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ABSTRACT

Context. The detection and identification of oscillation modes (in terms of theirℓ, m and successiven) is a great challenge for present and
future asteroseismic space missions. The “peak tagging” isan important step in the analysis of these data to provide estimations of stellar
oscillation mode parameters, i.e., frequencies, rotationrates, and further studies on the stellar structure.
Aims. To increase the signal-to-noise ratio of the asteroseismicspectra computed from time series representative of MOST and CoRoT
observations (30- and 150-day observations).
Methods. We apply the curvelet transform – a recent image processing technique which looks for curved patterns – to echelle diagrams built
using asteroseismic power spectra. In this diagram the eigenfrequencies appear as smooth continuous ridges. To test the method we use Monte
Carlo simulations of several sun-like stars with different combinations of rotation rates, rotation-axis inclination and signal-to-noise ratios.
Results. The filtered diagrams enhance the contrast between the ridges of the modes and the background allowing a better tagging ofthe
modes and a better extraction of some stellar parameters. Monte Carlo simulations have also shown that the region where modes can be
detected is enlarged at lower and higher frequencies compared to the raw spectra. Even more, the extraction of the mean rotational splitting
from modes at low frequency can be done more easily than usingthe raw spectrum.

Key words. Stars: oscillations – Methods: data analysis – Techniques:image processing

1. Introduction

Helioseismology – the study of solar oscillations – is a power-
ful probe of the structure and dynamics of the Sun which has
provided great improvements in our understanding of stellar
evolution and structure (Turck-Chièze et al. 1993; Christensen-
Dalsgaard 2002, and references therein). Those successes push
the community to apply seismic techniques to other stars, open-
ing the doors to asteroseismology, the study of stellar oscil-
lations. These oscillations have already been observed from
ground and space. The ground-based observations are limited
by the day-night cycle, which introduces aliases in the obser-
vations, but allow to use Doppler velocity measurements. They
have provided data with sufficient quality to detect solar-like
oscillations (see Bouchy & Carrier 2003; Bedding & Kjeldsen
2003, and references therein). To reduce the aliases, multi-
site campaigns have been carried out but they are too short to
have a good frequency resolution. Space photometry missions
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and ground-based velocity networks must be used to provide
observations of stellar oscillations without these limitations.
With the current MOST1 and WIRE2 satellites and the future
COROT3 mission asteroseismology is blooming. However, we
still have to deal – in the case of solar-like oscillations – with
very small signal-to-noise ratio (hereafterS/N) observations
as a consequence of the weakness of the luminosity variations.
Moreover, stars cannot be spatially resolved yet. Only global
oscillation modes can be observed. In addition, we cannot have
access to the rotation rates and the rotation-axis inclination sep-
arately. Without knowing these two key stellar properties,the
tagging of the modes in terms of their properties (ℓ,m) and suc-
cessiven may be extremely difficult. In fact, the main problem
to face will not be to fit the peaks (“peak-bagging”) but to pro-
vide a good description of the model to be fitted after having put

1 Microvariability and Oscillations of STars (Matthews 1998)
2 Wide-field Infra Red Explorer (Buzasi et al. 2000)
3 Convection Rotation and planetary Transits (Baglin et al. 2001)
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the correct labels on the modes (“peak tagging”). To do this,it
has been proposed to use the echelle diagram where the modes
follow ridges depending on the stellar properties. To improve
the S/N ratio Bedding et al. (2004) proposed to filter this dia-
gram by a vertical smoothing. However the smoothing works
well only when the ridges are quasi-vertical which means a
very gooda priori knowledge of the large difference and is
restricted to the asymptotic part of the spectrum. We propose
here to follow a similar approach but using new mathematical
denoising techniques better suited to the study of curved ridges.

At the end of the last decade, the application of mathemat-
ical transforms based on wavelets to analyze astronomical im-
ages has been widely developed. The first wavelet algorithms
were well adapted to treat images with isotropic elements.
However, this description presented a limitation in the context
of astrophysics, where objects such as filaments or spiral struc-
tures exhibit a highly anisotropic character (in shape and scale).
New transforms, the ridgelet (Candès 1998) and curvelet trans-
forms (Candès & Donoho 1999; Starck et al. 2002), were then
developed to deal efficiently with such objects. Astrophysical
applications (image denoising) of this technique have beenpre-
sented in Starck et al. (2003, 2004) to analyze images of gravi-
tational arcs, the Saturn rings or the CMB (Cosmic Microwave
Background) map.

In this paper we suggest to use the curvelet transform to
analyze asteroseismic observations (more precisely the stellar
echelle diagrams), in order to improve the “peak tagging” of
the oscillation modes and even the resultant “peak bagging”. To
illustrate the application of this denoising technique in the as-
teroseismic case, we have performed Monte Carlo simulations
of ideal asteroseismic data contaminated by different levels of
stochastic noise. We start in Sect. 2 by a quick reminder of the
properties of stellar oscillation modes in the solar-like case and
the construction of the echelle diagram. In Sect. 3 we introduce
multiscale transforms, in particular the ridgelet and the curvelet
transforms. In Sect. 4, the simulated data of a star with an os-
cillation spectrum similar to the Sun but with different rotation
axis inclinations and rotation rates, are presented. In Sect. 5 we
discuss the results obtained in the simulations.

2. Properties of solar-like oscillations

Only low-degree stellar oscillation modes can be detected
and observed with the present generation of instruments. The
asymptotic theory of oscillation modes (n ≫ ℓ) is then ad-
equate and can be used to study them. First order (Tassoul
1980) and second order developments (Vorontsov 1991; Lopes
& Turck-Chièze 1994; Roxburgh & Vorontsov 2000a,b) have
been made to describe solar and stellar oscillations. In thecase
of solar-like stars, where p-modes predominate, the frequencies
can be developed as:
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in this expressionℓ andn are respectively the degree and the
radial order of the modes and
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Fig. 1. Portion of the theoretical spectrum (top) and echelle diagram
(bottom) for a sun spinning ten times faster than the Sun and seen
under an angle of 50◦. This is the ideal power spectrum used in the
simulations described in Sect. 5.
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cs is the internal stellar sound speed,α is a phase-shift term
andψ is a function which allows to take into account the grav-
itational potential in the central region (Lopes & Turck-Chièze
1994). From the asymptotic approach, we can extract general
properties of modes and better understand the physics hidden
in the frequencies behavior. The large frequency spacing, de-
fined as∆νn,ℓ = νn+1,ℓ − νn,ℓ, tends asymptotically to∆ν0, re-
lated to the mass and radius of the star; the small frequency
spacing,δℓ,ℓ+2ν = νn,ℓ − νn−1,ℓ+2, can be approximated to first

order by (4ℓ + 6)∆ν0/(4π2νn,ℓ)
∫ R⋆

0
dcs

dr
dr
r . This variable is re-

lated to the derivative of the sound speed and enhances the ef-
fect coming from the central regions, providing constraints on
the age of the star. Finally the second difference is defined as
δ2ν = νn+1,ℓ − 2νn,ℓ + νn−1,ℓ. Its variations provide information
about the extent of the convective zone (Monteiro et al. 2000;
Ballot et al. 2004b) or the helium abundance in the stellar en-
velope (Basu et al. 2004).

Under the rotation effects the azimuthal orderm (−ℓ 6 m 6
ℓ) is needed to characterize the oscillation spectrum. If thean-
gular velocityΩ is uniform (Ledoux 1951), the mode frequen-
cies are asymptotically approximated by:

νn,ℓ,m ≈ νn,ℓ + mΩ/2π = νn,ℓ + mδν (2)

where δν is the rotational splitting. Equation 2 shows that
modes are (2ℓ + 1)-times degenerated among the azimuthal or-
der: a single peak in the spectrum becomes a multiplet. Its cor-
responding structure depends on the rotation rate, the inclina-
tion axis of the star and its stochastic excitation. The solar-like
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mode lifetimes (a few days) are expected to be much shorter
than the length of the future space observations (a few months).
In consequence, the relative amplitude ratios inside a multi-
plet will only depend, in average, on the inclination angle and
the spacing between these different m-components (Gizon &
Solanki 2003). Thus if the different m-components of a multi-
plet can be identified and tagged with the correct (ℓ,m), they
can provide a good estimation of both the rotation-axis incli-
nationi and the rotational splittingδν, allowing a better mode
parameter extraction through the fitting of the spectra. Theef-
fect of the stochastic excitation on an isolated mode could be
minimized by computing the average of these parameters on
several modes (see for example the n-collapsogramme; Ballot
et al. 2004a).

Equation 1 shows that the even (ℓ = 0, 2) and odd (ℓ = 1, 3)
modes have respectively almost the same frequency, only sep-
arated by the small spacingδℓ,ℓ+2ν. In addition, they are sep-
arated regularly in frequency by the large spacing∆νn,ℓ. This
property allows us to build the so-called echelle diagram (Grec
et al. 1983), which is currently used to identify modes for solar-
like oscillations. It is a 2D representation of the power spectrum
where this one is folded onto itself in units of the large spacing.
In such representation the modes appear as almost locally ver-
tical ridges (see Fig. 1). The echelle diagram is a powerful tool
for the “peak tagging” since assigning the correct (ℓ,m) values
to the peaks is easier when the multiplet structure is well identi-
fied in this diagram. The successiven values are obtained from
each individual horizontal line.

3. Multiscale Transforms

3.1. The Wavelet Transform

The wavelet transform provides a framework for decomposing
images into their elementary constituents across scales byre-
ducing the number of significant coefficients necessary to rep-
resent an image. The continuous wavelet transform of a 2D sig-
nal is defined as:

W(a, bi, b j) =
1
√

a

∫∫

f (x, y)ψ∗
(

x − bi

a
,

y − b j

a

)

dxdy (3)

whereW(a, b) are the wavelet coefficients of the functionf (x),
ψ(x)∗ is the conjugate of the analyzing wavelet,a > 0 is the
scale parameter andb is the position parameter. The continu-
ous wavelet transform is the sum over all the positions of the
signal f (x, y) multiplied by the scaled and shifted versions of
the waveletψ((x − bi)/a, (y − b j)/a) (cf. Fig. 2, top panels).
This process produces wavelet coefficients that are a function
of scale and position.

However, the classical wavelet transform only address a
portion of the whole range of interesting phenomena: isotropic
features at all scales and locations. One of the drawbacks ofthe
two-dimensional wavelet transform is that it does not achieve
an efficient analysis of images which present high anisotropy.
For instance, the wavelet transform does not efficiently approx-
imate 2D edges, since a large number of large wavelet coeffi-
cients, scale after scale, are required, making difficult its analy-

Fig. 2. Examples of 2D wavelets (top panels) and ridgelets (bottom
panels). The top right wavelet has a greater scale parameterthan this
on the left. The bottom right ridgelet has different orientation and
width than the left one.

sis. In order to solve this problem two new mathematical trans-
forms, namely the ridgelet transform and the curvelet trans-
form, were introduced.

3.2. The Ridgelet transform

The ridgelet transform was developed to process images in-
cluding ridges elements (Candès 1998). It provides a represen-
tation of perfectly straight edges. Given a functionf (x1, x2),
the representation of this latter is the superposition of elements
of the form a−1/2ψ((x1 cosθ + x2 sinθ − b)/a), whereψ is a
wavelet,a > 0 a scale parameter,b a location parameter and
θ an orientation parameter. The ridgelet is constant along lines
x1 cosθ + x2 sinθ = const, and transverse to these ridges it is
a wavelet. Thus, contrary to a unique wavelet transform, the
ridgelet has two supplementary characteristics: a length,equal
to this of the image and an orientation, allowing the analysis of
an image in every direction and so exhibiting the edge struc-
ture. Fig. 2 (bottom panels) shows two examples of ridgelets.
The problem is that in the nature edges are typically curved
rather than straight so ridgelets alone cannot yield an efficient
representation.

3.3. The Curvelet transform

3.3.1. Description

Ridgelets can be adapted to represent objects with curved edges
using an appropriate multiscale localization: at a sufficiently
fine scale a curved edges can be considered as almost straight.
Candès & Donoho (1999) developed the curvelet transform us-
ing ridgelets in this localized manner. Fig. 3 shows the different
steps of the curvelet analysis of an image:

1. Image decomposition into subbands: as a set of wavelets
bands through a 2D isotropic wavelet transform. Each band
corresponds to a different scale.
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Fig. 3. Sketch illustrating the curvelet transform applied to an image.
The image is decomposed into subbands followed by a spatial par-
titioning of each subband. The ridgelet transform is applied to each
block. The finest details correspond to the highest frequencies.

2. Smooth partitioning: each subband is partitioned into
squares – blocks –, whose size is appropriate to each scale.
The finest is the scale, the smaller are the blocks.

3. Ridgelet analysis: it’s applied to each square.

The implementation of the curvelet transform offers an ex-
act reconstruction and a low computational complexity. Like
ridgelets, curvelets occur at all scales, locations and orien-
tations. Moreover contrary to ridgelets, which have a given
length (the image size) and a variable width, the curvelets have
also a variable length (the block size) and consequently a vari-
able anisotropy. The finest the scale is, the more sensitive to the
curvature the analysis is. As a consequence, curved singulari-
ties can be well approximated with very few coefficients.

3.3.2. Denoising images: filtering curvelet coefficients

To remove noise a simple thresholding of the curvelet coeffi-
cients has been applied to select only significant coefficients.
One possible thresholding of a noisy image consists in setting
to 0 all non-significant curvelet coefficientsc̃i, j,l, i, j andl re-
spectively the indexes of the line, row and scale: it is the so-
called hard-thresholding:

c̃i, j,l =

{

1 if ci, j,l is significant
0 if ci, j,l is not significant

(4)

Commonly,ci, j,l is significant if the probability that the curvelet
coefficient is due to noise is small, i.e., if the curvelet coefficient
is greater than a given threshold. A basic problem remains: the
choice of the threshold. Usually, this threshold is taken equal
to kσ j, whereσ j is the noise standard deviation at the scalej
andk is a constant taken equal to 5 in our filterings.

Simple thresholding of the curvelet coefficients is very
competitive (Starck et al. 2002) with “state of the art” tech-
niques based on wavelets, including thresholding of decimated
or undecimated wavelet transforms.

4. Simulation of data

To characterize the curvelet denoising technique applied to the
asteroseismic data, we have simulated typical solar-like obser-
vations varying different parameters: S/N ratios, observational
lengths, rotation-axis inclinations, rotation rates... With this ap-
proach we know the input parameters in advance and we can
evaluate the quality of the results given by the curvelet analysis
and its limits.

In the simulations shown in this paper, we use the oscilla-
tion spectrum of a star similar to the Sun but seen under dif-
ferent conditions. generate the oscillation spectra ofsolar-like
stars Different rotation-axis inclinations (i = 50◦ and 90◦) and
rotation rates (Ω = Ω⊙, 5Ω⊙, and 10Ω⊙) have been consid-
ered. An ideal power spectrum were constructed first. Only the
modesℓ ≤ 3, n = 12–25 were simulated. The mode parameters
– frequencies (ν), amplitudes (A) and widths (Γ) – were ob-
tained from the analysis of GOLF (Global Oscillations at Low
Frequency) data (Garcı́a et al. 2004). The amplitudes were cor-
rected to take into account the difference between intensity and
velocity observations. Modes were simulated with symmetri-
cal Lorentzian profiles as the asymmetry is expected to be at
the level of the noise. Following the method described in Fierry
Fraillon et al. (1998), a multiplicative noise, aχ2 with 2 d.o.f.
statistics, has been introduced to reproduce the stochastic exci-
tation of such modes (see also Anderson et al. 1990). TheS/N
ratio of the “resultant” raw power spectrum was defined as the
maximum of the bell-shaped p-mode power (i.e. the highest
simulated p mode) divided by the noise dispersion. The sim-
ulated background is flat assuming that it has been previously
fitted and removed as it is usually done for the Sun (Harvey
1985).

Several Monte Carlo simulations have been performed for
each ideal spectrum. RealisticS/N, with values ranging from
5 to 15, have been used to cover a wide range of situations
(compatible with what it is expected, (see Baglin et al. 2001)).
In each realization of the Monte Carlo simulation the same
level of noise has been randomly added to the correspond-
ing ideal spectra. Therefore all the realizations, in a given
Monte Carlo simulation, have the sameS/N ratio. The simu-
lated spectra have been computed for two resolutions,≈ 0.38
and≈ 0.077 µHz, corresponding respectively to 30-day and
150-day observations. The first are representative of MOST ob-
servations and the short CoRoT runs while the latter are of the
same length than the long CoRoT runs.

Simulations of other stars, like some potential main CoRoT
targets, with different masses, ages and, in consequence, inter-
nal structures have been made. The results have already been
presented and discussed during the CoROT workshops #8 and
#9 obtaining the same qualitative results. For the sake of clarity,
they are not shown here.

5. Discussion

Once the spectra have been computed, the echelle diagrams can
be built with a fixed folding frequency. This one correspondsto
the mean large frequency spacing∆ν0, identified either by com-
puting the FFT, the autocorrelation of the spectra or any other
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Fig. 4. Effect of the curvelet denoising on the mode visibility forS/N = 5. Each picture shows 120 realizations out of the 500 done in our
Monte Carlo simulation. Each horizontal line corresponds to a single realization. The top panel is the raw spectra and the bottom is the curvelet
filtered one.

technique (see for example Régulo & Roca Cortés 2002). The
denoising based on the curvelet transform is then applied tothis
echelle diagrams. It is important to note that artifacts mayap-
pear in the filtered spectra at frequenciesν∗=ν0+k∆ν0, with k an
integer, when random small structures appear in the echelledia-
grams. However, their appearance and position strongly depend
on the folding frequency and are very sensitive to its value.
Therefore they can be easily identified. The artifacts can bere-
duced (in contrast to the regions containing signal) by building
echelle diagrams with slightly different folding frequencies and
averaging the resultant filtered spectra.

In order to present the results of data analysis using the
curvelet denoising method, we have selected the case of a sun-
like star seen with an inclination anglei = 50◦ and with a rota-
tionΩ = 10Ω⊙. A portion of the ideal spectra constructed for
this star can be seen in Fig. 1 (top panel). Monte Carlo simu-
lations were then performed, giving rise to different sets (each
one with 500 realizations) of raw spectra with differentS/N
ratios. The echelle diagrams were constructed using a folding
frequency of 135.18µHz, obtained by computing the FFT of
the raw spectrum.

5.1. Peak tagging

In those cases, with a highS/N (typically 15), the mode struc-
ture is clearly visible in each raw spectrum and also on the
echelle diagram. The different ridges can be easily identified

and tagged. Although the filtering gives enhanced denoised dia-
grams and unfolded spectra, it does not contribute significantly
to the mode identification.

In the lowerS/N cases, however, the situation is different.
Figure 4 shows some of the results of the Monte Carlo sim-
ulation for S/N=5. The upper panel corresponds to 120 real-
izations among the 500 computed for the raw spectra in the
frequency range 2450–2920µHz. Each horizontal line corre-
sponds to a single realization. Some patterns can hardly be
seen. The lower panel represents the same spectra after apply-
ing the curvelet filtering. A series of vertical ridges clearly ap-
pears. From the left to the right on the panels, they can be iden-
tified as the (ℓ = 2; m = ±1), theℓ = 0 (blended with theℓ = 2;
m = +2 ) and the (ℓ = 1; m = −1, 0,+1). The improvement
of the contrast is important in all the realizations and allows to
distinguish the different components of a mode, making easier
the identification and the tagging.

The identification is harder when looking at each individ-
ual spectrum and requires the use of the echelle diagram. Fig. 5
shows an example of raw (left) and filtered (right) 150-day ob-
servation power spectra (top and middle panels) and the cor-
responding echelle diagrams (bottom panels) for aS/N = 5
realization. Input frequencies are indicated by the short dashed
lines above the spectra. The mode peaks can hardly be distin-
guished in the raw spectrum and can easily be confused with
noise. For the range 2780-2920µHz, only a strong peak at
2900 µHz can be considered not to be noise. In the region
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Fig. 5. Raw (left) and filtered (right) power spectra (top and middlepanels) and echelle diagrams (bottom panels) for aS/N = 5 realization.
The short dashed lines in the power spectra represent the position of the theoretical frequencies. From left to right, the three first equidistant
lines indicate the componentsm = −1,0, 1 of ℓ = 1 modes, the two next indicate the strongest components ofℓ = 2 (m = −1 and 1), and the the
last indicatesℓ = 0. In this case only two components of theℓ = 1 and theℓ = 0 mode are slightly visible in the raw diagram. On the curvelet
filtered one, the threeℓ = 1 components appear as well as theℓ = 0 and the componentsm = ±1 of theℓ = 2 modes.

3060–3180µHz the peaks are visible and we can attempt to
identify theℓ=1 andℓ=0 modes but it is still unclear. On the
contrary, on the corresponding parts of the filtered spectrum,
the structures of theℓ=1 mode with three components, theℓ=0
mode and even the strongest components of theℓ=2 mode are
visible. The raw echelle diagram gives no extra informationbe-
cause of the very weak ridges and low contrast with the back-
ground. The weakest components can hardly be detected and
no tagging can be done. The curvelet filtering provides a con-
trast enhancement of the ridges on the echelle diagram. Thus
three almost equidistant strong ridges appear on the left of
the diagram and one strong ridge with two weaker ones on
the right. The corresponding patterns can be seen on the fil-
tered spectrum corresponding well to the theoretical frequen-
cies. Since the modesℓ = 3 are not visible, and according to
the amplitude of the strongest peak on the left, we can suggest
that the three strongest peaks correspond to aℓ = 1 multiplet
and the other ones to theℓ = 2 andℓ = 0 modes.

Consequently, when the tagging is done it is also easier to
have a first estimation of both the mean rotational splittingand
the rotation-axis inclination, since the visibility of themulti-
plet is increased. From the spacing between the components of
the modeℓ = 1, a first estimation of the mean rotational split-
ting of the star can be done, as well as an estimation of the

inclination angle, according to their relative amplitude ratios.
We have selected the extraction of one parameter: the mean
rotational splitting of theℓ=1 mode at low frequency (2540–
2550 µHz), to quantify the improvement of the curvelet fil-
tering. This region is particularly interesting because the line
width is still small and the modes, when they are visible, can
be easily identified. Thus, in a sample of 100 realizations of
the Monte Carlo simulation, we have obtained in 90 of them
a better estimation of this parameter in the filtered spectra. In
fact, in the raw spectra it was very exceptional to obtain a good
result. With the filtered spectra a mean rotational splitting of
〈δν〉 = 4.05± 0.30µHz was found, which is very close to the
actual splitting included in the ideal spectra〈δν〉 = 4.0 µHz. In
addition, specific methods can be applied to improve the extrac-
tion of these parameters by using different strategies of spectra
fitting as the ones developed by Gizon & Solanki (2003) or
Ballot et al. (2006). In the case of the 30-day observations,the
curvelet filtered echelle diagram is still very noisy and it does
not help in recognizing the ridges. However the correspond-
ing denoised power spectrum is much better despite the lower
resolution (5 times less than in the long runs), even for small
S/N ratios (∼ 5). The modesℓ = 0, 2 andℓ = 1 can be distin-
guished, at the maximum power, while it is not obvious to do
so in the raw spectra. Therefore, we consider that a 30-day run
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is the minimum length needed to have reliable results with the
curvelet denoising technique.

Garcı́a et al. (2006) analyzed the first available MOST pub-
lic Procyon A data (32-day observation) using the curvelet
technique. Previous analysis by Matthews et al. (2004) did
not reveal the presence of any p-mode structure in this star.
Therefore, due to its tiny S/N ratio the results of the curvelet
denoising should be taken with care. Nevertheless, an excess
of power seems to appear in the region where it is expected and
taking the 15 most prominent peaks in this region, many are in
agreement, inside the error bars, with previous tagged modes
using ground-based velocity observations.

5.2. Extraction of p-mode parameters

Once the mode identification and tagging are done, the extrac-
tion of the mode parameters can be performed. To illustrate
how this extraction can be improved by using the denoised
spectrum we have extracted the central frequency of the modes
in both the raw and the filtered spectra. To determine this pa-
rameter, modes have been fitted by Lorentzian profiles using
a maximum-likelihood estimator in the classical way: adjacent
pairs of even (ℓ = 0 andℓ = 2) modes are fitted together, while
ℓ = 1 is fitted alone, due to the small amplitudes ofℓ = 3
modes. For each multiplet, the fitted parameters are the cen-
tral frequency ˜νn,ℓ, the amplitudeÃn,ℓ, the linewidthΓ̃n,ℓ and
the backgroundb. The amplitude ratios inside the multiplets
and the rotational splittings have been fixed thanks to the pre-
liminary estimation done in the previous section (cf. 5.1).The
fitting procedure provides for each adjusted parameterX̃ an as-
sociated errorσ(X̃) computed by Hessian-matrix inversion.

The raw spectra follow aχ2 with 2 d.o.f. statistics, whereas
the filtered spectra have aχ2 with a higher d.o.f. statistics
(close to a Gaussian distribution depending on the number of
filtered coefficients). According to Appourchaux (2003), it is
possible to fit spectra following aχ2 with more than 2 d.o.f.
statistics with a classical procedure developed for aχ2 with 2
d.o.f. statistics: parameters are correctly fitted, but computed
errors have to be adapteda posteriori. However in our case,
due to filtering, points of filtred spectra are correlated (wehave
estimated that one point is correlated with∼10 neighbouring
points). This correlation should have to be considered, butwe
have neglected its effect on the fitting procedure in the present
study. This assumption is validated by the Monte Carlo simula-
tions. Such a global filtering induces also correlations between
the different lines of the echelle diagram. Thus the errors on
parameters of different modes (typically (n, ℓ) and (n + 1, ℓ))
can be correlated. These correlations will have to be taken into
account especially during the comparison of frequencies ex-
tracted by this way to stellar models.

From the 500 realizations of the Monte Carlo simulation,
we derived for each mode and for both the raw and the fil-
tered spectra the mean value of the extracted frequencies〈ν̃n,ℓ〉,
their mean computed errors〈σ(ν̃n,ℓ)〉 and the dispersion of fre-
quency distributionσ∗(ν̃n,ℓ) (the real error). We have verified
thatσ∗(ν̃n,ℓ) ≈ 〈σ(ν̃n,ℓ)〉 for fits performed on the raw spectra
and we haveσ∗(ν̃n,ℓ) < 〈σ(ν̃n,ℓ)〉 for fits performed on the fil-

tered ones. As expected, the error bars on the fitted frequencies,
computed by Hessian-matrix inversion, are overestimated.

Figure 6 shows the difference between the mean fitted fre-
quencies〈ν̃n,ℓ〉 and the theoretical frequenciesνin of the simu-
lated star discussed in the previous section (S/N = 5). The error
bars correspond to the dispersionσ∗(ν̃n,ℓ). For eachℓ, the error
bars of the filtered spectra are smaller than those of the raw
spectra. In addition, the range where modes can be detected,
tagged and fitted is extended. While the difference〈ν̃n,ℓ〉 − νin

is only flat in the central region of the raw power spectrum
(e.g. forℓ = 0, in the rangen = 18–22), it extends at higher
and lower frequencies (e.g. forℓ = 0, the range is extended to
n = 16–23) in the filtered one.

6. Conclusions

The application of a noise reduction technique based on the
curvelet transform to echelle diagrams improves the identifica-
tion – “peak tagging” – of stellar acoustic modes. In observa-
tions with aS/N ratio as small as 5 we are still able to recover
the mode pattern and extract reliable asteroseismic information
in both small and long runs (30-day and 150-day observations
respectively). Below this S/N and with shorter observations, the
method efficiency is reduced drastically. The rotational split-
tings and the rotation-axis inclination can be better estimated
using the filtered spectrum. In particular, Monte Carlo simu-
lations showed that a better extraction of the mean rotational
splitting from modes at low frequency can be done in 90 out of
100 realizations using the filtered spectra. The uncertainty on
the extracted rotational splitting of a typical sun-like star seen
with an inclination anglei = 50◦ and with a rotationΩ = 10Ω⊙
is very small,∼0.30µHz. These parameters can then be used
to have a set of guesses ora priori values to perform individual
fits of the spectra. We have also shown that the range of the
frequency extraction can be extended at higher and lower fre-
quencies using the filtered spectra. Finally, simulations of the
short run observations have demonstrated that this method can
also be applied to lower resolution spectra with good results.

Acknowledgements. P. Lambert thanks Dr. D. Neuman for useful dis-
cussions.
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