,
Fork=1,...,ns:
e Renormalize a*, s, and dy,
e Update s, assuming all s/, and o are fixed:
— Compute the residual X = X — Y, a" su
— Project Xj: 5, = Waﬂxk
— Compute o = 55Ty
— Soft threshold «;. with threshold §y, yielding &
— Reconstruct s by s, = @, TL
K £k

e Update a* assuming all s, and a are fixed:

k 1 T
—af = L Xys
Tsg 3 “kok

Lower the thresholds: 6r = dr — Ax/2.




At each iterationcoarse(i.e. smooth versions of the sources are computed. The mixing matrikeés estimated
from sources that contain the most significant parts of thgiral sources. The overall optimization proceeds by
alternately refining both the sources and the mixing mafrhe use of a progressive thresholding scheme with a
set of threshold$, decreasing slowly towards; /2 enforces a certain robustness to noise. Indeed, both aiéern
projections and iterative thresholding define a non triyath for the variables to estimate (sources and mixing
matrix) during the optimization. This optimization schelaads to a good estimation as underlined in [12]. MMCA
benefits from the potential of overcomplete dictionariassjparse representation. In comparison with the algorithm
in [6], which uses a single sparsifying transform and a gaamprogramming technique, our method considers
more than just one transform and a shrinkage-based optiornizdn the case where we have only one channel
and the mixing matrix is known and equal (b---1) then we can see that MMCA is equivalent to MCA. The
next section will illustrate the efficiency of the MMCA aldtthm when the sources to be separated have different

morphologies.

[1l. RESULTS
A. Experiment 1. One-dimensional toy example

We start by illustrating the performance of MMCA with the gil@ BSS experiment on one-dimensional data.
The two source signals at the top-left of Figure 1 were lilyearixed to form the three synthetic observations
shown at the top-right. A Gaussian noise with= 0.05 was also added to the mixtures (note that each channel
has a unit variance). The two sources are morphologicaffgrdint: one consists of four bumps and the other is
a plain sine-wave. Source separation was conducted usinglitbve MMCA algorithm, using the Fourier and the
trivial basis as the representing dictionaries. For the sdlkcomparison, a publicly available implementation of the
JADE algorithm was also testedAs can be seen, MMCA is clearly able to efficiently separhgedriginal source

signals. Note that denoising is an intrinsic part of the atgo.

B. Experiment 2: Blind separation of images

We now turn to use MMCA to separate efficiently two-dimensiodata. In Figure 2, the two left pictures are
the sources. The first source image is composed of threeutvieh are well represented by a curvelet transform.
We use the global discrete cosine transform (DCT) to reptethe second source image. Although the resulting
representation may not be extremely sparse, what is signtficere is that contrastingly the representation of the
first component using the global DCT is not sparse. The mest@re shown in the second image pair. A Gaussian
noise has been added to these mixtures, using differen¢ nvaisances for the different channels. Finally the two
images in the last column show the MMCA source estimatesialis the MMCA performs well.

1Taken fromhttp://www.tsi.enst.fr/ cardoso/guidesepsou.html
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Fig. 1. Experiment 1Top left: The two initial source signalstop right: Three noisyobservedmixtures.Bottom left: The two source
signals reconstructed using MMCAMottom right: The two source signals reconstructed with Jade.

We compare the MMCA with two standard source separatiomigales: JADE and FastICA [1]. As the original

JADE algorithm has not been devised to take into accountigddioise, we apply denoising on its outputs (using

a standard wavelet denoising technique assuming that tise mariances are known). Note that we could denoise
the data before separation; however the non-linear wadelrbising erases the coherence between the channels,
so that an ICA-based method would fail to separate the seudrom the denoised data. We also compare MMCA
with a more recent method based on sparse representatiocis iwldescribed in [15]. We also estimate the mixing
matrix using the Relative Newton Method after a 2D-wavetahsform of the mixtures. The graphs in Figure 3
show the correlation between the original sources and #stimates as the data noise variance increases. One can
note that both JADE and FastICA have similar performanceth&sdata noise variance increases, MMCA clearly
achieves better source estimation, and shows clear rassstompared to non-denoised ICA-based methods and
to the Relative Newton Method. We also observed that thetiReldlewton Method [15] seems rather unstable as

the noise variance increases. MMCA provides a similar bielhaompared to denoised versions of the classical
ICA-based algorithms.

As the noise variance increases, the mixing matrices efinasing ICA-based methods are biased and thus
these methods fail to correctly estimate the sources. Mereaenoising after the separation process softens the
separation error. Hence, the denoised versions of the JAREFastiCA seem to perform as well as MMCA.
As a consequence, a more efficient criterion is needed. Aralatvay of assessing the separation quality is to

compare the estimated and original mixing matrices. Qtativie results are shown in Figure 4, where the mixing



matrix estimation error is defined ag = ||[I — A—'A~'A||; (vector norm).A is the true mixing matrix,A is

the estimated one andl is a matrix which restores the right scaling and permutatinorthe estimated matrix. If
A = AA (i.e A is equal toA up to scaling and permutation) thep = 0; thus pa measures a deviation from
the true mixture. Contrasting with standard ICA methods, @Miteratively estimates the mixing matrix from
coarse ite. smooth) versions of the sources and thus is not penalizetiédbpresence of noise. As a consequence,
MMCA is clearly more robust to noise than standard ICA metheden in the case of very noisy mixtures. Indeed

it can be noticed in Figure 3 and 4 that when the noise variamweases, standard ICA-based methods fail whereas

MMCA still performs well. MMCA also performs better than aaspity-based algorithm described in [15].
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>

Fig. 2. Experiment 2 (using curvelet and DCHirst column: The original sources of variance $econd column: their mixtures
(a Gaussian noise is addedr:= 0.4 and 0.6 for channelsl and 2 respectively. The mixtures are such that = 0.5s; — 0.5s2 and
x2 = 0.3s1 4+ 0.7s2).Third column: sources estimated by MMCA.
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Fig. 3. Experiment 2: Correlation between the true sourgeads and the sources estimated by JADBtted ling, denoised JADEdashed
line), FastICA ¢), denoised FastICA+), the Relative Newton Methodléshdof and MMCA (solid), as a function of the noise power.
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Fig. 4. Experiment 2: Mixing matrix error (defined viay) for JADE (dotted lingd, FastICA ¢), the Relative Newton Methoddéshdo}
and MMCA (solid), as a function of the noise power.

C. Experiment 3: MMCA versus MCA

Morphological Component Analysis [12] has been devisedktoaet both texture and cartoon components from
a single image. We describe here an experiment where we us€AMidr a similar purpose in order to compare
the two methods. Note that MCA is applied when only one mit@n = 1) is provided. Let us point out that
the main difference between these methods is the estimatitme mixing matrix in MMCA which is not needed
in MCA. Figure 5 features two original pictures: the first olsemainly a cartoon well sparsified by a curvelet
transform; the other is a texture represented well by gl@aDCT. Two noisy mixtures are shown in the second
column. We applied MCA to the sum of the two original sourcasgd MMCA to a random number of mixtures
(between 2 and 10 channels). The last column of Figure 5resthe two sources estimated by MMCA based on
10 mixtures. Quantitatively, Figure 6 shows the correlati@tween the original sources and those estimated using
MMCA as the number of mixtures increases. Clearly, the arhotimformation provided by the multichannel data

improves source estimation, as expected.

IV. CONCLUSION

The MCA algorithm provides a powerful and fast signal decosijion method, based on sparse and redundant
representations over separate dictionaries. The MMCAT r#dligo described in this paper extends MCA to the
multichannel case. For blind source separation, this sidenis shown to perform well provided the original
sources are morphologically different, meaning that theses are sparsely represented in different bases. We also
demonstrated that MMCA performs better than standard 1@%eld source separation in a noisy context. We are

currently working on improvements and generalizations &i®A where each source can be modelled as a linear



Fig. 5. Experiment 3 (using curvelet and DCHirst column: The original sources. They have been normalized to unitmas.Second
column: mixtures of the initial sources. A Gaussian noise of vamane= 0.3 was added to each chann&hird column: sources estimated
by MMCA from 10 mixtures.

combination of morphologically different components.

REFERENCES

[1] A. Hyvarinen, J. Karhunen, and E. Ojmdependent Component AnalysifNew York: John Wiley, 2001, 481+xxii pages. [Online].
Available: http://www.cis.hut.fi/projects/ica/book/
[2] A. Belouchrani, K. A. Meraim, J.-F. Cardoso, and E. Moel$, “A blind source separation technique based on secalet statistics,”

IEEE Trans. on Signal Processingol. 45, no. 2, pp. 434-444, 1997.

Source correlation 1 - MMCA Source correlation 2 - MMCA

1.00

0.8

.95

08 £.90

.85

9.6 0.80

(2=} L L L L L L L L L L ' L ' L .75 I I
5 10 o 5 10 15

=3
wu

Fig. 6. Experiment 3: Correlation between the true sourcesthe MMCA estimates as the number of mixtures incredseft; cartoon
component Right: texture component. Note that the results for one mixtureespond to MCA.



(3]

(4]

(5]

9]

[10]

[11]

[12]

[13]

[14]

[15]

D.-T. Pham and J.-F. Cardoso, “Blind separation of instaeous mixtures of non stationary sourceEEE Trans. on Sig. Prog.
vol. 49, no. 9, pp. 1837-1848, Sept. 2001.

J. Delabrouille, J.-F. Cardoso, and G. Patanchon, “Md#tector multiccomponent spectral matching and apiptica for CMB data
analysis,”Monthly Notices of the Royal Astronomical Societyl. 346, no. 4, pp. 1089-1102, Dec. 2003, to appear, alabdaile as
http://arXiv.org/abs/astro-ph/0211504.

P. G. Georgiev, F. Theis, and A. Cichocki, “Sparse comngmtranalysis and blind source separation of underdetedmigtures,” |EEE
Transactions on Neural Networksol. 16, no. 4, pp. 992-996, 2005

M. Zibulevsky and B. Pearlmutter, “Blind source sepamatby sparse decomposition in a signal dictionafygural-Computation
vol. 13, no. 4, pp. 863-882, April 2001.

J.-L. Starck, E. Candés, and D. Donoho, “The curvekeisform for image denoisinglEEE Transactions on Image Processingl. 11,
no. 6, pp. 131-141, 2002.

S. Mallat and Z. Zhang, “Matching pursuits with time-figency dictionaries [JEEE Transactions on Signal Processingl. 41, no. 12,
pp. 3397-3415, 1993.

S. Chen, D. Donoho, and M. Saunder, “Atomic decompasitiy basis pursuit,SIAM Journal on Scientific Computingol. 20, pp.
33-61, 1998.

D. L. Donoho and M. Elad, “Maximal sparsity represeittatvia /; minimization,” the Proc. Nat. Aca. Sgivol. 100, pp. 2197-2202,
2003.

R. Gribonval and M. Nielsen, “Sparse representationariions of basesJEEE Transactions on Information Thegmyol. 49, no. 12,
pp. 3320-3325, 2003.

J.-L. Starck, M. Elad, and D. Donoho, “Redundant muahis transforms and their application for morphologicahponent analysis,”
Advances in Imaging and Electron Physigsl. 132, 2004.

L. Daudet and B. Torresani., “Hybrid representatioos dudiophonic signal encoding3ignal Processing, Special issue on Image and
Video Coding Beyond Standardsol. 82, pp. 1595-1617, 2002.

M. Elad, “Why simple shrinkage is still relevant for nenblant representations?” submitted to the IEEE Trans. @mrivation Theory
on January 2005.

M. Zibulevski, “Blind source separation with relativeewton method,Proccedings ICA20Q03pp. 897-902, 2003.



