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Abstract

Polarization effects in the reaction e+ + e− → d̄ + d have been investigated for the case of

longitudinally polarized electron beam and arbitrary polarization of the produced deuteron, with

the aim of a determination of the time-like complex deuteron electromagnetic form factors. General

expressions of polarization observables are derived and numerical estimations have been carried out

by means of various models of deuteron electromagnetic form factors, for kinematical conditions

near threshold.
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I. INTRODUCTION

The electromagnetic form factors (FFs) of hadrons and nuclei provide important infor-

mation about the structure and internal dynamics of these systems. Recent progress in

electron–scattering experiments allowed to measure not only the cross sections but also var-

ious polarization observables in the region of the momentum transfers where these data can

help to discriminate between different theoretical predictions.

The deuteron, the only bound two–nucleon system, is one of the fundamental systems of

nuclear physics. Accordingly, many studies, both experimental and theoretical, have been

devoted to it. Of particular interest today is the degree to which the deuteron can be under-

stood as a system of two nucleons interacting via the known nucleon–nucleon interaction.

When addressing, more specifically, to the electromagnetic properties of the deuteron, the

main question concerns the reliability to predict the three deuteron FFs starting from the

calculated deuteron wave function and nucleon FFs known from electron–nucleon scattering.

At low momentum transfers, predictions and data agree quite well when accounting for one–

body terms only, whereas at the higher momentum transfers, two–body contributions are

known to be important. Whether quark degrees of freedom do need to be taken explicitly

into account, is still a matter of debate. A status of the experimental and theoretical research

of the deuteron can be found in recent reviews [1, 2].

Elastic electron–deuteron scattering has been investigated in many experiments, and cross

section data today covers a large range of momentum transfers (see review [2]). Some of

these data obviously are not very precise, other data, mainly of more recent origin, have

reached accuracies down to the 1 % level. During the last years, it has become possible

to measure not only cross sections, but also spin observables, due to the developments of

polarized electron beams, polarized deuteron targets and polarimeters. The knowledge of

these spin observables is unavoidable, if one wants to separate the contributions of the

different multipolarities to the A(Q2) structure function. On the side of experiment, good

progress has been made. In particular, recent polarization data for electron–deuteron elastic

scattering allowed the individual determination of the deuteron charge and quadrupole FFs

up to a value of the momentum transfer squared Q2= 1.8 GeV2.

The deuteron charge FF GC is particularly interesting for the understanding the deuteron
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structure, beyond the impulse approximation. GC displays a node at Q2=0.7 GeV2, and the

position of this node is especially sensitive to the ingredients of the models, in particular

meson–exchange currents.

The experimental investigation of deuteron FFs should help to determine the region where

it is necessary to introduce explicitly quark and gluon degrees of freedom, for a correct de-

scription of the deuteron. At present, as it was shown in Ref. [3], the overall experimental

results on elastic electron–deuteron cross sections are not consistent with pQCD predictions.

The best global descriptions of the existing deuteron data are based on impulse approxima-

tion (including eventually relativistic corrections, meson exchange currents, ∆ isobars...).

The interaction of electrons with deuterons is usually assumed to occur through the ex-

change of a virtual photon (one–photon exchange approximation) due to the smallness of

the electromagnetic fine structure constant, which suppress two -or more- photon exchange.

However, a few decades ago it was suggested [4] that the two–photon exchange mechanism

may be significant in the region of large momentum transfer. More recently, the possible con-

tribution of two–photon exchange to the elastic electron–deuteron scattering was discussed

in Ref. [3].

As for the nucleon, the knowledge of electromagnetic FFs in the time–like (TL) region of

momentum transfer can give additional important information about the internal composite

structure of the hadron. Measurements are certainly more difficult in the deuteron case,

as shown in Ref. [5], where the total cross section of the reaction e− + e+ → d + d̄ was

predicted up to q2 = 30 GeV2, using a model of deuteron FFs based on an extension

of the vector–meson–dominance model (VMD) of the electromagnetic hadron interactions.

However, other mechanisms, as the presence of a two–photon contribution, could favor a

larger cross section.

After the challenging discovery of antideuteron [6], which established the existence of

nuclear antimatter, the production of antideuteron was recorded in different reactions. Very

recently, the production of deuterons and antideuterons in Au + Au collisions has been

reported by the PHENIX experiment at RHIC [7] and interpreted in terms of coalescence

model. It was found that the spectra of d and d̄ decrease less steeply than p (p̄) spectra.

The cross section for d̄ photoproduction was also measured at HERA at Wγp = 200 GeV [8].

The production of d̄ in e+e−–annihilation at W = 10 GeV was also measured at DORIS II

storage ring [9].
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In the present paper we calculate the polarization observables in the reaction

e−(k1) + e+(k2) → d(p1) + d̄(p2). (1)

where the momenta of the particles are indicated in brackets.

We consider the case of unpolarized and longitudinally–polarized electron beam with pro-

duction of vector– and tensor–polarized deuterons. The expressions of polarization observ-

ables are given in terms of the deuteron electromagnetic FFs. Due to final state interaction,

FFs are complex functions of the variable q2. Nevertheless, not all models of FFs, which

are mainly parametrizations built for the space-like region, can be consistently applied to

the TL region and give origin to an imaginary part. However, numerical estimations for

the cross section and polarization observables are tentatively given, on the base of the an-

alytic continuation of existing parameterizations of the deuteron FFs, similarly to the case

of nucleon FFs in Ref. [10].

II. POLARIZATION OBSERVABLES

In the one-photon approximation, the differential cross section of the reaction (1) in terms

of the leptonic Lµν and hadronic Wµν tensors contraction (in the Born approximation we

can neglect the electron mass) is written as

dσ

dΩ
=

α2β

4q2

LµνWµν

q4
, (2)

where α = 1/137 is the electromagnetic constant, β =
√

1 − 4M2/q2 is the deuteron velocity

in the reaction center of mass system (CMS), M is the deuteron mass and q is the four

momentum of the virtual photon, q = k1 + k2 = p1 + p2 (note that the cross section is not

averaged over the spins of the initial beams).

The leptonic tensor (for the case of longitudinally polarized electron beam) is

Lµν = −q2gµν + 2(k1µk2ν + k2µk1ν) + 2iλεµνσρk1σk2ρ , (3)

where λ is the degree of the beam polarization (further we assume that the electron beam

is completely polarized and consequently λ = 1).

The hadronic tensor can be expressed via the nucleon electromagnetic current Jµ, de-

scribing the transition γ∗ → d̄d, as

Wµν = JµJ
∗

ν . (4)
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As the deuteron is a spin–one nucleus, its electromagnetic current is completely described

by three FFs. Assuming the P– and C–invariance of the hadron electromagnetic interaction

this current can be written as [11]

Jµ = (p1−p2)µ[−G1(q
2)U∗

1 ·U∗

2 +
G3(q

2)

M2
(U∗

1 ·qU∗

2 ·q−
q2

2
U∗

1 ·U∗

2 )]−G2(q
2)(U∗

1µU∗

2 ·q−U∗

2µU∗

1 ·q),
(5)

where U1µ (U2µ) is the polarization four-vector describing the spin one deuteron (an-

tideuteron), and Gi(q
2) (i = 1, 2, 3) are the deuteron electromagnetic FFs. The FFs Gi(q

2)

are complex functions of the variable q2 in the region of the TL momentum transfer (q2 > 0).

They are related to the standard deuteron electromagnetic FFs: GC (charge monopole), GM

(magnetic dipole) and GQ (charge quadrupole) by

GM = −G2, GQ = G1 + G2 + 2G3, GC = −2

3
τ(G2 − G3) + (1 − 2

3
τ)G1, τ =

q2

4M2
. (6)

The standard FFs have the following normalizations:

GC(0) = 1 , GM(0) = (M/mn)µd , GQ(0) = M2Qd , (7)

where mn is the nucleon mass, µd = 0.857(Qd = 0.2859 fm2) is deuteron magnetic

(quadrupole) moment.

When calculating the expression for the hadron tensor Wµν in terms of the deuteron

electromagnetic FFs, using the explicit form of the electromagnetic current (5), the spin–

density matrices of the deuteron and antideuteron are

U1µU∗

1ν = −
(
gµν −

p1µp1ν

M2

)
+

3i

2M
εµνρσsρp1σ + 3Qµν , U2µU∗

2ν = −
(
gµν −

p2µp2ν

M2

)
, (8)

if the deuteron polarization is measured and the antideuteron polarization is not measured.

Here sµ and Qµν are the deuteron polarization four vector and quadrupole tensor, respec-

tively. The four vector of the deuteron vector polarization sµ and the deuteron quadrupole–

polarization tensor Qµν satisfy the following conditions:

s2 = −1, sp1 = 0, Qµν = Qνµ, Qµµ = 0, p1µQµν = 0 .

Taking into account Eqs. (4), (5) and (8), the hadronic tensor in the general case can be

written as the sum of three terms

Wµν = Wµν(0) + Wµν(V ) + Wµν(T ), (9)
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where Wµν(0) corresponds to the case of unpolarized deuteron and Wµν(V )(Wµν(T )) cor-

responds to the case of the vector (tensor) polarized deuteron. The explicit form of these

terms is:

- the unpolarized term Wµν(0):

Wµν(0) = W1(q
2)g̃µν +

W2(q
2)

M2
p̃1µp̃1ν , g̃µν = gµν −

qµqν

q2
, p̃1µ = p1µ − p1q

q2
qµ ,

W1(q
2) = 8M2τ(1 − τ)|GM |2, W2(q

2) = 12M2(|GC |2 −
2

3
τ |GM |2 +

8

9
τ 2|GQ|2). (10)

- the term for vector polarization Wµν(V ):

Wµν(V ) =
i

M
S1(q

2)εµνσρsσqρ +
i

M3
S2(q

2)[p̃1µενασρsαqσp1ρ − p̃1νεµασρsαqσp1ρ]+ (11)

+
1

M3
S3(q

2)[p̃1µενασρsαqσp1ρ + p̃1νεµασρsαqσp1ρ],

S1(q
2) = −3M2(τ − 1)|GM |2, S2(q

2) = 3M2[|GM |2 − 2Re(GC − τ

3
GQ)G∗

M ],

S3(q
2) = 6M2Im(GC − τ

3
GQ)G∗

M .

- the term for tensor polarization Wµν(T ):

Wµν(T ) = V1(q
2)Q̄g̃µν + V2(q

2)
Q̄

M2
p̃1µp̃1ν+ (12)

+V3(q
2)(p̃1µQ̃ν + p̃1νQ̃µ) + V4(q

2)Q̃µν + iV5(q
2)(p̃1µQ̃ν − p̃1νQ̃µ),

where

Q̃µ = Qµνqν −
qµ

q2
Q̄ , Q̃µqµ = 0 ,

Q̃µν = Qµν +
qµqν

q4
Q̄ − qνqα

q2
Qµα − qµqα

q2
Qνα , Q̃µνqν = 0, Q̄ = Qαβqαqβ. (13)

The tensor structure functions Vi(q
2) are combinations of deuteron FFs as follows:

V1(q
2) = −3|GM |2, V2(q

2) = 3
[
|GM |2 +

4

1 − τ
Re(GC − τ

3
GQ − τGM )G∗

Q

]
, (14)

V3(q
2) = −6τ

[
|GM |2 + 2ReGQG∗

M

]
, V4(q

2) = −12M2τ(1−τ)|GM |2, V5(q
2) = −12τIm(GQG∗

M).
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Using the definitions of the cross–section (2), leptonic (3) and hadronic (9) tensors, one

can easily derive the expression for the unpolarized differential cross section in terms of the

structure functions W1,2 (after averaging over the spins of the initial particles)

dσun

dΩ
=

α2β

4q4

{
−W1(q

2) +
1

2
W2(q

2)

[
τ − 1 − (u − t)2

4M2q2

]}
, (15)

where t = (k1 − p1)
2, u = (k1 − p2)

2.

In the reaction CMS this expression can be written as

dσun

dΩ
=

α2β3

4q2
D, D = τ(1 + cos2 θ)|GM |2 +

3

2
sin2 θ

(
|GC|2 +

8

9
τ 2|GQ|2

)
, (16)

where θ is the angle between the momenta of the deuteron (~p) and the electron beam (~k).

Integrating the expression (16) with respect to the deuteron angular variables one obtains

the following formula for the total cross section of the reaction (1)

σtot(e
+e− → d̄d) =

πα2β3

3q2

[
3|GC|2 + 4τ(|GM |2 +

2

3
τ |GQ|2)

]
. (17)

One can define also an angular asymmetry, R, with respect to the differential cross section

measured at θ = π/2, σ0

dσun

dΩ
= σ0(1 + Rcos2θ), (18)

where R can be expressed as a function of the deuteron FFs

R =
2τ(|GM |2 − 4

3
τ |GQ|2) − 3|GC|2

2τ(|GM |2 + 4
3
τ |GQ|2) + 3|GC |2

. (19)

This observable should be sensitive to the different underlying assumptions on deuteron FFs;

therefore, a precise measurement of this quantity, which does not require polarized particles,

would be very interesting.

One can see that, as in the space-like (SL) region, the measurement of the angular

distribution of the outgoing deuteron determines the modulus of the magnetic form factor,

but the separation of the charge and quadrupole form factors requires the measurement

of polarization observables [12]. The outgoing–deuteron polarization can be measured in a

secondary analyzing scattering [12]. For vector polarization up to a few GeV, an inclusive

measurement on a carbone target as d + C → one charged particle +X is sufficient, when

the charged protons from deuteron break up are eliminated with help of an absorber [13].

For tensor polarization, however, only exclusive reactions as elastic d + p scattering [14] or

charge exchange [15] give sufficient efficiency and analyzing powers.
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As it was shown in Ref. [16], a nonzero phase difference between FFs of two baryons (with

1/2 spins) leads to the T–odd single–spin asymmetry normal to the scattering plane in the

baryon–antibaryon production e+e− → BB̄. It is more convenient to derive polarization

observables in CMS. When considering the polarization of the final particle, we choose a

reference system with the z axis along the momentum of this particle (in our case it is ~p).

The y axis is normal to the reaction plane in the direction of ~k × ~p; x, y and z form a

right–handed coordinate system.

The cross section can be written, in the general case, as the sum of unpolarized and

polarized terms, corresponding to the different polarization states and polarization directions

of the incident and scattered particles:

dσ

dΩ
=

dσun

dΩ
[1 + Py + λPx + λPz + PzzRzz + PxzRxz + Pxx(Rxx − Ryy) + λPyzRyz ] , (20)

where Pi (Pij), i, j = x, y, z are the components of the polarization vector (tensor) of the

outgoing deuteron, Rij , i, j = x, y, z the components of the quadrupole polarization tensor

of the outgoing deuteron Qµν , in its rest system and
dσun

dΩ
is the differential cross section

for the unpolarized case.

The degree of longitudinal polarization of the electron beam, λ, is explicitly indicated, in

order to stress the origin of the specific polarization observables.

Let us consider the different polarization observables and give their expression in terms

of the deuteron FFs.

• The vector polarization of the outgoing deuteron, Py, which does not require polariza-

tion in the initial state is

Py = −3

2

√
τ sin(2θ)Im

[(
GC − τ

3
GQ

)
G∗

M

]
/D. (21)

• The part of the differential cross section that depends on the tensor polarization can

be written as follows

dσT

dΩ
=

dσzz

dΩ
Rzz +

dσxz

dΩ
Rxz +

dσxx

dΩ
(Rxx − Ryy), (22)

dσzz

dΩ
=

α2β3

4q2

3τ

4

[
(1 + cos2 θ)|GM |2 + 8 sin2 θ

(
τ

3
|GQ|2 − Re(GCG∗

Q)
)]

, (23)

dσxz

dΩ
= −α2β3

4q2
3τ 3/2 sin(2θ)Re(GQG∗

M), (24)

dσxx

dΩ
= −α2β3

4q2

3τ

4
sin2 θ|GM |2, (25)
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• Let us consider now the case of a longitudinally polarized electron beam. The other

two components of the deuteron vector polarization (Px, Pz) require the initial particle

polarization and are

Px = −3

√
τ

D
sin θRe

(
GC − τ

3
GQ

)
G∗

M , Pz =
3τ

2D
cos θ|GM |2. (26)

From angular momentum and helicity conservations it follows that the sign of the deuteron

polarization component Pz in the forward direction (θ = 0) must coincide with the sign of

the electron beam polarization. This requirement is satisfied by Eq. (26).

A possible nonzero phase difference between the deuteron FFs leads to another T–odd

polarization observable proportional to the Ryz component of the tensor polarization of the

deuteron. The part of the differential cross section that depends on the correlation between

the longitudinal polarization of the electron beam and the deuteron tensor polarization can

be written as follows
dσλT

dΩ
=

α2β3

4q2
6τ 3/2 sin θIm(GMG∗

Q)Ryz . (27)

The deuteron FFs in the TL region are complex functions. In the case of unpolarized

initial and final particles, the differential cross section depends only on the squared modulus

|GM |2 and on the combination G = |GC |2 + 8
9
τ 2|GQ|2. So, the measurement of the angular

distribution allows one to determine |GM | and the quantity G, as in the elastic electron–

deuteron scattering.

Let us discuss which information can be obtained by measuring the polarization observ-

ables derived above. Three relative phases exist for three FFs, which we note as follows:

α1 = αM − αQ, α2 = αM − αC , and α3 = αQ − αC , where αM = ArgGM , αC = ArgGC,

and αQ = ArgGQ. These phases are important characteristics of FFs in the TL region since

they result from the strong interaction between final particles.

Let us consider the ratio of the polarizations Pyz (let us remind that it requires a longi-

tudinally polarized electron beam) and Pxz (when the electron beam is unpolarized). One

finds:

R1 =
Pxz

Pyz
= − cos θ cot α1. (28)

So, the measurement of this ratio gives us information about the relative phase α1. The

measurement of another ratio of polarizations, R2 = Pxz/Pxx gives us information about the

9



quantity |GQ|:
R2 =

Pxz

Pxx

= 8
√

τ cot θ cos α1
|GQ|
|GM | . (29)

This allows one to obtain the modulus of the charge FF, |GC |, from the quantity G, known

from the measurement of the differential cross section. The measurement of a third ratio

R3 =
Py

Px
= − cos θ

sin α2 − r sin α1

cos α2 − r cos α1
, r =

τ

3

|GQ|
|GC |

(30)

allows to determine the phase difference α2. And at last, if we measure the ratio of the

polarizations Pzz and Pxx

R4 =
Pzz

Pxx

= − 1

sin2 θ

[
1 + cos2 θ + 8 sin2 θ

|GC ||GQ|
|GM |2 (r − cos α3)

]
(31)

we can obtain information about the third phase difference α3. Moreover, one can verify the

relation:

α3 = α2 − α1.

Thus, the measurement of these polarization observables allows to fully determine the

deuteron FFs in TL region.

Note that using the ratio of two polarization components that are simultaneously mea-

sured, greatly reduces systematic uncertainties. It is not necessary to know neither the beam

polarization or the polarimeter analyzing power, since both of these quantities cancel in the

ratio.

This procedure can be considered as the generalization of the polarization method pro-

posed almost four decades ago [17], which could be applied only recently to elastic electron

proton scattering [18].

Let us note here that, in principle, one should take into account the problem of the

two–photon–exchange contribution, which, as mentioned in the Introduction, may become

important at large momentum transfer, as it is expected that the reactions mechanisms are

similar for the crossed channel (1). As it was shown in Ref. [19], if the detection of the

final particles does not distinguish between deuteron and antideuteron, then the interference

between one–photon and two–photon amplitudes does not contribute to the cross section of

the reaction (1).
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III. NUMERICAL ESTIMATIONS

In the previous section, the expressions of cross section and polarization observables have

been given, in terms of the deuteron FFs. Numerical estimations require the knowledge

of such FFs, in TL region. Due to the hermiticity of the electromagnetic current, FFs

are real in the SL region, and complex in the TL region. At our knowledge, most of the

existing parametrizations of these FFs are phenomenological fits to SL data, and are useful

for different estimations and to plan corresponding experiments in that kinematical region.

However, their analytical expressions were not built to obey fundamental properties of FFs.

For example, their extension to the TL region does not induce any phase (i.e., the imaginary

part of FFs is equal to zero).

Recent work in this direction [21] describes three different parametrizations of deuteron

FFs describing the world data. The first one (Parametrization I) is a sum of inverse poly-

nomial terms, where the first node of the corresponding FFs is introduced as a global mul-

tiplicative term. The number of free parameters, necessary to obtain χ2/ndf = 1.5, was

18.

The second parametrization is based on a previous work [22]. It is an attempt to find a

global description based on the vector dominance model, satisfying the asymptotic conditions

predicted by QCD at large momentum transfer, and leads to a 12 parameters fit.

The third parametrization is a sum of gaussians, with some physical constraints on the

parameters, which are the width and the position of the maximum of the gaussians. In total

the parametrization contains 33 parameters for χ2/ndf = 1.5.

In Ref. [23] a generalization of the nucleon model from Ref. [24] has been successfully

applied to the deuteron case. Besides the fact that the VMD model [24] satisfies by construc-

tion some of the basic properties of FFs, its extension to the TL region is straightforward

[25].

The basic idea of this parametrization is the presence of two components in the hadron

structure: an intrinsic structure, very compact, characterized by a dipole (monopole) q2

dependence and a meson cloud, which contains only the ρ, φ and ω (not the ρ) contributions,

in the nucleon (deuteron) case. A very good description of all known data on deuteron

electromagnetic FFs has been obtained, with as few as six free parameters and few evident

physical constraints.
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In principle, all these parametrizations are not predictive outside the kinematical domain

where the experimental data have been fitted. Therefore, the extrapolation to TL region is

just given for illustrative purposes. We give the predictions from one of the parametrizations

from Ref. [21] (Parametrization I), and of the model from [23]. Note that the analytical

form of all three parametrizations in [21] is such that only real terms are present in TL

region. An imaginary part arises naturally from the analytical continuation of model [23],

(for q2 → −q2) due to the not integer nature of the exponent of the intrinsic part. Finite

widths for the φ and ω meson contributions would also give rise to complexity, but it was

not necessary to introduce them, for obtaining a good description of data in SL region.

We also consider an updated version of the model [5], based on unitarity and analyticity

[26].

The q2 dependence of these models is illustrated in Fig. 1 for the moduli and in Fig. 2 for

the real an imaginary parts of the model from Ref. [23]. One can see that the three models

coincide in the SL region, where they are constrained by the experimental data, but, outside

this kinematical region, they show very different behavior. In particular, Parametrization I

differs by few order of magnitude. Parametrization I does not show any singularity in TL

region. Two poles coincide in TL region, for the models [26] and [23], as they correspond

to the ω and φ contributions. More resonances are built, by construction, in the model

[26], and occur in the unphysical region. These two models show a similar trend, near

the threshold, for the moduli of FFs, however the sign, which is reflected in the relevant

polarization observables, may differ.

From Fig. 2 one can see that in TL region, FFs from Ref. [23] display an imaginary

part which is an order of magnitude smaller than the real part, as a consequence of the

exponent of the term corresponding to the intrinsic part. As the model [26] fulfills by

construction the unitary condition, its imaginary part starts at the deuteron anomalous

threshold, q2 = 1.73m2
π ≃ 0.02 GeV2. Concerning the model [23], the imaginary part is

different from zero for q2 > 0.08 GeV2.

The predictions for the different observables are shown in Fig. 3, for E=1.9 GeV, not

far above threshold. The three parametrizations, as expected, give very different results,

especially concerning the predictions for the cross section (Fig. 3a), which just reflects the

differences in the moduli of FFs. In spite of this, the angular distributions are very similar,

as it appears from Fig. 3a, as it is driven by the underlying assumption of the one-photon
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FIG. 1: q2-dependence of the GQ, GM , GC from top to bottom (moduli): from Ref. [26] (solid

line), from Ref. [23] (dashed line), and from Parametrization I from Ref. [21] (dotted line).

exchange mechanism.

Evidently, the observables such as Py (Fig. 3d) and Pyz (Fig. 3i) vanish, for parametriza-

tion I, as they depend only on the imaginary part, see Eqs. (21) and (27), respectively.
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FIG. 2: q2-dependence of the GQ, GM , GC from top to bottom: from Ref. [23]: real part (solid
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In the physical region, the angular asymmetry, Eq. (19), is very large in absolute value

(over 90%) and negative, for all the considered models, due to the fact that one FF, GQ, is

dominant.
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FIG. 3: Predictions of the different observables, for the considered parametrizations of deuteron

FFs, extrapolated to the TL region. Notations as in Fig. 1.

It should be noted that the CMS threshold energy of the reaction e+ +e− → d̄+d is quite

large, ET = 2M ≃ 3.75 GeV, which corresponds to q2 ≃ 14 GeV2. There are no data in this

momentum range in SL region, which could better constrain models and parametrizations.

IV. CONCLUSIONS

Polarization observables have been derived for the production of a deuteron antideuteron

pair in electron-positron annihilation. Although the cross section of this process is expected

to be very small, the search for the corresponding events it is not excluded in future at high

luminosity e+e− rings.

In TL region, the electromagnetic structure of the deuteron is characterized by three

complex FFs. Generalizing the polarization method, successfully applied to ep elastic scat-
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tering, we derive the expressions for the relevant observables in terms of the deuteron FFs

and indicate the measurements which are necessary for the full determination of the deuteron

structure.

Quantitative estimations require the knowledge of the deuteron FFs, in the corresponding

kinematical region. Data are absent in the whole TL region, and also in SL region, at large

momentum transfer squared. Therefore, we used the analytical continuations from the SL

region of few existing parametrizations and models, keeping in mind that they are poorly

constrained in the corresponding SL kinematical region. The results show that polarization

effects either vanish or are large and measurable.

The formalism developed here is model independent and based on symmetry properties of

electromagnetic and strong interactions. It allows to establish properties of observables that

should be satisfied by any model calculation. Moreover, it applies as well to the annihilation

reactions involving the production of spin one particles in the final state, such as e+ + e− →
ρ+ + ρ−, e+ + e− → ω+ + ω−. The study of these reactions will be the object of a future

work.
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VI. APPENDIX

In this Appendix we give useful formulae describing the polarization state of the deuteron

for different cases. For the case of arbitrary polarization,the deuteron is described by the

spin–density matrix (defined, in the general case, by 8 parameters) which, in the coordinate

representation, has the form

ρµν = −1

3
(gµν −

pµpν

M2
) +

i

2M
εµνλρsλpρ + Qµν , Qµν = Qνµ, Qµµ = 0 , pµQµν = 0 , (C.1)
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where pµ is the deuteron four momentum, sµ and Qµν are the deuteron polarization four

vector and the deuteron quadrupole polarization tensor.

In the deuteron rest frame the above formula is written as

ρij =
1

3
δij −

i

2
εijksk + Qij , ij = x, y, z. (C.2)

This spin–density matrix can be written in the helicity representation using the following

relation

ρλλ′ = ρije
(λ)∗
i e

(λ′)
j , λ, λ′ = +,−, 0, (C.3)

where e
(λ)
i are the deuteron spin functions which have the deuteron spin projection λ on to

the quantization axis (z axis). They are

e(±) = ∓ 1√
2
(1,±i, 0), e(0) = (0, 0, 1). (C.4)

The elements of the spin–density matrix in the helicity representation are related to the ones

in the coordinate representation by such a way

ρ±± =
1

3
± 1

2
sz −

1

2
Qzz, ρ00 =

1

3
+ Qzz, ρ+− = −1

2
(Qxx − Qyy) + iQxy, (C.5)

ρ+0 =
1

2
√

2
(sx − isy) −

1√
2
(Qxz − iQyz), ρ−0 =

1

2
√

2
(sx + isy) +

1√
2
(Qxz + iQyz),

ρλλ′ = (ρλ′λ)
∗.

To obtain these relations we use Qxx + Qyy + Qzz = 0.

When the deuteron is used as a target, the spin matrix is diagonal, and the polarization

state is described by the population numbers n+, n− and n0. Here n+, n− and n0 are the

fractions of the atoms with the nuclear spin projection on to the quantization axis m = +1,

m = −1 and m = 0, respectively. If the spin–density matrix is normalized to 1, i.e. Trρ = 1,

then we have n+ +n−+n0 = 1. Thus, the polarization state of the deuteron target is defined

in this case by two parameters, called V (vector) and T (tensor) polarizations

V = n+ − n−, T = 1 − 3n0. (C.6)

Using the definitions for the quantities n±,0

n± = ρije
(±)∗
i e

(±)
j , n0 = ρije

(0)∗
i e

(0)
j , (C.7)
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we have the following relation between V and T parameters and parameters of the spin–

density matrix in the coordinate representation (with the quantization axis directed along

the z axis)

n0 =
1

3
+ Qzz, n± =

1

3
± 1

2
sz −

1

2
Qzz, (C.8)

or

T = −3Qzz, V = sz. (C.9)
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