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ABSTRACT
In the context of future space-based asteroseismic missions, we have studied the prob-
lem of extracting the rotation speed and the rotation-axis inclination of solar-like
stars from the expected data. We have focused on slow rotators (at most twice solar
rotation speed), firstly because they constitute the most difficult case and secondly
because some of the CoRoT main targets are expected to have slow rotation rates.
Our study of the likelihood function has shown a correlation between the estimates of
inclination of the rotation axis i and the rotational splitting δν of the star. By using
the parameters, i and δν? = δν sin i, we propose and discuss new fitting strategies.
Monte Carlo simulations have shown that we can extract a mean splitting and the
rotation-axis inclination down to solar rotation rates. However, at the solar rotation
rate we are not able to correctly recover the angle i although we are still able to
measure a correct δν? with a dispersion less than 40 nHz.

Key words: Rotation – Stars: oscillations – Sun: helioseismology – Methods: data
analysis – Instrument: CoRoT

1 INTRODUCTION

Understanding dynamical phenomena inside stars is one of
the most important current challenges for stellar physics.
During the last decades, helioseismology has allowed astro-
physicists to constrain the internal structure and dynamics
of the Sun. In the same way, asteroseismology will aim to
improve our knowledge of stellar dynamics, especially con-
vection and rotation. With future asteroseismic missions
like CoRoT (Convection Rotation and planetary Transits,
Baglin 2003), it will be possible for example to determine
the extent of the convective region in stars and to extract
information on rotation. Since 2003 the first Canadian satel-
lite dedicated to asteroseismology, MOST (Microvariability
and Oscillations of STars, Walker et al. 2003), has been op-
erational, beginning the space age for asteroseismology.

Asteroseismology has already provided information on
the internal rotation of stars (e.g. Aerts et al. 2003, for re-
sults on a β Cepheid). However, the most accurate seismic
information has been obtained for the Sun. Helioseismology
has provided very accurate profiles of the internal rotation
(see Thompson et al. 2003, and the references therein) as
deep as 0.2 R� (Couvidat et al. 2003; Garćıa et al. 2004a),

? Present address: Max-Planck-Institut für Astrophysik, Karl-
Schwarzschild-Str. 1, 85748 Garching, Germany; E-mail:
jballot@mpa-garching.mpg.de

thanks to the Solar Heliospheric Observatory and to ground-
based networks. Because of the rotation of stars, modes are
not single peaks but multiplets. The splitting of the mul-
tiplet components gives information on the rotation speed
in the acoustic cavity covered by the mode. Nowadays and
in the near future, the asteroseismic observations will be
limited to low-degree modes because of the absence of spa-
tial resolution on the stellar surface. Thus, new inversion
techniques have been developed and checked to derive, for
example, the radial rotation profile (e.g. Goupil et al. 1996;
Lochard, Samadi & Goupil 2004) or to infer the latitudinal
differential rotation (Gizon & Solanki 2004).

Rotational splittings could be derived from the oscilla-
tion spectrum along with the other mode parameters. How-
ever, as we have learned from the solar case, the rotational
splitting is harder to extract for low-degree modes because
of the limited number of components in a multiplet. More-
over, another difficulty appears in the stellar case: the angle
of inclination (i) of the rotation axis, which determines the
multiplet pattern, is generally unknown.

Gizon & Solanki (2003) (hereafter GS03) have recently
studied the simultaneous extraction of the splitting and the
angle i from low-degree oscillation modes. We propose here
to follow up their analysis by studying the potential of multi-
mode fitting for more critical situations and by proposing
automatable procedures. Our main objective is to determine
the precision and limits in the determination of the rotation
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of solar-like stars from a mission like CoRoT. To do so, we
have simulated CoRoT-type observations (150-day long) of
a Sun spinning at different speeds with different axis orien-
tations. We have considered rather realistic signal-to-noise
ratios (S/N) and we have focused on the particular situation
of slow rotators (less than twice solar rotation).

Our preliminary results have been outlined in Ballot
et al. (2004). The present paper fully develops this work.
The layout of the rest of the paper is as follows. In Sect. 2
we describe the main properties of modes for a star under
rotational effects. In Sect. 3 we describe the techniques used
to extract splittings and angle i from several modes together.
In Sect. 4 we present the results of our method applied to
several example cases. Finally, we discuss the fitting meth-
ods before concluding in the last section.

2 OSCILLATION SPECTRUM OF A
SPINNING STAR

2.1 Mode properties

Acoustic (p) modes in solar-like stars are excited by turbu-
lent convective motions. Oscillations are damped but perma-
nently re-excited (Goldreich, Murray & Kumar 1994). The
oscillation power spectrum of such modes can be modelled as
a noisy Lorentzian profile. For a power spectrum classically
computed with the Fourier transform of a regularly-sampled
time series, this noise is a multiplicative exponential. A mode
(n, `, m) – see below – is also characterized by its frequency,
its amplitude and its FWHM.

In solar-like stars, the width Γ of a p-mode depends only
on its frequency ν. For the Sun, the function Γ(ν) shows a S-
shape. There is a plateau in the range 2300–3200µHz around
a value of 1 µHz. At low frequency widths decrease rapidly
and increase at high frequency (e.g. Garćıa et al. 2004b).

In the absence of rotation the frequency of a mode de-
pends only on its radial order n and its degree `: we de-
note it νn`. Modes are (2` + 1)-times degenerate among the
azimuthal order m. This degeneracy is removed by break-
ing the spherical symmetry, especially by rotation. The fre-
quency of mode (n, `, m) is expressed as νn`m = νn` +δνn`m.
The asymptotic first-order approximation, developed for a
star spinning as a solid body with an angular velocity Ω,
gives δνn`m = −mδν with δν = Ω/2π (Ledoux 1951). We
call δν rotational splitting (or simply splitting).

For geometrical reasons, only low-degree modes have a
sufficient amplitude to be visible in an oscillation spectrum
due to the integration of the luminosity – or the radial veloc-
ity – on the full stellar disk. Mode amplitudes also depend on
their azimuthal order m. Calculations are rather straightfor-
ward and can be found for example in GS03. Assuming the
equipartition of energy between the different components of
a multiplet (n, `), their amplitudes can be expressed as

An`m = a`m(i)V 2
` αn` = a`m(i)An`. (1)

In this expression, the factor V` is the mode visibility. It
depends on the limb-darkening function, i.e. on the atmo-
spheric properties. The visibility V` decreases strongly when
` increases: for ` = 1, .., 5, we have calculated (V`/V0)

2 =
1.5, 0.53, 0.027, 0.0039, 0.00067, assuming an Eddington law
for the limb-darkening function. For this reason, we expect
to measure only modes ` = 0, 1, 2 and probably a few ` = 3.
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Figure 1. An ` = 2 mode for three different speeds and angles.

The factor a`m(i) is the amplitude ratio of modes inside a
multiplet. It is a purely geometrical term, depending on i,
the angle between the line of sight and the rotation axis.
This is true under only one condition, that the contribution
of each stellar-surface element to the total flux depends only
on its distance to the disk centre. Even if it is not exactly
true for velocity-fluctuation observations due to the rota-
tion of the star (e.g. Henney 1999), this assumption stays
very good for luminosity observations. The final factor of the
mode amplitude αn` ≈ α(νn`) depends mainly on the fre-
quency and excitation mechanisms. We note An` = V 2

` αn`.
This approach is valid for low rotation rates, when rotation
can be interpreted as perturbation.

Thus a mode (n, `) is modelled by a multiplet parame-
trized by five parameters (only three for ` = 0): the central
frequency νn`, the amplitude An`, the width Γn` common
to all the components, the splitting δν and the angle i.

2.2 Classification depending on δν

We have defined three different scenarios according to δν:

(1) δν � δ02ν ,
(2) Γ < δν . δ02ν ,
(3) δν . Γ ;

where δ02ν denotes the small separation νn+1,`=0 − νn,`=2

(around 10µHz for the Sun in the range 2000–3000µHz). In
the first case, the components of different modes are mixed
and it could be difficult to label each peak in a spectrum with
the correct values of `, m and relative n. However, when this
identification is done, all of the splittings δνn`m are accu-
rately defined. In the second situation, mode identification
does not pose any problem in general for good S/N and, as
the components of a multiplet are well separated, splittings
are easily measured. In the third and last case, the multi-
plet components are blended. The effect on the amplitude
ratio of a multiplet due to a given inclination axis is not
always distinguishable from those of the splitting as illus-
trated by Fig. 1. For three different configurations chosen as
an example, the mode profiles are nearly the same; only fine
differences appear in the structure of profile tops. When an
exponential multiplicative noise is taken into account, these
differences are very difficult to catch. We have studied this
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more challenging situation, corresponding to δν . 1µHz (for
suns), i.e. Ω . 2Ω� (Ω�/2π ≈ 0.4 µHz).

3 EXTRACTING THE MODE PARAMETERS

3.1 Fitting modes: maximum likelihood

Splittings and inclination angle should be deduced from the
oscillation spectra at the same time as all the other mode pa-
rameters. For that, we use techniques developed and applied
in full-disk-integrated helioseismology. Oscillation spectra
are fitted with a maximum likelihood method as described
by Appourchaux, Gizon & Rabello-Soares (1998). The power
spectrum of a solar-like star is modelled as the sum of modes,
modelled by multiplets, and a background noise, mainly due
to convective motions (granulation, supergranulation), and
instrumental noises. The first step of the analysis is to re-
move the background, previously fitted following the model
of Harvey (1985), to obtain a “flat” background. Then the
modes are classically fitted alone or by pairs (`, ` + 2) ac-
cording to the value of the small separation and the mode
amplitudes. The residual background is considered as a con-
stant inside the fitting window. As i is a new parameter
compared to the classic helioseismic analysis, we have ex-
plored its impact, especially on the splitting determination.

3.2 Guessing and assumptions

The fitting method needs guesses for the parameters to fit.
This estimate is a starting point of the parameter-space ex-
ploration by the algorithm maximising the likelihood. We
denote by x̃ the estimate of the parameter x. A crude esti-
mation of the mode central frequency can be obtained, by
looking for its centroid. The amplitudes and widths can be
first determined on ` = 0 modes, which are insensitive to
rotation. As amplitudes αn` and widths Γn` depend mainly
on frequency, initial values for the modes ` > 1 can be in-
terpolated from those of ` = 0 as follows:

Ãn−1,2 =
V2

2

V0
2
Ãn,0, Ãn−1,1 =

V1
2

V0
2

Ãn−1,0 + Ãn,0

2
, (2)

Γ̃n−1,2 = Γ̃n,0, Γ̃n−1,2 =
Γ̃n−1,0 + Γ̃n,0

2
. (3)

Determining the estimates ı̃ and δ̃ν is not easy when
multiplet components are not well separated. A first possi-
bility is to fit each mode as a single Lorentzian. The compar-
ison between the widths of two neighbouring modes ` = 2
and ` = 0 allows us to detect the presence of rotation (when
i > 0), but a quantitative interpretation of this broadening
is difficult because of the cumulative effects of i and δν.

The sensitivity of the fitting to ı̃ and δ̃ν has been tested
along with the impact of the noise on i and δν determination.
Modes of interest have been fitted as follows:

• Pairs ` = 0 & 2 are fitted with eight parameters
(A0, A2, ν0, ν2, Γ, b, δν, i): their amplitudes, their frequen-
cies, a common width, the background level, the splitting
and the inclination angle. Assuming Γn−1,2 = Γn,0 is a good
approximation as shown by the solar case (Chaplin et al.
2006). Thus, the parameter space is reduced as well as the
computing time and the risk of non convergence.
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Figure 2. Likelihood function for one simulated spectrum in the
plane (i, δν) of the parameter space. All the other parameters are
fixed to their simulated value. The power spectrum is taken in the
range 2200–3000µHz. The white colour corresponds to the highest
likelihoods and the black to the lowest. The × is the simulated
value (i0, δν0) and the + is the maximum of the likelihood. The
dashed line follows δν sin i = δν0 sin i0.

• Modes ` = 1 are fitted with six parameters
(A1, ν1, Γ1, b, δν, i). As the expected amplitudes of the ` = 3
modes are very small we do not fit them, although they are
present in simulated spectra. Previous results have shown
that such a simplification could introduce biases – especially
to frequencies and splittings – if neglected modes are not
sufficiently small and/or are too close to the fitted ones. We
have been careful and we have verified that no significant
bias has been introduced in our case.

Different random values for ı̃ and δ̃ν have been tested
on several Monte Carlo realizations of the spectrum (see
method in Sect. 4.1). We have seen first that the solution
is not unique and a certain dependence upon the first guess
parameters is observed. For a given mode in a given real-
ization, the fitting procedure can converge to some different
couples (i, δν) according to the initial values ı̃ and δ̃ν. How-
ever the main effect is due to the noise which has a strong
impact on the estimation of (i, δν) and disperses the results.
Nevertheless, we observe a clear correlation in the determi-
nation of both parameters. Results are organized along the
curve: δν sin i ≈ constant = δν0 sin i0. We denote with an in-
dex 0 (δν0, sin i0) the real (input) values of the parameters
in the simulation. This can be explained by a study of the
likelihood function for a simulated spectrum. Figure 2 shows
such function in a plane (i, δν) in the parameter space, with
all other parameters fixed to their true value. We observe in
such a plane a ridge following the curve δν sin i = δν0 sin i0.
Thus i and δν are correlated. A new pair of independent
parameters can be built:

(i, δν?) with δν? = δν sin i. (4)

Hereafter we use preferentially this new variable δν? which
is better suited than δν for studying fitting issues and dis-
cussing results. We did not find major differences between
using δν? and δν for the minimization routine, except for
the error bars computed by Hessian-matrix inversion.
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3.3 Proposed strategy: multi-mode fitting

With a classical fitting strategy, the determination of i seems
very sensitive and tricky. We propose here another strategy
aiming to improve the accuracy of the obtained value of
i. We have fitted simultaneously several modes, as we can
consider – to a first order approximation – that they have
the same value of i and δν?.

(1) Choosing initial guesses. For Ã, Γ̃ and ν̃, see
Sect. 3.2. We firstly fit pairs ` = 0 & 2 and single modes
` = 1, using several (typically 20) different random values
of ı̃ and δ̃ν?. We use the average of all the obtained results
as a better guess for these parameters.

(2) Fitting simultaneously the modes (`=2, n−1),
(`=0, n) and (`=1, n). We used eleven parameters
(A2, A0, A1, ν2, ν0, ν1, Γ0/2, Γ1, b, δν, i). We obtained also a
series of values for (i, δν?). The mean values are noted (im
and δν?

m) (m for mean value). We obtain in this way a first
measurement of i and Ω.

(3) Global fitting on a large range of the spectrum.
Fitting several modes simultaneously, keeping free all the
parameters, would be too costly in terms of computing time,
and too delicate in terms of convergence. So we have decided
to fix all the parameters but (i, δν?) to their values deduced
from the previous step. We choose as guesses ı̃ = im and
δ̃ν? = δν?

m. Fitted results are denoted (ig, δν?
g ) (g as global).

4 MONTE CARLO SIMULATIONS

4.1 Defining the simulations

The mode characteristics are derived from the observations
of the Sun made by the GOLF instrument (Global Oscilla-
tions at Low Frequency, Gabriel et al. 1995). However the
amplitudes have been adapted to simulate luminosity obser-
vations instead of Doppler velocity measurements. We have
treated the Sun as it was a main CoRoT target of magni-
tude 6 observed during 150 days. For such a star, in the fre-
quency range of interest (2200–3000µHz), stellar noise have
to dominate instrumental and photon noise (see discussion
in Michel et al. 2005). Thus, S/N (as defined by Libbrecht
1992) of the hightest component of a multiplet varies from
15 to 150 for the ` = 1 modes, from 4 to 45 for ` = 2, and
from 0.7 to 7 for ` = 3 (in configurations at 80◦). The widths
do not vary much (from 0.8 to 1.1µHz). 150-day (resolution
≈ 77 nHz) power spectra are created including ` 6 3 with a
splitting δν0 and an angle i0 that we want to simulate. In the
chosen frequency range, there are six modes for each degree.
This choice of interval results from a compromise: we have
rejected modes with too low S/N (i.e. at low frequency) and
peaks too broad, useless for our analysis (at higher frequen-
cies). This will give us a lower limit of what we could obtain
in the real case, with the hope that CoRoT will reach such
modes. To introduce the noise of each realization we follow
Fierry Fraillon et al. (1998) by using a random exponential
distribution which simulates the stochastic excitation.

To test the analysis method a Monte Carlo simulation
is done, i.e., we repeat N times the method on the same the-
oretical spectrum changing only the realization of noise. As
the computing time required in each realization is quite high
and we want to do many different cases, we have decided to

limit the number of realizations N to 100. The statistical sig-
nificance of the results is small but it is enough to check the
general trends of the solution. In order to verify our results
we have increased N to 1000 in some cases, e.g. i0 = 60◦,
δν0 = 0.8 µHz. The conclusions remain roughly the same.
We have simulated six different configurations: two rotation
rates Ω = 1 and 2Ω�, i.e. δν0 = 0.4 and 0.8µHz, with three
inclination angles i0 = 30, 60 and 80◦.

4.2 Star spinning twice as faster as the Sun

This class of stars is the most favourable among those con-
sidered. Results obtained with our strategy are satisfactory.
A clear improvement is found, relative to classical fitting.
The histograms of Fig. 3-a show the distributions of deduced
parameters for each considered inclination angle. Both pa-
rameter couples (im, δν?

m) and (ig, δν?
g ) are plotted for every

studied stellar orientation. We make three main comments:

• in the three configurations, determinations of δν? are
non-biased and little spread: the dispersion is around 30nHz.
Results given by averaging (δν?

m) and by global fitting (δν?
g )

are very similar. Global fitting does not lead to a noticeable
change in this parameter in this situation.

• On the other hand, the global fit (i.e. ig) brings, for
i, a major improvement at low angle (i = 30◦) according
to averaged results im. Although there continue to be sev-
eral highly spurious results (ig & 70◦), a large number of
realizations lie around 30◦.

• There is a slight bias on the i determination for the
extreme values, but it remains smaller than the error bar.

4.3 Star spinning as the Sun

Fitting results for the configuration with δν = 0.4 µHz are
shown in Fig. 3-b. The study of the distributions of im, δν?

m,
ig and δν?

g leads to two different conclusions for δν? and i.

• The δν? distributions are quite narrow with disper-
sions similar to the previous configurations (around 30–
40 nHz). However a significant bias appears in the three
cases, whereas it is negligible in the simulations at 2 Ω�.

• The angle i is not correctly extracted. The distributions
are rather chaotic. However we have remarked that around
a fifth of the realizations have given an angle of 90◦. For the
global fits of these low-splitting cases, this value behaves like
an attractor during the likelihood-maximising process.

We wanted to know if it is possible to extract the angle
i from the selected modes in a configuration Ω = Ω�. To
do so we have considered an idealized situation: we have
performed “ideal” global fits. In such fits all the parameters
– except i and δν? – are fixed to their exact values and not
to the values deduced from a previous fitting step (cf. step
#3 in the strategy § 3.3). Moreover the exact values i0 and
δν?

0 are chosen as guesses ı̃ and δ̃ν?. Thus all is optimized
for fitting: only noise can influence the results. Results of
this fitting method are plotted in Fig. 3-b with dashed lines.
Thus we can conclude that:

• the bias on δν? disappears. It indicates that this bias
was due to errors in the values to which the parameters were
fixed. However, the dispersion stays the same: it is mainly
generated by the noise.
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a) Ω = 2Ω� (δν0 = 0.8 µHz) b) Ω = Ω� (δν0 = 0.4 µHz)
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Figure 3. a) Distribution of fitting results in the three configurations Ω = 2 Ω�. On the left the angle i; on the right δν?. Histograms
plotted with solid lines show the results of global fits (ig and δν?

g ); Histograms with dotted lines show the averaged results im and δν?
m.

The dot-dash vertical line indicates the input value. b) Same as a) but for Ω = Ω�. We have added distribution of the “idealized” global
fits (cf. text) plotted with dashed lines.

• the determination of i is not changed. Noise dominates
above the signature of the angle and that seems inevitable
in such data.

5 DISCUSSION

5.1 On the i/δν-correlation and the law a`m(i)

In the framework of global helioseismology, Chaplin et al.
(2001) have observed that changing amplitude ratios fixed
inside the multiplets ` = 1, 2 and 3 during the fit of solar
spectra introduces a systematic bias on extracted splitting.
We can understand the reason by studying the likelihood
function shown in Fig. 2. Changing the amplitude ratio is
similar to changing the angle i, thus it introduces a bias on
splitting determination due to the correlation we have found.
Our results generalise this observation. They show perfectly
that we should be cautious of bias introduced when param-
eters are fixed, because of the correlation existing between
the different parameters (see also Fierry Fraillon et al. 1998).

This analysis shows that it could be interesting to de-
rive the angle i by other ways, like directly studying the light
curve of stars and trying to follow up modulations due to ac-
tivity spots (e.g. Rucinski et al. 2004). If such an additional
constraint is available, the situation would become similar to
the solar case and the amplitude ratios a`m could be fixed a

priori and individual splittings fitted. However the measure-
ment of i must be sufficiently accurate (probably ∼ 5–8◦)
otherwise the estimate of δν will likely be biased.

The results presented in this paper depend on the law
we have used to link a`m to i. For fitting, this law must
be defined a priori. As shown once again by solar experi-
ence (Chaplin et al. 2004), when multiplet components are
blended and not separated – which is the case here – fits are
very sensitive to the chosen law a`m(i). Luckily, for intensity
observations, these ratios depend mainly on well-controlled
geometrical considerations (cf. Sect. 2.1).

5.2 Limitation and improvements

The situation can be improved if low-frequency modes are
measured. For these modes the splitting can directly be mea-
sured because of their finer widths. Then fixing the retrieved
splitting can yield to a good estimation of i at higher fre-
quencies where the multiplets are better defined and the
influence of the stochastic excitation less important.

In our simulations, we have assumed that the angle and
the splitting are the same for all modes. While it is true
that i is the same for every mode, δν can vary for real stars,
especially because of the differential rotation that could exist
along the radius. However, for the Sun this variation is weak
for low-degree modes in the studied frequency range. We
could also attempt to extract not a mean splitting but a
mean splitting for each degree, as was done for a first stage
for the Sun (cf. Lazrek et al. 1996).

If ` = 3 modes have sufficiently high amplitudes in real
observations to be correctly fitted, the results shown here
would be improved. If they could be observed but with low
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Figure 4. Synthetic representation of biases and error bars for
i and δν? deduced from the simulations, in all the studied con-
figurations. The crosses (×) mark the expected values (i0, δν?

0 ).
For Ω = 2 Ω� cases, the boxes indicate the mean results and
their dispersions. For Ω = 1 Ω� cases, only error bars on δν? are
plotted because of the absence of good determinations of i. The
two dashed lines are isorotations δν = δν0 = 0.4 and 0.8 µHz.

S/N, we could try to use a so-called n-collapsogram (cf. Bal-
lot et al. 2004) to extract a mean splitting. This technique
can be summarized as follows: averaging the spectra of sev-
eral ` = 3 modes with different orders n, after removing the
` = 1 neighbours, to enhance the S/N and define the mul-
tiplet better; and fitting the resulting spectrum. It needs a
good determination of the central frequency for every mode,
and small variations of δν and the width (which is the case
in the “plateau” frequency range).

We can hope to derive even better results by denoising
asteroseismic spectra. Filtering the spectrum and enhancing
S/N could improve the contrast of multiplets, guiding their
analysis. Lambert et al. (2006) are proposing methods based
on curvelet transforms permitting such denoising.

This analysis performed on the Sun can be extended
to sufficiently bright CoRoT targets with similar mass and
evolutionary state. S/N will depend on the convective-noise
level which will be observed in other stars. Some discussions
on this topic have taken place after the observations of Pro-
cyon by MOST (Matthews et al. 2004; Bedding et al. 2005).

6 CONCLUSION

One of the challenges of present and future asteroseismic
space missions is to extract stellar rotation rates and, wher-
ever possible, the internal rotation profile. To do that, mode
splittings δν have to be measured. We have studied the im-
pact of the extra parameter i, appearing in asteroseismology,
on the fitting. We have shown a correlation between δν and
i, and defined a new parameter δν? = δν sin i. Strategies
of multi-mode fitting have been developed, tested and vali-
dated with Monte Carlo simulations. Figure 4 sums up the
results. In agreement with GS03, we find that at Ω = 2 Ω�
we can retrieve both parameters in most of the cases, but
with error bars improved by the global fitting, especially at
low angle. However, at Ω = Ω� we have not been able to
correctly recover the angle i. This result emphasizes the in-

terest of having an independent measurement of the angle,
but it has to be accurate enough to prevent the inclusion of
a bias in the splitting determination.
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