
On the corotation torque in a radiatively inefficient disk

C. Baruteau1 and F. Masset2

Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, DAPNIA/Service

d’Astrophysique, CEA/Saclay, 91191 Gif/Yvette Cedex, France; clement.baruteau@cea.fr;

fmasset@cea.fr

ABSTRACT

We consider the angular momentum exchange at the corotation resonance

between a gaseous disk and a uniformly rotating external potential, assuming

that the disk flow is adiabatic. We first consider the linear case for an isolated

resonance, for which we give an expression of the corotation torque that involves

the pressure perturbation, and which reduces to the usual dependence on the

vortensity gradient in a cold disk. In the general case, we find an additional

dependence on the entropy gradient at corotation. This dependence is associated

to the advection of entropy perturbations. These are not associated to pressure

perturbations, and they remain confined to the corotation, where they yield

a singular contribution to the corotation torque. In a second part, we check

our torque expression by means of customized two-dimensional hydrodynamical

simulations. In a third part, we contemplate the case of a planet embedded

in a Keplerian disk, assumed to be adiabatic. We find an excess of corotation

torque that scales with the entropy gradient, and we check that the contribution

of the entropy perturbation to the torque is in agreement with the expression

obtained from the linear analysis. We finally discuss some implications of the

corotation torque expression for the migration of low mass planets in the regions

of protoplanetary disks where the flow is radiatively inefficient on the timescale

of the horseshoe U-turns.
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1. Introduction

It is known since the early eighties that low mass planetary objects (that is, up to a few

Earth masses) embedded in protoplanetary gaseous disks should undergo a fast decay towards

their central object, on timescales much shorter than the lifetime of the disk. This process,

known as type I migration, has constituted for a long time a bottleneck for the theory of

giant planet formation. While it may account for the discovery of close-in extrasolar planets,

with orbital periods of a few days, it renders problematic the build up of giant planet cores

at distances of their central stars of several astronomical units. Most published studies

of the tidal interaction of low mass objects with their parent disk have used a barotropic

assumption, assuming either a locally isothermal equation of state, or a polytropic equation

of state. All these studies, whether analytical or numerical, confirmed the vigorous tidal

interaction of the planet with the disk, leading to its inward migration on short timescales.

There has been some exceptions to the barotropic assumption: Morohoshi & Tanaka

(2003) considered the case of a planet interacting with an optically thin disk, in the shearing

sheet approximation, and found that radiative effects can significantly alter the one-sided

torque between the planet and the disk. More recently, Paardekooper & Mellema (2006)

(hereafter PM06) have performed global, high resolution 3D calculations with nested grids

that include radiative transfer. For the setup that they considered, they found that the

torque exerted by the disk on the planet increases with the disk opacity. For sufficiently

large values of the opacity (and in the limit case of an adiabatic flow, corresponding to

an infinite opacity), they find that the torque on the planet is positive. This result is of

great importance, as it potentially solves the lingering problem of type I migration. PM06

identified the existence of a hot, underdense part of the co-orbital region lagging the planet,

which accounted for the torque excess that they measured. The present work corresponds

to an attempt to further investigate this topic, so as to identify the physical mechanism

responsible for these effects. For this purpose, we consider a more restricted situation,

namely two-dimensional adiabatic flows.

This paper is organized as follows. In section 2 we set up the problem and define the

notation. We then present an analysis of the corotation torque in an adiabatic disk in the

linear regime, at an isolated resonance, at section 3. Our original motivation for the study

of the linear regime was that PM06 found that the torque reverses in a radiatively inefficient

disk both for a 5 M⊕ and a 0.5 M⊕ planet, which pointed out that the effect is likely a linear

one. In section 4, we check by means of customized 2D hydrodynamical simulations involving

an isolated resonance the torque expression found in section 3. In section 5, we turn to the

case of a planet embedded in an adiabatic disk, for which we check that there is an excess

of corotation torque that scales with the entropy gradient. We also check in this section
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that the torque excess corresponds to the sum of the linear contributions of all co-orbital

corotation resonances, for a sufficiently small planet mass. We discuss the implications of

the modified corotation torque expression for the issue of planet–disk tidal interactions, and

we suggest further research on this topic in section 6. We sum up our results in section 7.

2. Setup and notation

We consider an inviscid, radiatively inefficient (that is to say, for our purposes, adiabatic)

two-dimensional disk. Its unperturbed state corresponds to a rotational equilibrium between

the gravitational force of the central object, the pressure gradient and the centrifugal force.

The unperturbed state is axisymmetric. The disk rotates with the angular speed Ω(r), where

r is the distance to the central object. We denote p the pressure, Σ the surface density, u

and v respectively the radial and azimuthal velocities, ϕ the azimuthal angle. We denote

with a “0” subscript the unperturbed quantities, and with a “1” subscript the perturbed

ones. For instance, p(r, ϕ) = p0(r) + p1(r, ϕ). We shall essentially consider disks in which

the unperturbed pressure and density are power laws of the radius, respectively with index

λ and σ:

p0(r) ∝ r−λ (1)

Σ0(r) ∝ r−σ. (2)

We shall make use of the two Oort’s constants:

A =
1

2
r
dΩ

dr
, (3)

which scales with the local shear in the flow, and:

B =
1

2r

d(r2Ω)

dr
= Ω + A, (4)

which is half the vertical component of the flow vorticity, and which is also (2r)−1 times the

radial derivative of the specific angular momentum. We will also use the epicyclic frequency

κ = (4ΩB)1/2.

3. Linear analysis at an isolated resonance

3.1. Basic equations

We study the linear response of the disk to a perturbing non-axisymmetric potential

Φ(r, ϕ) = Φm(r) cos[m(ϕ − Ωpt)]. The perturbing potential rotates at constant angular
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velocity Ωp. In the inertial frame, the linearized Euler equations of the disk are:

∂u1

∂t
+ Ω

∂u1

∂ϕ
− 2Ωv1 = −∂Φ

∂r
− 1

Σ0

∂p1

∂r
+

Σ1

Σ2
0

∂p0

∂r
(5)

and
∂v1

∂t
+ Ω

∂v1

∂ϕ
+

κ2

2Ω
u1 = −1

r

∂

∂ϕ

(
Φ +

p1

Σ0

)
. (6)

The linearized continuity equation is:

∂Σ1

∂t
+ Ω

∂Σ1

∂ϕ
+

1

r

∂

∂r
(rΣ0u1) +

1

r

∂

∂ϕ
(Σ0v1) = 0. (7)

We refer to the quantity S = pΣ−γ as the gas entropy, where γ is the adiabatic index.

The energy equation is equivalent in our case to the conservation of the gas entropy. The

linearized conservation of the entropy along a fluid element path reads

∂S1

∂t
+ Ω

∂S1

∂ϕ
+ u1

∂S0

∂r
= 0, (8)

where S1 = S0(p1/p0−γΣ1/Σ0). We furthermore assume that the gas is described by an ideal

equation of state so that p0 and Σ0 are connected by p0 = Σ0c
2
s/γ, cs being the adiabatic

sound speed.

We assume a perturbation of the form x1,m(r) exp(im{ϕ−Ωpt}) where x1 stands for any

perturbed quantity of the flow1. We note ∆ω = m(Ωp − Ω) and we use the prime notation

to denote ∂/∂r. Eq. (8) can be recast as:

Σ1 =
p1

c2
s

+
iSΣ0u1

r∆ω
. (9)

Combining Eqs. (5), (6) and (9) we are led to:

Σ0u1 = iF
[
∆ω

Ω

{
(Φ + Ψ)

′
− S

r
Ψ

}
− 2m

r
(Φ + Ψ)

]
(10)

and

Σ0v1 = F
[

κ2

2Ω2

{
(Φ + Ψ)

′ − S
r

Ψ

}
−m

r

{
∆ω

Ω
+ SP c2

s/r
2

∆ωΩ

}
(Φ + Ψ)

]
, (11)

where S and P are given by

S =
1

γ

d lnS0

d ln r
(12)

1We drop the subscript m in x1,m(r) to improve legibility.
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and

P =
1

γ

d ln p0

d ln r
, (13)

where Ψ is defined as

Ψ = p1/Σ0 (14)

and where F is defined by

F =
Σ0Ω

D
, (15)

with D = κ2 − ∆ω2 − SPc2
s/r

2.

Substituting Eqs. (9), (10) and (11) into Eq. (7) leads to

r2(Φ + Ψ)
′′

+ r (B + S) (Φ + Ψ)
′ − rSΨ

′
+ CΨ + DΦ = 0, (16)

where:

B = 1 + V − d ln Ω

d ln r
, (17)

C = − D

c2
s/r

2
− 2m

Ω

∆ω
(V + 2S) − BS

+S2
[
(r/S)

′ − 1
]
− m2

(
1 + SP c2

s/r
2

∆ω2

)
, (18)

D = −2m
Ω

∆ω
(V + S) − m2

(
1 + SP c2

s/r
2

∆ω2

)
, (19)

and

V =
d lnF
d ln r

. (20)

Eq. (16) reduces to the equation (15) of Li et al. (2000) if one considers the propagation

of free waves (Φ = 0), while it reduces to the equation (13) of Goldreich & Tremaine (1979)

in the case of a homentropic (S = 0) flow.

3.2. Corotation torque

We now estimate the rate of angular momentum exchanged between the perturber and

the radiatively inefficient disk described in section 3.1. This rate therefore corresponds to

the disk torque, which we denote Γ, and which we define as the torque exerted by the disk

on the perturber (unless otherwise stated). It reads:

Γ =

∫
disk

Σ1(r, ϕ)
∂Φ

∂ϕ
rdrdϕ. (21)
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We limit ourselves to the torque exerted by the disk material lying in the vicinity of coro-

tation, hence to the corotation torque, which we denote Γc. In a linear analysis, this torque

can be expressed as a series of contributions at each azimuthal wavenumber: Γc =
∑

m Γc,m.

Each individual torque can be expressed, assuming that Φ is real, as:

Γc,m = mπr2
cΦ(rc)

∫ ∞

−∞
dx�[Σ1(x)], (22)

where � denotes the imaginary part, rc is the corotation radius, and x = (r − rc)/rc. We

substitute Σ0u1 in Eq. (9) by the expression given by Eq. (10), and we keep only the terms

which are large in the vicinity of corotation. As in Goldreich & Tremaine (1979), we assume

that the disk responds to a slowly increasing perturbation and take ∆ω to have a small,

positive imaginary part α:

∆ω = m(Ωp − Ω) + iα ≈ −mrcΩ
′
(rc)(x + iε), (23)

where ε = −α/[mrcΩ
′(rc)] > 0. In the vicinity of corotation, we can finally write:

Σ1(x) = Ψ(x)

[
Σ0

c2
s

]
rc

− (Φ + Ψ)(x)

x + iε

[
2FS
r3Ω′

]
rc

. (24)

We are primarily interested in the imaginary part of Σ1. In the limit ε → 0, we can write

the terms that yield a non-vanishing contribution to the torque as:

�[Σ1(x)] = �[Ψ(x)]

[
Σ0

c2
s

]
rc

+ πδ(x)

[
2FS[Φ + �(Ψ)]

r3Ω′

]
rc

− �[Ψ(x)]

x

[
2FS
r3Ω′

]
rc

, (25)

where δ(x) is Dirac’s delta function. The first two terms of the R.H.S. of Eq. (25) yield

respectively the following contributions to the corotation torque:

Γc,m,1 =

[
mπΣ0r

2Φ

c2
s

]
rc

∫ ∞

−∞
dx�[Ψ(x)] (26)

Γc,m,2 =

[
2mπ2FSΦ(Φ + �(Ψ))

rΩ′

]
rc

. (27)

The third term of Eq. (25) yields a contribution that can be shown to be negligible, in

the planetary context, compared to Γc,m,2. This is shown in appendix A.

The first term, Γc,m,1, is the contribution of the function Ψ, such as in the barotropic

case. The second term, Γc,m,2, corresponds to a singularity at corotation, associated to a

non-vanishing entropy gradient. It corresponds to the torque arising from the advection

of entropy in the corotation region, which results in a surface density perturbation if the
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entropy is not uniform. This perturbation has no pressure support and remains confined to

corotation, so that this contribution is singular. Some further insight into the dynamics of

this perturbation will be given in section 4.3.

We provide in the next section an expression for the corotation torque in the case of a

cold disk, then we turn to the general case.

3.2.1. Case of a cold disk

We contemplate here the case of a cold disk (i.e. |Ψ| � |Φ|). The evaluation of Eq. (26)

requires an explicit expression for Ψ, obtained by solving the differential equation (16) in

the vicinity of corotation. This has been done by Goldreich & Tremaine (1979) for a cold

barotropic disk. An explicit solution can also be obtained for a cold adiabatic disk within

the same level of approximation. Note however that some additional difficulties arise, in

particular the existence of a double pole (term proportional to ∆ω−2) in the coefficients C
and D, defined respectively by Eqs. (18) and (19).

We discard the double pole for the following reasons:

• Unlike the simple pole, it scales with c2
s, which indicates that when the disk aspect

ratio tends to zero, it becomes negligible; differently stated, there should be a critical

disk thickness under which it is safe to neglect this term.

• This term is the only one that depends both on the entropy and on the pressure

gradients. As we shall see in section 5.2.2, our results of numerical simulations for a

planet embedded in a disk with aspect ratio h = 0.05 show that the torque excess with

respect to an isothermal situation essentially depends on S, the gradient of entropy,

which indicates that already for h = 0.05 the double pole term is negligible.

• The double pole is regularized with a very small amount of dissipation. Even the

molecular viscosity suffices to render it negligible in the disks that we consider (S.-J.

Paardekooper, private communication).

Discarding the double pole, and within the same level of approximation as Goldreich &

Tremaine (1979), Eq. (16) can be recast, in the vicinity of the corotation, as

d2Ψ

dx2
− q2Ψ = −P1Φ(rc)

x + iε
, (28)

where

P1 =

[
2Ω

rΩ′ (V + S)

]
rc

and q = (Dr/cs)rc ≈ (κr/cs)rc .
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The general solution of Eq. (28) reads

Ψ(x) =
P1

2q
Φ(rc)

[
eqx

∫ ∞

x

dt

t + iε
e−qt

+e−qx

∫ x

−∞

dt

t + iε
eqt

]
, (29)

which reduces to the equation (53) of Goldreich & Tremaine (1979) when S = 0. Combining

Eqs. (26) and (29) yields the contribution Γc,m,1 to the corotation torque:

Γc,m,1 = Γ0

[
(V + S) Φ2

]
rc

, (30)

where Γ0 = −(mπ2Σ0)/(2BrΩ
′
) is to be evaluated at the corotation radius. It can be

approximated as (4mπ2Σ0/3Ω2)rc in a Keplerian disk.

The second contribution to the corotation torque, given by Eq. (27), is specific to the

adiabatic case and involves the singularity arising from the entropy advection. Using Eq. (27)

and noting that |�(Ψ)| � |Φ|, this contribution to the corotation torque reads

Γc,m,2 = −Γ0

[
S Φ2

]
rc

. (31)

From Eqs. (30) and (31), we infer the corotation torque for a cold, adiabatic disk, which

reads:

Γc,m = Γ0

[
V Φ2

]
rc

. (32)

This expression does not depend on S. We note from Eqs. (15) and (20) that V can be

approximated as

V =
d lnΣ0/B

d ln r
, (33)

since the disk aspect ratio at corotation h(rc) = cs(rc)/[rcΩ(rc)] satisfies h(rc) � 1. Eq. (32)

therefore corresponds to the corotation torque expression2 of Goldreich & Tremaine (1979).

This argues that the corotation torque for a cold disk does not depend on whether the disk can

radiate energy efficiently (assuming a locally isothermal equation of state) or not (assuming

an adiabatic energy equation). This can be expected on general grounds: in the cold disk

limit, the internal energy of the fluid is negligible with respect to its mechanical energy,

hence the power (and the torque) of the tidal force correspond to the case of non-interacting

test particles, for which the expression of Goldreich & Tremaine (1979) prevails.

2They have a negative sign because they consider the torque exerted by the perturber on the disk.
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3.2.2. General case

We consider in this section the general case where we cannot neglect Ψ with respect to

Φ in Eqs. (26) and (27), as we have done in the previous section. Instead of resorting to

a solution of Eq. (16), we shall use a method similar to the method used by Tanaka et al.

(2002), based on the jump of angular momentum flux at corotation. In the case of Tanaka

et al. (2002), this eventually yields a torque expression similar to the expression of Goldreich

& Tremaine (1979), except that Φ has to be substituted by Φ + η (where η is the enthalpy

perturbation). The drawback of this method is that it provides a torque expression that

depends on the (unknown) solution of the differential equation. Nevertheless, it gives some

insight into the dynamics of the corotation region, and allows to draw the general trends

of the corotation torque in an adiabatic disk. In our case, the torque expression features

Ψ = p1/Σ0. We note that in the isothermal case, Zhang & Lai (2006) have provided an

explicit solution for the perturbed enthalpy at corotation, that leads to a corotation torque

expression that only depends on the forcing potential.

We note that the jump of angular momentum flux at corotation misses the singular

contribution of the entropy perturbation at corotation and as such leads only to an evaluation

of Γc,m,1. The contribution Γc,m,2 of the entropy perturbation to the corotation torque needs

to be calculated similarly as in Eq. (31). The angular momentum flux FA is given by:

FA = Σ0r
2

∫ 2π

0

�(u)�(v)dϕ = πΣ0r
2�(uv∗), (34)

where � stands for the real part and the star superscript denotes the complex conjugate.

Eq. (34) can be written as FA =
∑

m FA,m with:

FA,m = πΣ0r
2 [�(u1)�(v1) + �(u1)�(v1)] . (35)

Combining Eqs. (10), (11) and (35), we obtain

FA,m =
mπΣ0r

D

[
�(Φ + Ψ)

d�(Φ + Ψ)

dr

− �(Φ + Ψ)
d�(Φ + Ψ)

dr

+
S
r
{�(Φ)�(Ψ) − �(Φ)�(Ψ)}

]
. (36)

In the homentropic (S = 0) case, Eq. (36) reduces to the expression used by Tanaka et al.

(2002). The contribution Γc,m,1 to the corotation torque is then given by:

Γc,m,1 = lim
r+
c ,r−c →rc

[FA,m(r+
c ) − FA,m(r−c )], (37)
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where r+
c > rc and r−c < rc are the radii of locations respectively beyond and before corota-

tion, and where we evaluate the flux of advected angular momentum.

Tanaka et al. (2002) showed that Φ+η is continuous at corotation. Here, since Eq. (16)

cannot be recast as an ordinary differential equation involving only Φ+Ψ, we have to consider

more stringent albeit reasonable assumptions, namely that both Φ and Ψ are continuous at

corotation. The fact that Φ is continuous at corotation can be realized with an arbitrarily

small softening length of the potential, in the case of an embedded point-like mass (for which

the potential components would diverge logarithmically at corotation, in the absence of any

softening). Assuming that Φ is continuous at corotation, Eq. (16) imposes that Ψ is also

continuous at corotation (we would otherwise have a null linear combination of δ(x) and

δ′(x) functions with non-vanishing coefficients, which is impossible).

Our continuity assumption implies that the terms proportional to S in the R.H.S. of

Eq. (36) does not contribute to the torque. The jump in the advected flux therefore comes

from the jump in d(Φ + Ψ)/dr.

We integrate Eq. (16) over an infinitesimal interval containing r = rc. All finite terms

in this equation yield a vanishing contribution, hence we are left only with the jump of

d(Φ + Ψ)/dr stemming from the second derivative term of Eq. (16) and the poles of the

terms CΨ and DΦ. This reads:

d(Φ + Ψ)

dr
(r+

c ) − d(Φ + Ψ)

dr
(r−c ) =

iπ

rc

[P2(Φ + Ψ)(rc) − QΦ(rc)] , (38)

where

P2 =

[
2Ω

rΩ′ (V + 2S)

]
rc

and Q =

[
2Ω

rΩ′ S
]

rc

.

Using Eqs. (36), (37), (38) and 2B = κ2/2Ω, we find that

Γc,m,1 = Γ0

[
{V + 2S} |Φ + Ψ|2 − S Φ�(Φ + Ψ)

]
rc

. (39)

Eq. (39) reduces to Eq. (30) for a cold disk.

We now come to the contribution Γc,m,2 of the entropy perturbation to the corotation

torque. Eq. (27) yields:

Γc,m,2 = −Γ0 [S Φ�(Φ + Ψ)]rc
. (40)

Eq. (40) reduces to Eq. (31) for a cold disk.

The general expression for the corotation torque is obtained by accounting for the con-

tribution given by Eq. (39), and that of the entropy perturbation, given by Eq. (40):

Γc,m = Γ0

[
{V + 2S} |Φ + Ψ|2 − 2S Φ�(Φ + Ψ)

]
rc

. (41)
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Eq. (41) reduces to the expression of Tanaka et al. (2002) when S = 0, while it reduces to

that of Goldreich & Tremaine (1979) for a cold disk.

A case of interest is that of a disk perturbed by a peaked potential (that of an embedded

protoplanet for instance), for which |Φ+�(Ψ)| � |Φ|, and |Φ+�(Ψ)| � |�(Ψ)| at corotation.

For such case, |Φ�(Φ+Ψ)|rc � |Φ+Ψ|2rc
, hence the corotation torque may be approximated

as Γc,m ≈ −2Γ0[S Φ�(Φ + Ψ)]rc. The corotation torque may therefore be much larger in

the non-homentropic case (S �= 0) than in the homentropic case (S = 0). Furthermore, its

sign is given by that of S rather than that of V. This enhancement of the corotation torque

in an adiabatic flow may have a dramatic impact on the type I migration of an embedded

protoplanet, as was noted by PM06.

4. Numerical study of an isolated corotation resonance

We check in this section the analytical predictions of section 3 by means of numerical

simulations involving an isolated corotation resonance (hereafter CR).

4.1. Numerical issues

Our setup offers a number of similarities with the setup of Masset & Ogilvie (2004)

for the case of an isothermal disk. The hydrodynamics equations for the disk described in

section 3.1 are solved using the code Fargo. A description of the properties of this code

is deferred to section 5.1, in which the code is used to simulate an embedded planet. As in

Masset & Ogilvie (2004), we deal with the m = 3 CR. The disk is therefore torqued by an

m = 3 external potential Φ that reads

Φ(r, ϕ, t) = T (t/τ)φ(r) cos[3(ϕ − Ωpt)], (42)

where φ(r) denotes the radial profile of the potential, Ωp its pattern speed (note that we

work in the corotating frame), t is the time and where

T (x) = sin2(πx/2) if x < 1

= 1 otherwise

is a temporal tapering that turns on the potential on the timescale τ .

The total torque Γc exerted by the disk on the perturber, given by Eq. (21), is evaluated
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by

Γc =

Nr−1∑
i=0

Ns−1∑
j=0

Φi,j+1 − Φi,j−1

2∆ϕ
Σi,jSi,j , (43)

where Nr (Ns) is the radial (azimuthal) number of zones of the mesh, Si,j is the surface area

of zone (i, j), Φi,j and Σi,j are the external potential and surface density at the center of

this zone, and ∆ϕ = 2π/Ns is the azimuthal resolution. Furthermore, the contribution Γc,1

of the function Ψ to the torque is obtained by substituting Σ1 by p1/c
2
s in Eq. (21). It is

therefore evaluated by

Γc,1 =

Nr−1∑
i=0

Ns−1∑
j=0

Φi,j+1 − Φi,j−1

2∆ϕ

pi,j

c2
si,j

Si,j, (44)

where pi,j and csi,j are the pressure and sound speed at the center of zone (i, j). The

contribution Γc,2 of the entropy perturbation to the torque is eventually estimated as follows:

Γc,2 = Γc − Γc,1. (45)

The radial computational domain is narrow enough to avoid the location of the m = 3

inner and outer Lindblad resonances (see Masset & Ogilvie 2004). Despite this precaution,

wave killing zones next to the boundaries were implemented to minimize unphysical wave

reflections (de Val-Borro et al. 2006). Furthermore, the torque evaluation is performed by

summing only on a domain of the grid that does not contain the wave killing zones, and the

summation includes a spatial tapering on the edges of that domain.

The disk surface density and temperature are initially axisymmetric with power-law

profiles:

Σ(r) = Σc (r/rc)
−σ (46)

and

T (r) = Tc (r/rc)
−1+2f , (47)

where Σc and Tc are the surface density and temperature at the corotation radius rc, and

where f is the flaring index of the disk. The disk aspect ratio is given by h(r) = H(r)/r =

h(rc)(r/rc)
f , where H(r) is the disk scale height at radius r. A vanishing value of the flaring

index f therefore corresponds to a uniform disk aspect ratio. The functions V and S are

constant and read:

V = 3/2 − σ (48)

S = σ − (σ + 1 − 2f)/γ. (49)
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The main numerical parameters are those taken by Masset & Ogilvie (2004), namely a

h(rc) = 0.01 disk aspect ratio at corotation, and Σc = 1. Our disk is inviscid. The libration

islands are resolved by 30 zones azimuthally. As the potential increases, the radial width of

the islands also increases. Their maximal radial width W spans approximately 20 zones.

The results presented in next section have the following units: the mass of the central

object M∗ is the mass unit, the corotation radius rc of our m = 3 CR is the distance unit

and the Keplerian orbital period Torb at r = rc is 2π times the time unit.

4.2. Results

We consider three cases, corresponding respectively to Figs. 1, 2a and 2b:

1. An external potential with flat profile φ(r) = −10−5, as in Masset & Ogilvie (2004).

This case, that we call the “flat potential case”, has the following parameters: σ = 2

and f = −0.3, which implies, from Eqs. (48) and (49), that V = −0.5 and S ≈ −0.57,

2. A potential profile that corresponds to the m = 3 Fourier component of the smoothed

potential of a M = 3.1× 10−6M∗ point-like object. The softening length is ε = H(rc),

which is approximately equal to W . The object rotates at speed Ωp, with orbital

radius rc. This neglects the pressure gradient effects, as we do not resolve the distance

from orbit to corotation, but this distance is much smaller than the potential softening

length, so this is not a concern in the present case. By contrast to the previous case,

we call this situation the “peaked potential case”. The value of M was chosen so that

φ(rc) = −10−5, as in the flat potential case. For this calculation we have σ = 1.5 and

f = −0.3, so that V = 0 and S ≈ −0.71. The results are depicted in Fig. 2a.

3. A calculation similar to the previous one, except that σ = 0.5 and f = −0.1, so that

V = 1 and S ≈ −0.71. The results are depicted in Fig. 2b.

For the three pairs (V,S) quoted above, the tapering timescale value is τ = 150 Torb,

which corresponds to the duration of the calculations. This is about three times larger than

the final libration time, estimated as

Tlib ∼ 1

m

(
3|φ(rc)|

32

)−1/2

≈ 55 Torb. (50)

In each case we evaluate:
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Fig. 1.— Corotation torque exerted by the disk on the perturber, as a function of time,

assuming a flat radial profile of the potential. The results shown are obtained with an adi-

abatic calculation, except in the close-up, where we compare the isothermal and adiabatic

corotation torques over the whole duration of the calculations. Numerical results are dis-

played with a symbol while the theoretical expectations are displayed with curves. We plot

as a function of time the adiabatic corotation torque (diamonds and solid curve), the con-

tribution of the function Ψ to the torque (stars and dashed curve), and the contribution of

the entropy perturbation (triangles and dot-dashed curve). The long-dashed curve, which is

nearly superimposed to the solid curve, displays the corotation torque expression of Goldre-

ich & Tremaine (1979). The vertical solid line gives an estimate of the final libration time

(see text).
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• the total corotation torque (diamonds) with Eq. (43), to be compared to the analytical

expression (solid curve) given by Eq. (41). In our units, Γ0 ≈ 39.5,

• the contribution of the function Ψ to the corotation torque (stars) obtained with E-

q. (44), the expected expression of which (dashed curve) is calculated using Eq. (39),

• the contribution of the entropy perturbation to the torque (triangles) using Eq. (45),

which is to compare to the prediction of Eq. (40), represented by the dot-dashed curve.

In these figures, the corotation torque first increases with time since the potential is

progressively turned on until it reaches its final value at the end of the calculation. After

some time it starts to oscillate. This oscillation corresponds to the saturation of the CR, as

the ratio t/Tlib tends to unity (Ogilvie & Lubow 2003). Figs. 1, 2a and 2b therefore argue

that our numerical simulations succeed in reproducing the results of our analytical study as

long as t � Tlib, that is when a linear analysis is grounded (which requires that the time of

the calculation be much smaller than the libration time).

The examination of the results of these calculations leads to the following comments:

• In the flat potential case, depicted in Fig. 1, we have �[ψ(rc)] ≈ −0.02φ(rc) throughout

the calculation, where ψ(r) denotes the radial profile of Ψ. This situation therefore

corresponds to a cold case. As expected from Eq. (32), the analytical corotation torque

and the expression of Goldreich & Tremaine (1979) almost coincide. The close-up shows

the torque evolution over the whole extent of the calculation, up to t = τ . The torque

obtained with a locally isothermal equation of state is also depicted and shows that,

as expected for a cold disk, the adiabatic and isothermal torques coincide, as long as

we are in the linear regime. We note that both torques do not oscillate about 0 since

the potential reaches a stationary value only at the end of the calculation.

• For the two calculations of the peaked potential case, depicted in Figs. 2a and 2b, we

find that �[ψ(rc)] ≈ −0.2φ(rc). Thus, the term | −Φ�(Φ + Ψ)| slightly dominates the

term |Φ+Ψ|2 in Eq. (41). Because S < 0 for these calculations, the corotation torque in

the adiabatic case (diamonds and solid curve) is larger than the corotation torque in an

isothermal disk (long dashed curve) with the same parameters, as predicted by Tanaka

et al. (2002). In particular, in the case for which V = 0, the isothermal corotation

torque vanishes, while we find a net, positive corotation torque for an adiabatic flow,

in correct agreement with the analytical expression.



– 16 –

4.3. Dynamics of the corotation region

We discuss in this section the dynamics of the corotation resonance of an adiabatic disk

and give some comments about the corotation torque expression of Eq. (41).

In the isothermal case, the corotation torque expression involves the product of the

gradient of vortensity and the square of the forcing effective potential (Φ + η), see e.g.

Tanaka et al. (2002). The torque is then given by the angular momentum budget between

material flowing outwards and material flowing inwards at corotation, regardless of the sign

of Φ+η. Eq. (41) displays a term that has a similar behavior, except that it does not feature

the vortensity gradient only, but rather V + 2S. This factor scales with the (logarithmic)

gradient of (Σ0/B)S2/γ, which is a key quantity considered by Li et al. (2000) and by Lovelace

et al. (1999), who pointed out that vortensity is not conserved in a 2D adiabatic flow.

In addition to this term, Eq. (41) contains a term that scales with Φ[Φ + �(Ψ)]. The

sign of this term therefore depends on the relative signs of Φ and Φ +�(Ψ). In order to get

some insight into the physical meaning of this term, we show at Fig. 3 the response of the

disk in the corotation region, for the entropy and the surface density. These fields correspond

to the calculation with the flat potential profile considered at the previous section. The disk

has a negative radial entropy gradient. Therefore, libration brings the (larger) inner entropy

to the outer part of the libration islands, yielding a positive perturbed entropy (brighter

areas), while it brings the (smaller) outer entropy to the inner part of the libration islands,

yielding a negative perturbed entropy (darker areas). An opposite behavior is observed for

the perturbed density, since the relative pressure perturbation (not represented) is much

smaller.

The sign of this torque component can be understood as follows. Fig. 4 depicts the

situation in two cases: Φ and Φ + �(Ψ) have same sign (left), and Φ and Φ + �(Ψ) have

opposite signs (right). In the left case, the negative perturbed surface density on the outside

of corotation is located in the region where ∂ϕΦ < 0, hence the perturbation yields a positive

torque on the perturber. A similar conclusion applies to the material flowing inwards which

has positive perturbation of surface density. The torque on the perturber is therefore positive,

in agreement with the sign of −SΦ[Φ + �(Ψ)]. An opposite conclusion holds for the case

where Φ[Φ + �(Ψ)] < 0.

The order of magnitude and functional dependence of this torque component can be

justified as follows. As the sign has been justified at the previous paragraph, we give here an

estimate of the absolute value. The perturbed surface density on the outside of corotation

is ∼ |SΣ0δ/rc|, where δ = [(Φ + �(Ψ))/(−8AB)]1/2 is an order of magnitude of the width

of the libration islands. The specific torque in the region of surface density perturbation
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Fig. 2.— Same as Fig. 1, except that the results are obtained with a peaked potential, with

V = 0 ( V = 1) in the left (right) panel. The long-dashed curve in both panels shows the

expectation from the corotation torque expression of Tanaka et al. (2002).
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is ∼ |mΦ|, while the area covered by the perturbation of surface density scales with r2
cδ.

The torque arising from this region therefore scales with |mrcδ
2SΦΣ0|, which is exactly the

scaling of |Γ0 SΦ[Φ + �(Ψ)]|, within a numerical factor in O(1).

The singular behavior of this torque component, which stems from Eq. (40), and which

appears as a Dirac’s delta function at corotation, can be understood as follows: as the

strength of the perturbation decreases, the width of the libration islands tends to zero,

while the libration time tends to infinity (libration disappears), hence we are left, in the

linear regime, with a torque contribution that comes strictly from the corotation radius and

therefore appears as singular.

It is worth noting that only half of the second term of Eq. (41) comes from Eq. (40).

Eq. (39), which is obtained from the momentum flux jump, and which as such captures effects

occurring at a finite (albeit small) distance from corotation, also displays a term similar to

that of Eq. (40). The advection of entropy perturbations is not a silent process: it triggers the

emission of pressure waves (Foglizzo & Tagger 2000). Our torque expression indicates that

half of the energy required to advect entropy in the libration islands is evacuated through

pressure waves.

5. Application to the case of an embedded protoplanet

In section 3, we derived an expression for the corotation torque between a radiatively

inefficient disk and an external rotating potential. This expression is successfully reproduced

by local numerical simulations of an isolated corotation resonance, in the linear regime. We

now contemplate the case of an embedded protoplanet in a radiatively inefficient disk, for

which all co-orbital corotation resonances are simultaneously active.

5.1. Numerical features and setup

Our numerical simulations are performed with the code Fargo. It is a staggered mesh

hydrocode that solves the Navier-Stokes, continuity and energy equations on a polar grid.

It uses an upwind transport scheme with a harmonic, second-order slope limiter (van Leer

1977). Its particularity is to use a change of rotating frame on each ring of the polar grid,

which increases the timestep significantly (Masset 2000a,b), thereby lowering the computa-

tional cost of a given calculation. The energy equation implemented in Fargo is:

∂e

∂t
+ ∇.(ev) = −p∇.v + Q, (51)
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where e is the thermal energy density, v = (u, rΩ)T denotes the flow velocity, p is the

vertically integrated pressure and Q is a heating source term that accounts for the disk

viscosity (see e.g. D’Angelo et al. 2003). The energy equation solver is implemented as in

Stone & Norman (1992).

In this work, the disk is taken inviscid so Q = 0. There is no radiative transfer either,

since the disk is assumed to be radiatively inefficient. Furthermore, p and e are connected

by an ideal equation of state p = (γ − 1)e, where the adiabatic index γ is set to 1.4. This

equation of state can be expressed in terms of the disk temperature T and surface density

Σ as p = ΣT . The adiabatic sound speed reads cs =
√

γT , hence cs =
√

γ cs,iso, where cs,iso

refers to the isothermal sound speed.

For a comparative purpose, calculations involving a locally isothermal equation of state

are performed. In isothermal calculations, no energy equation is solved: p and Σ are simply

connected by p = Σc2
s,iso.

The disk is initially slightly sub-Keplerian (the pressure gradient is accounted for in

the centrifugal balance), axisymmetric, with power-law profiles for the surface density and

temperature given by Eqs. (46) and (47).

The disk is perturbed by the smoothed potential of a protoplanet embedded in. We

adopt a Plummer potential, with a softening length ε = 0.6H(rp) (unless otherwise stated),

rp being the planet orbital radius. This fiducial value is quite substantial for our purposes,

but investigating the disk response at much smaller softening lengths, where the adiabatic

effects on the corotation torque are increasingly important, requires a very large resolution. A

high resolution systematic study at small softening length will be presented in a forthcoming

work.

The protoplanet is held on a fixed circular orbit, at r = rp. The disk parameters are

summed up in Table 1, where they are expressed in the following unit system: rp is the

length unit, the mass of the central object M∗ is the mass unit and (GM∗/rp
3)−1/2 is the

time unit, G being the gravitational constant (G = 1 in our unit system). We note Torb the

planet orbital period, Mp the planet mass and q = Mp/M∗ the planet to primary mass ratio.

5.2. Results

5.2.1. An illustrative example

We show the results of an illustrative calculation with a q = 2.2 × 10−5 planet to

primary mass ratio (corresponding to Mp = 7.3 M⊕ if the central object has a solar mass).
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Fig. 4.— Sketch of the corotation region when Φ and Φ+�(Ψ) are in phase (left) and when

Φ and Φ + �(Ψ) are in opposition (right). The minima and maxima of Φ are indicated

at the left, while the minima and maxima of Φ + �(Ψ) are indicated at the right. In

the corotation region, material librates about the maxima of the forcing effective potential

Φ + �(Ψ). We assume a negative entropy gradient, hence material flowing outwards has a

negative perturbed surface density, while material flowing inwards has a positive perturbed

surface density, as indicated by the minus and plus signs.

Table 1. Reference parameters. The disk is inviscid

Parameter Notation Reference value

Aspect ratio at r = rp . . h(rp) 0.05

Surface density at r = rp Σp 2 × 10−3

Softening length . . . . . . . . ε 0.03

Adiabatic index . . . . . . . . . γ 1.4

Mesh inner radius. . . . . . . rmin 0.4

Mesh outer radius . . . . . . rmax 1.8

Radial zones number . . . . Nr 512

Azimuthal zones number Ns 2048
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Fig. 5.— Top row and bottom left: relative perturbations of the gas entropy, surface density

and pressure, at t = 15 Torb ≈ τlib/4. The protoplanet is located in r = rp, ϕ = ϕp. In the top

left panel, streamlines are overplotted and the vertical dashed line stands for the corotation

radius rc. In the top right and bottom left panels, the color scale is adjusted to highlight the

advection of the entropy perturbation (see text). The nearly horizontal overdensity structure

at ϕ = ϕp is the protoplanet’s wake. Bottom right: slices of the relative perturbed density

field at the same time, at ϕ−ϕp = 1 (diamonds) and ϕ−ϕp = −1 (stars). The two horizontal

dashed lines refer to the values of R(−xs) and R(xs), while the long-dashed curve displays

the quantity 2(r − rc)S/rc (see text and Eq. (57)).
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The horseshoe libration time is

τlib =
8πrp

3Ωpxs
, (52)

where Ωp is the protoplanet angular velocity and xs denotes the half-width of the horseshoe

region. Masset et al. (2006) have given an estimate of xs in the isothermal case, that

reads xs ≈ 1.16rp

√
q/h(rp). A streamline analysis was performed and confirmed that this

estimate holds for an adiabatic disk, if one substitutes h(rp) with
√

γh(rp). We find therefore

τlib ≈ 60 Torb.

Two calculations were performed: an adiabatic and an isothermal one. Both lasted

thirty orbital periods, hence half the horseshoe libration time. This calculation has σ = 0.5

and f = 0, as in PM06. This gives S ≈ −0.57.

Fig. 5 displays the gas entropy, surface density and pressure obtained in the adiabatic

calculation, after 15 Torb. Each field represents the relative perturbation of the corresponding

quantity with respect to the unperturbed state. For instance, the top right panel shows

[Σ(r, ϕ)−Σ0(r)]/Σ0(r). While the azimuthal range spans the whole [0, 2π] interval, the radial

range depicted is restricted to a band of width 2.5xs around the corotation radius rc. We

overplot streamlines to the entropy panel to give an idea of the extent of the horseshoe region.

The vertical dashed line represents the corotation radius. Whereas the pressure panel does

not display any significant perturbation, the entropy and density panels show the propagation

of a perturbation inside the horseshoe region, which slides along the separatrices. This is

reminiscent of the behavior commented in the case of an isolated resonance at section 4.3.

The interpretation of this dynamics is as follows: the entropy of the fluid elements is

conserved as they perform a horseshoe U-turn in the co-orbital region. When there is initially

an entropy gradient at corotation, the co-orbital dynamics yields an entropy perturbation

that has a sign opposite of that of the entropy gradient on the outwards U-turns, and the

sign of the entropy gradient on the inwards U-turns. Since the pressure field is only weakly

perturbed, the entropy perturbation is related to a density perturbation of opposite sign

and, in relative value, of same order of magnitude. Therefore, if there is a negative entropy

gradient at corotation (S < 0, as in the example shown here), the co-orbital dynamics yields

a negative density perturbation at ϕ < ϕp and a positive density perturbation at ϕ > ϕp,

with straightforward consequences for the corotation torque. Using an expression inherited

from the terminology of Riemann solvers, we call this perturbation a contact discontinuity.

A contact discontinuity is characterized by a discontinuity in the density and temperature

fields, while the pressure and velocity fields are continuous. A contact discontinuity is simply

advected by the flow. Here it follows the horseshoe dynamics, and it remains confined to the

horseshoe region.
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We give hereafter a simple estimate of the relative perturbation of the disk surface den-

sity due to the advection of entropy. We consider a fluid element that performs a horseshoe

U-turn from the inner part of the horseshoe region (where we assume that there is no entropy

perturbation, which is true as long as t < τlib/2) to the outer part. All physical quantities at

the inner (outer) leg of the horseshoe streamline are denoted with a minus (plus) subscript.

A first-order expansion yields, assuming no pressure perturbation:

p± = p0(rc)(1 ∓ λx/rc), (53)

where 0 < x < xs is the distance of the streamline to corotation, and:

Σ− = Σ0(rc)(1 + σx/rc). (54)

On the outer horseshoe leg, the disk surface density is perturbed according to the entropy

perturbation and reads:

Σ+ = Σ0(rc)(1 + R − σx/rc), (55)

where R is the relative perturbation of surface density at r = rc +x (we assume a symmetric

horseshoe U-turn), due to the entropy advection. Entropy conservation along the fluid

element path (S− = S+) leads to:

R = 2
x

rc

(
σ − λ

γ

)
= 2

x

rc
S. (56)

The horseshoe U-turn that we have considered lags the planet (ϕ < ϕp). A similar conclusion

holds for a horseshoe U-turn that switches from the outer leg to the inner one (at ϕ > ϕp),

hence we finally have:

R(x) = 2xS/rc, ∀x ∈ [−xs, +xs]. (57)

The bottom right panel of Fig. 5 displays the slices of the perturbed density field at t =

15 Torb, for ϕ−ϕp = 1 (diamonds) and ϕ−ϕp = −1 (stars). The two horizontal dashed lines

display the values of R(−xs) and R(xs), where xs is estimated through a streamline analysis.

Similarly, the long-dashed curve shows R(x) = 2xS/rc, which is in correct agreement with

the calculation results. The surface density structure in the horseshoe region is therefore

dictated by the sign of S. In particular, we do not expect any contact discontinuity in the

homentropic case (S = 0). We have checked this prediction with a numerical simulation (not

presented here).

5.2.2. Excess of corotation torque and entropy gradient

An order of magnitude of the excess of corotation torque arising from the perturbation

of the surface density field can be given by estimating how the standard horseshoe drag
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expression (Ward 1991; Masset 2001) is modified by the perturbation of surface density

R(x)Σ0(rc). We consider the outwards horseshoe U-turns that occur at ϕ < ϕp. Assuming,

in this order of magnitude estimate, that the rotation profile of the disk is unperturbed, we

evaluate the variation of angular momentum flux of the horseshoe disk material after the

U-turn attributable to the change of the disk’s surface density:

∆ΓHS− =

∫ xs

0

(−2Ax)Σ0R(x)(jc + 2Brcx)dx, (58)

where jc is the specific angular momentum of the material at corotation. The first factor of

the integrand of Eq. (58) represents the material velocity in the corotating frame, due to the

shear. The last factor is the material specific angular momentum obtained from a first order

expansion at corotation. Similarly, we obtain the change of angular momentum flux due to

the perturbation of surface density on inwards horseshoe U-turns:

∆ΓHS+ =

∫ xs

0

(−2Ax)Σ0R(−x)(jc − 2Brcx)dx. (59)

Adding Eqs. (58) and (59), we are left with:

∆ΓHS = 2

∫ xs

0

(−2Ax) · Σ0R(x) · 2Brcxdx = −4ABΣ0Sx4
s . (60)

Fig. 6 shows the excess of corotation torque between an adiabatic and isothermal calculation

with same parameters, as a function of the half-width of the horseshoe region. This excess is

obtained by subtracting the total torque of an adiabatic and an isothermal calculation (the

isothermal torque being rescaled by a factor γ−1, since cs =
√

γ cs,iso). We call this difference

the torque excess for further reference. Each data point corresponds to a calculation with a

given planet mass, for which we determine xs through a streamline analysis. We find that

the torque excess approximately scales as x4
s, and that it is within a factor 2 of our order of

magnitude estimate, given by −∆ΓHS.

The torque expression of Eq. (41) as well as the horseshoe drag expression of Eq. (60)

suggest that the torque excess scales with S, hence with the entropy gradient. In order to

check that, we have undertaken a number of calculations with different values of S. These

calculations have q = 2.2×10−5, and the disk parameters are those of Table 1. Each entropy

gradient is realized with different combinations of the indexes of the pressure and surface

density power laws. Adiabatic effects on the torque are assessed in two different ways:

1. By calculating the torque excess, as in Fig. 6.

2. By evaluating the following integral:

Γcd =

∫
disk

(
Σ − p

c2
s

)
∂Φ

∂ϕ
rdrdϕ, (61)
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Fig. 6.— Torque excess (see text) as a function of the half-width of the horseshoe region.
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which provides an estimate of the torque due to the contact discontinuity (this contri-

bution arises from perturbations of Σ which do not have a pressure counterpart). In

the linear regime, Eq. (61) amounts to a summation over m of the last term of Eq. (24).

We shall check this statement in the next section.

These two estimates of adiabatic effects on the torque value are shown respectively in

Figs. 7a and 7b. Remarkably, they coincide within ∼ 25 %. We will comment further this

coincidence in the next section.

The main conclusion that can be drawn from the results of Fig. 7 is that the torque

excess (or the contact discontinuity contribution) essentially depend on the entropy gradient,

as expected. The excess is positive for a negative entropy gradient, hence we may expect the

total torque exerted on a planet embedded in a radiatively inefficient disk to be a positive

quantity if the radial entropy gradient is sufficiently negative.

5.2.3. Connection to the analytical expression

We have given at Eq. (40) an estimate of the singular torque contribution from the

contact discontinuity at an isolated resonance, while we have estimated the total contribution

in the planetary case of the contact discontinuity using Eq. (61) at section 5.2.2. We check

in the present section that this total contribution corresponds to the sum over m of the

torque expression of Eq. (40). For this purpose, we have adopted a planet to primary mass

ratio q = 5 × 10−6, as the one adopted in the previous sections (q = 2.2 × 10−5) led to

poor agreement, presumably because of the onset of non-linear effects. For each azimuthal

wavenumber m, we measure �(Ψm) from the calculation output (at t = 5 Torb), and we

evaluate the sum over m of the torque Γc,m,2:

Γ∞ = lim
k→+∞

Γ′
k, (62)

where:

Γ′
k = −4π2

3

[
SΣ0

Ω2

]
rc

m≤k∑
m=1

mΦm[Φm + �(Ψm)] (63)

is the partial sum of Γc,m,2. We compare the torque contribution given by Eq. (61) to Γ∞.

The results are presented in Fig. 8. The agreement between the direct torque measurement

and the linear estimate is excellent. This confirms what we anticipated in section 3.2, and

what is shown in appendix A, that the contribution of the last term of Eq. (25) to the

torque is negligible in the planetary context. Also of interest is the torque density associated

respectively to p/c2
s and Σ− p/c2

s. The sum of these two torque densities is the total torque
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density. They are represented at Fig. 9. The total torque density displays a smooth profile

and a narrow peak at corotation. This is reminiscent of the torque density found by PM06

(their Fig. 2) or by Morohoshi & Tanaka (2003) (their Fig. 3). The decomposition above

splits this total torque density in a smooth component arising from p/c2
s, which reminds

the torque density in an isothermal disk, and a sharp, localized torque density arising from

Σ − p/c2
s. This corresponds to the torque density of the contact discontinuity contribution

given by Eq. (61). Fig. 9 shows that this contribution (which is singular at corotation in the

linear case for an isolated resonance) is here bounded by the extent of the horseshoe region.

We comment the surprising agreement found at the previous section between the torque

excess and the contribution of the contact discontinuity. The linear analysis suggests that

the former should be the sum of Γ0,m [2S|Φm + Ψm|2 − 2SΦm(Φm + �(Ψm))], which, in

the limit where |Φm + �(Ψm)| � |�(Ψm)| and |Φm + �(Ψm)| � |Φm|, should reduce

to −2Γ0,m SΦm(Φm + �(Ψm)), that is twice the contribution of the contact discontinuity

(see section 3.2.2). Nevertheless, for the calculations presented here, we can check that

2
∑

m m|Φm + Ψm|2 is almost exactly compensated by
∑

m mΦm(Φm +�(Ψm)). Namely the

ratio of the former to the latter quantity is found to be 1.07, which explains why the full

excess expression essentially amounts to the contact discontinuity contribution. Presumably

this coincidence is fortuitous and linked to the relatively large softening length that we use.

At smaller softening length, the term in Φm(Φm +�(Ψm)) should largely dominate, yielding

a ratio of 2 between the torque excess and the contribution of the contact discontinuity. We

note that PM06 also quote that the torque estimate given by their equation (1) accounts for

the total torque within 25 % (this equation can also be seen as an estimate of the contact

discontinuity contribution). This seems to suggest that the softening length of 0.6H(rp)

that we adopted is a correct choice to reproduce the magnitude of the corotational effects in

adiabatic three-dimensional disks.

6. Discussion

6.1. Softening length

In an isothermal disk, the corotation torque scales with |Φ + η|2 (Tanaka et al. 2002).

Even if Φ diverges at corotation, Φ+η remains finite, which makes the isothermal corotation

torque a quantity relatively insensitive to the softening length. The situation is quite different

for the effects linked to the entropy advection that we present here: they involve the product

Φ(Φ + Ψ), which diverges when Φ does. Adiabatic effects on the corotation torque should

acquire a very large magnitude at small softening length. In particular, if the softening length

is smaller than the distance from orbit to corotation, the magnitude of these effects should
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strongly depend on this distance, which scales with the pressure gradient. If one regards

the softening length as a proxy for the altitude in a three-dimensional disk, the extent of

the disk vertical scale height concerned by these very small softening length issues should be

small, however, since the distance from orbit to corotation is a fraction of rph
2. Nevertheless,

it is of interest to investigate the behavior of the corotation torque in an adiabatic flow at

very small softening length to assess the importance of such effects. Owing to the very large

resolution required to investigate this problem, we defer this investigation to a forthcoming

work.

6.2. Saturation

The origin of the effects presented here is the advection of entropy in the corotation

region, that triggers an entropy perturbation (and therefore a density perturbation) when-

ever there is an entropy gradient in the equilibrium profile. Libration occurs on different

timescales for the different streamlines of the corotation region, which tends to stir the en-

tropy and to flatten out the entropy profile across the corotation region (be it the horseshoe

region in the planetary case or a libration island in the isolated resonance case). This is

quite similar to the behavior of the corotation torque in an isothermal disk, which tends

to saturate because the vortensity profile is flattened out by libration. In this case, it is

the viscous diffusion which can prevent the flattening out of the profile if it acts sufficiently

rapidly to establish the large scale gradients before a libration time. This has been studied

for an isolated resonance by Goldreich & Sari (2003) and Ogilvie & Lubow (2003), and by

Balmforth & Korycansky (2001) and Masset (2001) for a planetary co-orbital region. In

both cases, the degree of saturation of the corotation torque in steady state depends on the

ratio of the libration time and of the viscous time across the libration region. The dissi-

pative processes required to prevent the torque saturation in the situation presented here

should be able to impose the large scale entropy gradient over the corotation region in less

than a libration time. Radiative processes (cooling and heating) should therefore occur on

a timescale longer than a horseshoe U-turn (otherwise the flow can rather be considered

as locally isothermal), but they should act on a timescale shorter than the libration time.

We provide an estimate of the horseshoe U-turn time and of the libration time for a small

mass object embedded in a gaseous disk. The horseshoe half-width xs is ∼ rp

√
q/h(rp).

Neglecting pressure effects and writing a simplified Jacobi constant for a test particle near a

horseshoe U-turn as: J = −GMp/(2Brp|ϕ−ϕp|) + A(r − rp)
2, we can estimate the distance

of closest approach between the planet and a test particle flowing along a horseshoe separa-

trix as rp|∆ϕ|s = Ω2
p H(rp)/2|AB| = O(H(rp)). The time required to perform a horseshoe

U-turn can be deduced using the radial drift velocity of the test particle when it crosses the
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orbit, at its closest approach from the planet: ẋ = GMp/(2Br2
p∆ϕ2

s). That yields:

τU−turn = 2xs/ẋ = Ω2
p h(rp)

3/2q−1/2/(A2B) ≈ 4

Ωp

[
H(rp)

RH

]3/2

, (64)

where RH = rp(q/3)1/3 is the Hill radius of the planet, and where the last equality holds

for a Keplerian disk. When the planet emerges from the disk (H(rp) ∼ RH), the horseshoe

U-turn occurs on the dynamical timescale. When dealing with an embedded object however

(RH < H(rp)), the horseshoe U-turn time can be substantially longer than the dynamical

time (e.g. 10 times longer for an Earth mass object embedded in a disk with h(rp) = 0.05).

Using Eq. (52), we are led to:

τlib

τU−turn

≈ h(rp)
−1. (65)

There is at least an order of magnitude difference between the horseshoe U-turn time and the

libration time in a thin disk, hence it should be possible to find a location in the disk where

the cooling time is much longer than the U-turn time and yet shorter than the libration

time, so as to maintain an unsaturated corotation torque.

6.3. Entropy gradient and baroclinic instability

The effect that we present here is of particular interest when there is a negative entropy

gradient at corotation, since this may suffice to halt type I migration. Disks with a negative

entropy gradient may however be unstable to a baroclinic instability (Klahr & Bodenheimer

2003; Klahr 2004). Although the calculations undertaken in the present work last only for

a few tens of dynamical times, we have seen in some situations (when S < 0) significant

noise-like density perturbations which could correspond to a baroclinic instability. Although

we have not studied this behavior in further detail, it is certainly very important to examine

the interplay of the baroclinic instability and of the corotational effects presented here. The

turbulence generated by the baroclinic instability, in particular, could provide a mechanism

to prevent the saturation of the corotation torque, much like the turbulence arising from the

MRI can prevent the corotation torque saturation in an isothermal disk.

7. Conclusions

We evaluate the corotation torque between an adiabatic gaseous disk and a uniformly

rotating external potential. In the linear case for an isolated resonance, we find a singular
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contribution at corotation which scales with the entropy gradient, and which arises from the

advection of entropy within the libration region. This effect neither exists in isothermal or

locally isothermal flows, nor does it exist for barotropic fluids (such as fluids described by a

polytropic equation of state). We provide a torque expression at an isolated resonance which

involves the pressure perturbation at corotation. We then check the torque expression by

2D adiabatic calculations that involve an isolated resonance. In particular, we exhibit a case

with a flat vortensity profile, for which the corotation torque does not cancel out and is in

correct agreement with the analytical expression. We then turn to the case of an embedded

planet, for which we find an excess of corotation torque in the adiabatic case, which scales

with the entropy gradient. For a sufficiently small planet mass, we check that this excess can

be accounted for by a summation over the resonances of the torque excess that we found in

the first part. This confirms that this effect is essentially a linear effect. We finally discuss

in section 6 some open questions linked to the softening length, to the saturation and to

the interplay with the baroclinic instability, on to which theoretical efforts should focus in a

nearby future.

We wish to thank Sijme-Jan Paardekooper and John C.B. Papaloizou for interesting

discussions on the topics covered in this manuscript.

A. Additional contribution to the corotation torque

We check hereafter that the contribution of the last term of Eq. (25) is negligible for an

embedded planet. For this purpose, we compare G =
∫

dx�[Ψ(x)]Φ(x)/x to −π[�(Ψ)Φ]rc .

Fig. 10a shows the m = 8 component of Ψ = p/Σ0 for the calculation presented in sec-

tion 5.2.3. We clearly see that the behavior of �(Ψ) in the vicinity of corotation comes

from the overlap of the behavior arising at the inner and outer Lindblad resonances. Be-

tween its outermost inner minimum at r− ∼ 0.87 and its innermost outer maximum at

r+ ∼ 1.12, �(Ψ) can be considered as having a linear dependence in x. Notwithstanding

the decrease of Φ as one recedes from corotation, the main contribution to G will come

from �[Ψ(x)]/x between these two radii, as it exhibits a flat behavior over this range. This

yields G ∼ 2Φ(rc)|�[Ψ(r±)]|, that it to say a result comparable in order of magnitude to

−π[�(Ψ)Φ]rc . Nevertheless, the final contribution of the extra term is much smaller than

the singular one at corotation for the following reasons:

1. The potential decreases sharply as one recedes from corotation, which provides a cut-off

to the extra term, that is not localized at corotation.
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2. The extra term is partially compensated for by the first term of Eq. (10), which we

have neglected in writing Eq. (24), and which yields another term in Eq. (25) that

reads −(FS/r2Ω)rcd�[Ψ(x)]/dx. Adding this additional term and the last term of

Eq. (25), we are left with:

−d�[Ψ(x)]

dx

[
FS
r2Ω

]
rc

− �[Ψ(x)]

x

[
2FS
r3Ω′

]
rc

∼ −�[Ψ(x)]

x

{
rΩ

′

2Ω
+ 1

}[
2FS
r3Ω′

]
rc

∼ −�[Ψ(x)]

x

[
FS

2r3Ω′

]
rc

,

which shows that, in addition to the potential cutoff, the last term of Eq. (25) should

be decreased by a factor of 4 (we neglect, at this level of accuracy, the jump in �(Ψ′)

at corotation).

We have checked on the calculation presented in section 5.2.3 that the contribution of these

extra terms is indeed small compared to the singular contribution at corotation at all m.

This is shown in Fig. 10b, from which we can conclude that the total contribution of the

extra terms is about an order of magnitude smaller than the singular contribution. The

agreement that we found in section 5.2.3 between the numerical simulation of an embedded

planet and the torque series, which was of the order of a percent, might then be fortuitous.

Nevertheless, we expect an agreement of the order of 10 %, still very satisfactory. These

findings are also compatible with the fact that we hardly see any diffuse torque density

outside of the horseshoe region in Fig. 9b.
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Fig. 7.— Torque excess (left) and contact discontinuity contribution to the torque (right)

as a function of S. Although the calculations display some scatter for a given value of S,

the different points can be considered as aligned within a good level of approximation. The

slope of the dependence is negative.
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Fig. 8.— Partial sums of the torque series given by Eq. (63) (diamonds) and direct estimate

of the contact discontinuity contribution, given by Eq. (61) (dashed line). The asymptotic

value of the partial sum almost coincides with the direct estimate (i.e. the diamonds almost

lie on the dashed line at large m), hence with a very good accuracy we have Γ∞ = Γcd (see

text).
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Fig. 9.— Left: total torque density (solid curve) and torque density of p/c2

s (dashed curve).

Right: torque density of Σ − p/c2
s. The vertical dashed line shows the corotation radius,

while the two vertical dotted lines show the extent of the horseshoe region.
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Fig. 10.— Left: m = 8 azimuthal component of Ψ = p/Σ0 (the real part is shown by a

solid line, the imaginary part is shown by a dashed line). The dotted line shows the m = 8

component of the potential (which is purely real). Right: singular contribution of Ψ at

corotation (solid line), contribution of the extra term in �[Ψ(x)]/x of Eq. (25) (dotted line),

contribution of the first term of Eq. (10) (dashed line), and total contribution of these extra

terms (dash-dotted line). Each contribution is normalized to the maximum value of the

singular contribution of Ψ at corotation.


