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ABSTRACT

We use three-dimensional high-resolution adaptive-mesh-refinement simulations to
investigate if mechanical feedback from active galactic nucleus jets can halt a massive
cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We
start with a 3 × 109M⊙ black hole at the centre of a spherical halo with the mass
of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in
hydrostatic equilibrium within the dark matter’s gravitational potential. The black
hole accretes the surrounding gas at the Bondi rate and a fraction of the accretion
power is returned into the intracluster medium mechanically through the production of
jets. The accretion, initially slow (∼ 2× 10−4 M⊙ yr−1), becomes catastrophic, as the
gas cools and condenses in the dark matter’s potential. Therefore, it cannot prevent
the cooling catastrophe at the centre of the cluster. However, after this rapid phase,
where the accretion rate reaches a peak of ∼ 0.2 M⊙ yr−1, the cavities inflated by
the jets become highly turbulent. The turbulent mixing of the shock-heated gas with
the rest of the intracluster medium puts a quick end to this short-lived rapid-growth
phase. After dropping by almost two orders of magnitudes, the black hole accretion
rate stabilises at ∼ 0.006 M⊙ yr−1, without significant variations for several billions of
years, indicating that a self-regulated steady-state has been reached. This accretion
rate corresponds to a negligible increase of the black hole mass over the age of the
Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.
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1 INTRODUCTION

X-ray observations show that active-galactic-nucleus (AGN)
jets can inflate large cavities in the hot gas of galaxy clusters
(Arnaud et al. 1984; Carilli et al. 1994; David et al. 2001;
Fabian et al. 2000, 2002; McNamara et al. 2000, 2001). Bin-
ney & Tabor (1995) suggested that this injection of mechan-
ical energy could explain why there is little neutral gas and
star formation at the centre of galaxy clusters, despite the
fact that the time for radiative cooling is in many cases much
shorter than the Hubble time (Fabian 1994). There are three
main alternatives to this proposal. The first one is that the
heating needed to quench a massive cooling flow is provided
by the AGN, but radiatively (Ciotti & Ostriker 1997, 2001;
Sazonov et al. 2004), and not mechanically. The second is
that the cluster core is heated from the outside through ther-
mal conduction (e.g. Voigt & Fabian 2004). The third is that
the gas was preheated prior to the epoch of cluster forma-
tion by e.g. kinetic outbursts at the epoch of the formation
of elliptical galaxies and that it has slowly been cooling since
then (Babul et al. 2002; Oh & Benson 2003; McCarthy et al.

2004). However, there are objections to both of the first two
alternatives (see the review by Begelman 2004), while the
work of AGN outflows on the intracluster medium (ICM) is
observed.

AGN outflows can be enormously powerful (McNamara
et al. 2005), but the question is how effectively this power
can be used to heat the ICM in the cluster core, e.g. if the ki-
netic energy of the outflow is not converted into thermal en-
ergy, a small mass may carry all the energy and escape with
it from the cluster. Moreover, luminous AGNs are short-
lived. It is not clear that such erratic energy sources will
have any long lasting effect. The problem is complicated be-
cause AGN outflows are non-spherical, time-dependent and
turbulent, so the only proper method of modelling the in-
teraction between the jets and the ICM is numerically.

In the last few years, a number of groups have made
an intense effort to simulate the impact of radio jets and
bubbles on the structure of the ICM (Churazov et al. 2001;
Quilis et al. 2001; Reynolds et al. 2001, 2002; Basson &
Alexander 2003; Omma et al. 2004; Omma & Binney 2004;
Ruszkowski et al. 2004; Sijacki & Springel 2006; Vernaleo &

c© 0000 RAS



2 A. Cattaneo, R. Teyssier

Reynolds 2006). This work has given us a reasonable picture
of how the lobes of radio sources are formed and of how
they evolve after the central engine has stopped pumping
energy into them. It has helped clarifying the mechanisms
through which the mechanical energy can be thermalized,
and the issues involved, e.g. the viscosity of the ICM, and
the difference between heavy and light jets.

In all this studies, the power and the duration of the
AGN phase were set by hand. The AGN was able to affect
the ICM, but the change in the ICM properties was not al-
lowed to have any feedback on the AGN power. Here, we
remove this limitation by considering a model in which: i)
the jet power is proportional to the accretion rate of the
central black hole, and ii) the black hole accretion rate de-
pends on the central density and temperature of the ICM
through the Bondi (1952) model. Thus, we close the loop
and investigate the self-regulation of the AGN - cooling flow
system directly.

In this paper we start with a 3 × 109M⊙ black hole at
the centre of a 1.5 × 1014M⊙ halo. We simulate how this
system evolves due to radiative cooling and AGN feedback
in order to establish the pattern of black hole accretion and
the capacity of the system to approach a state of equilibrium.

The paper is structured as follows. In Section 2 we de-
scribe our model for the hydrodynamics of the ICM and
its interaction with the central black hole. In Section 3 we
present the simulations and their results. In Section 4 we
discuss the conclusions that can be derived from these re-
sults.

2 THE MODEL

2.1 The intracluster medium

We assume that we can treat the ICM as an ideal gas and we
follow its dynamics in the gravitational potential of a static
spherical dark matter halo, the radial density profile of which
is the described by the NFW model (Navarro et al. 1997).
We include energy dissipation due to radiative cooling as
well as the injection of mass, momentum and energy due to
the presence of an accreting black hole at the centre of the
gravitational potential. The equations of motions in their
conservative form are:

∂ρ

∂t
+ ∇ · ρv = |ψ|Ṁj (1)

∂

∂t
(ρv) + ∇ · (ρv ⊗ v) + ∇p = −ρ∇φdm + ψṗjnz (2)

∂

∂t
(ρe) + ∇ ·

[

ρv

(

e+
p

ρ

)]

= −ρv · ∇φdm − C + |ψ|Pj (3)

p = (γ − 1)ρ
(

e− 1

2
v

2
)

(4)

where ρ is the density, v is the velocity, e is the specific
total energy, p is the pressure, φdm is the gravitational po-
tential of the dark matter, C is the radiated power per unit
volume), γ is the ratio between the specific heats at con-
stant pressure and volume, Ṁjet, ṗjet and Pjet are the mass,
momentum and energy injection rates due to feedback from
black hole accretion, ψ is a function that specifies the spatial
distribution of the injection (the integral of |ψ| over space
is equal to unity), while nz is the unit vector in the positive

direction of z axis, chosen to coincide with the axis of the
jets coming out of the central source.

The radiated power per unit volume has the form
C = n2

HΛ(T, Z), where nH = fHρ/mp is the number den-
sity of hydrogen nuclei. Here mp is the proton’s mass and
fH = 0.75 is the mass fraction of the ICM in hydrogen.
The cooling function Λ only depends on the temperature
T and the metallicity Z. It is computed from the collisional
equilibrium cooling functions tabulated in Sutherland & Do-
pita (1993). The temperature from which we interpolate the
cooling rate is computed from p and ρ using the equation of
state for an ideal gas with an atomic weight of µ ≃ 0.6mp,
the value for a totally ionised plasma with 25% helium in
mass. All our calculations are for a metal abundance of one
third the Solar value.

In our simulations, we assume that all the baryons are
in the ICM and that the cosmic baryonic fraction is 10%.
We neglect the fact that the ICM has a non-zero total an-
gular momentum. We assume that initially the ICM is in
hydrostatic equilibrium within a static NFW potential. Ap-
pendix A contains the technical details of how we set up our
hydrostatic initial conditions.

2.2 Black hole accretion and feedback

We start with a supermassive black hole at the centre of
the gravitational potential. The black hole growth rate is
computed with the Bondi formula. Bondi (1952) studied a
spherical stationary solution where the gas is static and ho-
mogeneous at infinity and in free fall close to the black hole.
The transition between the two regimes occurs at the sonic
radius rs, where the circular velocity on a Keplerian orbit
around the black hole is equal to the sound speed cs of the
ICM (GM•/rs = c2s ). Under this hypothesis, the black hole
accretion rate is

Ṁ• = 4πr2s ρcs = 4π(GM•)2
ρ

c3s
(5)

where ρ is the gas density at the sonic radius. In reality, the
gas distribution around the black hole is non-spherical and
turbulent, so it is difficult to define the sonic radius. For this
reason, we adopt a practical approach and determine ρ and
cs as the density and the volume-weighted sound speed in a
fixed small but resolved volume around the black hole. It is
also worth noting that, for γ = 5/3, ρc−3

s = (5/3)3/2s−3/2,
where s ≡ pρ−γ = s0 exp[(γ − 1)µmpk

−1(S − S0)] is a mea-
sure of the entropy per unit mass, S, of the ICM (k is the
Boltzmann constant and s0 is the value of s that corresponds
to the zero point of the specific entropy, S0) . Hence, in the
Bondi model, Ṁ• depends on the state of the ICM through
its entropy only.

We assume that black hole accretion is accompanied
by the acceleration of jets. Jets emit radio synchrotron
radiation because they are magnetised. A magnetic field
of 1 nT in vacuum corresponds to a magnetic pressure of
∼ 10−12dyn cm−2, comparable to the thermal pressure of
the ICM. Magnetic fields should therefore be important.
They are also believed to play a role in collimating the jet
itself. However, we assume here that we can model jets using
only Euler’s equations. This approximation is valid if one is
interested in the dynamics of the cocoons inflated by the
jets, rather the dynamics of the jets themselves. These hot
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bubbles are responsible for the mechanical work on the ICM.
As long as the energy and the momentum pumped into the
jets are calibrated correctly, one will end up reproducing the
expansion of the cocoons appropriately.

We assume that the power of the relativistic particles
pumped into the jets is proportional to the accretion rate of
the black hole and that on subparsec scales, where jets are
accelerated, the outflow rate is equal to the accretion rate
and all the energy is kinetic. With these hypotheses, the
rates at which momentum and energy are deposited into
the jets are:

ṗj =
√

2ǫ Ṁ•c (6)

Pj = ǫ Ṁ•c2 (7)

Here c is the speed of light and ǫ is the efficiency with which
the rest-mass energy of matter accreted onto the black hole
is used to power the jets.

As jets travel from the subresolution region where they
are accelerated to the smallest scale that we can resolve
in our simulations, they entrain additional material from
the interstellar medium of the black hole’s host galaxy. This
increases the mass outflow rate, while conserving both the
momentum and the total energy. Defining η as the jet mass
loading factor, we have:

Ṁj = η Ṁ• (8)

This process occurs at scales far below our resolution limit.
We consider here only the large scale jets, for which the
velocity is much smaller than the speed of light. The jets are
launched in two opposite directions from the central ∼ 3 kpc
at a speed vj = ṗj/Ṁj = η−1

√

(2ǫ)c. Note that this speed is
consistent with momentum conservation in the jet. A mass
loading factor of η = 1 corresponds to the case without
entrainment, in which all the energy is kinetic. For η > 1,
Pj > 1/2Ṁjv

2
j . The difference between the two is added as

thermal energy to the gas injected at the base of the jets.
The physical reason is that the entrained gas is shocked.
Therefore, kinetic energy is converted into heat.

In our mathematical formulation, Ṁj, ṗj and Pj are
function of time only and as such they do not contain any
spatial information, which is, instead, in the function ψ
(Eqs. 1, 2, 3). The precise form of the function ψ is dictated
by computational reasons and has no physical origin. Its con-
sideration is therefore postponed to the section that deals
with the numerical aspects.

2.3 Choice of physical parameters

Our choice of environmental and black hole parameters is
dictated by observations of M87, although our study is not
an attempt at realistically modelling any individual object.
In particular, we have neglected the stellar potential, which
dominates the gravity in the central parts of M87. The halo
has a mass of Mvir = 1.5 × 1014M⊙. The virial radius,
rvir ≃ 1.4 Mpc, is computed by assuming that the virial
density is ∆c = 101 times the critical cosmic density. The
core radius of the dark matter distribution, r0 ≃ 250 kpc,
is computed from the virial radius with the concentration
parameter given by Eq. (A2).

The initial mass of the central black hole is M• = 3 ×
109M⊙. It is commonly assumed that the accretion of matter

Table 1. Simulation parameters (halo, black hole, numerical)

Mvir 1.5 × 1014M⊙

rvir 1.4Mpc
r0 250 kpc

M• 3 × 109M⊙

ǫ 0.1
η 100

rj 3.2 kpc
h 2.5 kpc
Lbox 648 kpc
∆r 0.64 kpc
tsim 12 Gyr

onto a black hole releases energy at ∼ 10% efficiency, so that
the accretion power is Paccr ∼ 0.1Ṁ•c2, and that most of
this power is emitted as light. This is almost certainly true
for the AGNs detected in optical surveys. In fact, there is
reasonably good agreement between the cosmic black hole
density inferred from mass estimates in the local Universe
and the density derived by integrating the optical and X-ray
emission from AGNs over the entire life of the Universe (Yu
& Tremaine 2002; Barger et al. 2005).

However, both observation (M87; Di Matteo et al.
2003) and theory (ADIOS adiabatic inflow-outflow solution;
Blandford & Begelman 1999) suggest that this may not be
true when Ṁ• ≪ ṀEdd, where ṀEdd is the accretion rate
needed for the AGN to radiate at the Eddington luminosity.
In such cases, the most probable outcome is that most of
the power is released mechanically.

In the simulation that we present in this article, the
maximum accretion rate is Ṁ• ∼ 0.2M⊙ yr−1 (Section 3).
For M• = 3 × 109 M⊙, this gives Ṁ• ∼ 3 × 10−3ṀEdd.
Therefore, we are at all times inside the regime described by
ADIOS, where we can assume that all the power generated
by the AGN is channelled into the jets. If matter accreted
by the black hole releases energy at the canonical efficiency
of ∼ 10%, this gives us a canonical value of ǫ ∼ 0.1.

We have set the mass loading factor to η = 100 so
that plasma is injected away from them black hole at vj ∼
1350 km s−1 in agreement with observations of Fanaroff-
Riley I sources. This speed is much lower than the one at
which particles are accelerated close to the central engine be-
cause the jets have entrained mass and have therefore slowed
down before reaching the 3 kpc scale at which we introduce
them in our simulations. The parameter η also determines
the temperature of the plasma, since the rates at which ki-
netic energy and thermal energy are produced must add
to the total power that the AGN deposits into the ICM.
Choosing vj ∼ 1350 km s−1 implies that the kinetic energy
is only a small fraction of the total energy of the jets. Our jet
model is therefore intermediate between those of Reynolds
et al. (2002) and Omma et al. (2004) although closer to the
former. This non-relativistic speed also ensures that we are
allowed to model the system with classical hydrodynamics.
For the role of jet parameters in the AGN - ICM interaction,
also see Soker (2004) and Soker & Pizzolato (2005).
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2.4 Numerical aspects

The adaptive mesh refinement (AMR) hydrodynamic code
RAMSES (Teyssier 2002) is used to integrate the equations
of the conservation of mass, momentum and energy on a
three-dimensional Cartesian grid. The size of a computa-
tional cell is 2−ℓLbox, where Lbox is the size of the cubic
computational box and ℓ is the level of refinement. In AMR
codes such as RAMSES, ℓ can have a large value where high
spatial resolution is needed (e.g. in the cluster core or along
the jet axis) without slowing down the computation by im-
posing high resolution over the entire box. The time step
is also adaptive and is determined for each level of refine-
ment independently by using standard stability constraints
for hydrodynamic solvers.

Our refinement strategy is based on the geometry of the
problem, which is a combination of the spherical geometry
of the potential and the cylindrical geometry of the jets.
The computational domain is a cube of size Lbox ≃ 650 kpc,
subdivided in large cells of size 2−ℓminLbox, where ℓmin = 5.
We define an ellipsoidal region, centred on the cluster core,
with minor axis a ≃ 40 kpc and major axis b ≃ 160 kpc.
The major axis is aligned with the jet axis. This region is
refined up to the maximum level, ℓmax = 10. The cell size
at the highest level of refinement is ∆r ≃ 0.6kpc. We then
progressively de-refine the grid outside this central region
in order to save memory and computing time. We obtain
a total number of AMR cells Ntot ≃ 5 × 105, so that one
run takes approximately 100 hours wall clock time on 32
processors for a total number of time steps roughly equal to
106.

Jet simulations are very time consuming because the
time step, controlled by the Courant stability condition, is
very small. This has prevented us from performing higher
resolution simulations to estimate the convergence proper-
ties of our settings. In cooling-flow simulations, the gas tem-
perature is lower and the number of time steps is one order of
magnitude smaller. We have therefore been able to increase
the size of the box up to twice the virial radius and to raise
the number of cells up to 5 × 106. In this case, we obtain a
cooled gas fraction of ∼ 7% instead of the one obtained in
our ‘fiducial’ run (the one with the same resolution and box
size that we use for jet simulations), which is around 3.5% of
the total gas mass. Due to a limited resolution and box size,
we might therefore underestimate cooling by a factor of ∼ 2.
However, due to the self-regulating nature of AGN feedback
(Section 3), we are confident that our ultimate conclusions
remain unaffected by these numerical issues.

The central region that we use to compute the accretion
rate of the black hole is a small cylinder aligned with the jet
axis. Its radius and half-height are rj = 3.2 kpc and hj =
2.5 kpc, corresponding to 5∆r and 4∆r, respectively. The
same cylinder is used to define the spatial distribution of
the jet injection of mass, momentum and energy, according
to

ψ =
1

2πr2j
exp

(

−x
2 + y2

2r2j

)

z

h2
j

(9)

for x2 + y2 ≤ r2j and |z| < hj, and ψ = 0 everywhere else.
This scheme for launching jets was introduced by Omma
et al. (2004). We have verified that, for the same setup, our
results and theirs coincide.

The length-scale of our cylinder is much larger than
the estimate of ∼ 120 pc for the Bondi radius in M87 by
Allen et al. (2006). One could therefore reasonably worry
that smoothing over such a large region may lead to an un-
derestimate of the actual mass inflow rate at the Bondi ra-
dius. However, since the nearly flat density and temperature
profiles that we measure in the central part of our simulated
cluster (see Figure 2) indicate that the accretion rate com-
puted with Eq. (5) should not be highly sensitive to the
radius at which the density and temperature are evaluated.

3 SIMULATIONS AND RESULTS

In the course of this study, we have run three simulations.
The first one is a purely hydrostatic simulation, where we
have switched off cooling and feedback: we have verified that
the density distribution of the ICM remains constant for the
whole duration of the run, up to tsim ∼ 12 Gyr. As this first
simulation is just a check on the accuracy of our hydro-
static equilibrium, we shall only comment on the other two.
The second simulation is a standard cooling-flow simulation,
where we have included cooling, but without AGN feedback.
The third simulation is our main result: both cooling and
AGN feedback are considered. The global model parameters
are summarised in Table 1 and are the same for all three
simulations.

In the standard cooling-flow simulation, only at t ∼
4 Gyr does the gas start to cool significantly. This is due
to the initially high entropy of the core of the simulated
cluster (e.g. Oh & Benson 2003; McCarthy et al. 2004).
However, as it starts condensing to the centre, cooling be-
comes catastrophic (in the bremsstrahlung regime, the cool-
ing rate varies with the square root of the temperature, but
the square of the density). At t ∼ 6 Gyr a dense cool core
is clearly visible (Fig. 1a). The temperature in the central
6 kpc has decreased by a factor of ∼ 4 and the density has
gone up by a factor of ∼ 10 (Fig. 2). The entropy has di-
minished accordingly. In Fig. 2, we have shown the entropy
computed as Tn1−γ

H , where T is the temperature in keV
and nH is the number density of hydrogen nuclei in cm−3.
This definition is related to the one given in Section 2.2
by s = kT (nHµmp)1−γ . By the end of the simulation, at
t = 12 Gyr, the central density is more than a hundred times
higher than its initial value, the central temperature and
entropy have decreased dramatically, while the pressure has
grown by a factor of ∼ 2. The pressure has changed more
moderately than the other three quantities because the cool-
ing time is longer than the dynamical time and the ICM has
cooled quasi-statically.

The gas in our simulations is either hot, with a tem-
perature of the order of the virial temperature of the halo
(T ∼ 107 K), or cold (T ∼ 104 K), with a negligible fraction
of the mass at intermediate values. It is therefore straight-
forward to separate the cold gas from the hot gas and to
see that a large mass of cold gas builds up in the central
few kiloparsecs. This mass is of ∼ 1010M⊙ at t ∼ 6 Gyr.
By the end of the simulation, it grows above 4 × 1011M⊙

(Fig. 3). This cannot be appreciated from Fig. 1a because
gas that cools below 106 K goes down to 104 K very rapidly,
fragments into clumps and it gets squeezed into a few dozens
of cells. They contain all the cold gas and occupy a central
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AGN self-regulation in cooling flow clusters 5

Figure 1. Maps of the emission-weighted temperature along the line of sight in the cooling flow simulation (first row) and in the feedback
simulation (second row and third row). The initial condition (t = 0) is the same for both simulations. Each map corresponds to a square
field with a side of 260 kpc. The axis of the jets is perpendicular to the line of sight and coincides with the vertical direction on the maps.
The temperature scale used to colour the snapshots is logarithmic.

region with a radius of ∼ 4 kpc. The lack of net angular
momentum in our initial gas distribution, the absence of a
prescription for star formation and supernova feedback and
the limited number of cells in this central region imply that
we have evolved our cluster to the limit where our physical
description breaks down.

A resolution study shows that the reason why only
∼ 3.5% of the baryons cool is that our simulation is not
fully converged but achieving the convergence resolution is
impossible with the short timesteps of the jet simulation.
We have therefore shown the outputs of the cooling flow
simulation at the same resolution used for the feedback sim-

ulation. We shall discuss later how this is likely to affect our
conclusions.

In the simulation with feedback, the interaction of the
black hole with the ICM starts gently because the initial
accretion rate, Ṁ• ∼ 5× 10−4M⊙ yr−1, is low (Fig. 4). This
is due to the high entropy of the cluster core in the initial
condition. The AGN empties a narrow tube along the jet
axis (Fig. 1b and Fig. 5). The jets look like spring onions,
with a thin round part at the bottom, which continues into a
stem. This can be explained by the pressure of the jets when
they come out of the injection zone, which is slightly lower
than the pressure in the cluster core. So the jets are squeezed
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Figure 2. Density, temperature, pressure and entropy profiles in the cooling flow model (red) and in the model with AGN feedback
(black) at t ≃ 0Gyr (solid lines), t ≃ 6Gyr (dotted lines), t ≃ 8 Gyr (dashed lines, only shown for the model with AGN feedback)
and t ≃ 12Gyr (dashed-dotted lines). The initial condition is the same for both the cooling flow and the AGN feedback simulation.
The density nH is the number of hydrogen atoms divided by volume. T is the emission-weighted temperature. The ‘entropy’ Tn1−γ

H
is

weighted over the X-ray emission, too The pressure p is the volume-weighted average. All four quantities are calculated in concentrical
spherical shells and are given as function of the radius r of a shell from the centre of the cluster.

at the sides, until they reach the pressure of the ICM. Due to
the continuity equation, the shrinking of the pipe’s section
is accompanied by an increase of the flow speed. This is seen
as an increase of the ram pressure ρv2 at the points where
the jets on the temperature maps become narrower (Fig. 5).

Using directly the density and temperature maps, we
can determine that the jets are propagating into the cluster
core at a subsonic speed of about 500 km s−1. This subsonic
propagation can also be demonstrated through the absence
of hotspots in the lobes. The temperature of the plasma in
the jets has a maximum at the central source and decreases
moving outwards. This is consistent with the notion that
we are simulating a Fanaroff-Riley type I or core-dominated
radio source. The behaviour of the density mirrors that of
the temperature. The density grows outwards along the jets,
as the outflowing plasma slows down and gathers in the jet
lobes, where it mixes with entrained material.

At early times, the AGN has little effect on the state
and evolution of the ICM in the cluster core. The gas en-
tropy in the cluster core is rather high, resulting in a rather
low black hole accretion rate of Ṁ• ∼< 10−3M⊙ yr−1. There-

fore, even with the high efficiency we have considered in the
accretion-ejection conversion process, the power injected by
the AGN into the ICM is less than the rate at which the
ICM looses energy through radiative cooling (Fig. 4). Still,
the injected energy delays the onset of the fast cooling phase
from t ∼ 4 Gyr up to t ∼ 6 Gyr (see Figs. 3). Another reason
for this low overall efficiency at early time is that the high
entropy plasma in the jets flows outwards, rather than en-
riching the entropy of the ICM around the black hole. This
can be seen by comparing the cooling flow simulation and
the AGN feedback simulation using Figure 1at t = 6 Gyr.
Both contain a cool core at T ∼< 107 K, but the most vis-
ible difference is at r ∼> 100 kpc, where the ICM has been
heated more efficiently by the AGN feedback than in the
pure cooling flow simulation.

By t ≃ 6.5 Gyr, the cooling catastrophe, although it
was delayed by almost 2 Gyr, still occurs. As the gas in
the cluster core is cooling and condensing faster and faster,
the accretion rate of the black hole grows by two orders
of magnitudes in ∼ 0.5 Gyr, and reaches a peak of Ṁ• ∼
0.1M⊙ yr−1 at t ≃ 7 Gyr. At this rate, the jet power, Pmax

j ∼
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AGN self-regulation in cooling flow clusters 7

Figure 3. The mass of the cold gas (T < 106 K) in the computa-
tional volume as a function of time. The dotted line corresponds
to the cooling flow simulation and the solid line to the feedback
simulation.

1045 erg s−1, exceeds the bremsstrahlung luminosity of the
cluster by a factor of ∼ 102. The thermal pressure p at the
base of the jets and the ram pressure ρv2 throughout the
length of the jets are no longer negligible compared to the
pressure of the ICM in which the jets propagate.

Given the new physical state in the cluster core, the
jet propagation is no longer stable. The Kelvin-Helmoltz in-
stability sets in and rapidly amplify small scale fluctuations
already present in the flow. This effect is so strong that
the flow at t = 6 Gyr is no longer axisymmetric, although
our initial conditions were perfectly axisymmetric (Fig. 5).
A complete analytical description of jet instabilities is be-
yond the scope of this paper (see Smith et al. (1983) for a
comprehensive study). Our numerical experiment suggests
that these instabilities grow faster in the phase of rapid ac-
cretion: the jets become turbulent and break up into bub-
bles, which, because of their lower density than the ICM, are
buoyantly driven outside the cluster core. In this turbulent
atmosphere, bubbles may rise in directions not aligned with
the jets’ axis. Fig. 6 shows such an extreme situation: the jet
pointing downwards blows a bubble that rises perpendicular
to the jet. The hydrodynamic interaction of the jets with the
ICM is, therefore, a complicated process with many different
aspects to it. The jets inflate cavities and through their ex-
pansion blow the gas in the centre of the cluster away. They
heat gas through shocks, but also through turbulent mixing
of jet material with the ICM. AGN feedback reheats most of
the cold gas that has accumulated at the centre of the clus-
ter during the cooling catastrophe and causes Ṁ• to drop
by a factor of ∼ 50 at 7 Gyr < t < 8 Gyr. After reaching its
maximum value of Ṁ• ∼ 2 × 10−1M⊙ yr−1, the accretion
curve is reasonably modelled by a decreasing exponential,
with an e-folding time scale of tlife ∼ 2.5× 108 yr, consistent
with the typical life time of a radio source.

At t ∼> 8 Gyr, the central temperature of the hot gas, the
mass of the cold gas and the black hole’s accretion rate settle
respectively to T ∼ 3×107 K, Mcold ∼ 5×107M⊙ and Ṁ• ∼
2× 10−3, without substantial variations until the end of the
simulation at t ≃ 12 Gyr (Figs. 2, 3 and 4, respectively).
This strongly suggests that an equilibrium state has been

Figure 4. The accretion rate of the black hole, Ṁ•, and the cor-
responding jet mechanical luminosity, 0.1Ṁ•c2 in the simulation
with AGN feedback (solid line). The dotted line and the dashed
line show the X-ray luminosity emitted by the ICM in the cooling
flow simulation and the feedback simulation, respectively.

reached. This new equilibrium regime can be characterised
by a highly turbulent and highly pressurised state within the
cluster core. These new properties play an important role
in the system’s self-regulation. Before the cooling flow goes
unstable, the hot plasma flowing out of the central source
easily escapes the cluster core, funnelled through the high
density ICM by a straight and empty channel excavated by
Kelvin-Helmholtz stable jets. In the new equilibrium state,
this is no longer the case: the jets must work constantly to
open a path for themselves. Omma & Binney (2004) had
also pointed out the importance of closing the channel for
effective feedback. Moreover, the higher pressure of the ICM
contributes to confine the outflow within the central region
and force most of the mechanical energy to remain inside the
core. Therefore, the jets at t = 12 Gyr are slower, hotter and
ultimately more effective than those at t = 6 Gyr (Fig. 5): a
higher fraction of the AGN power is converted into heat that
compensate bremsstrahlung cooling in the central region.
This explain why the inner region of the cluster has reached
this new hydrostatic and quasi-adiabatic regime.

In the catastrophic cooling phase (t ∼ 6 Gyr), the en-
tropy of the ICM within the core decreases from 100 keV cm2

to 20 keV cm2. At t ∼ 8 Gyr, after the strong AGN outburst,
the central entropy is nearly back to its initial value. By
t ∼ 12 Gyr, the entropy of the cluster core has started to
decrease again, albeit by a small amount and over a rather
long period of several Gyr. This slow evolution is due to a
secular rise of the central density, as the central tempera-
ture remains quasi constant (Fig. 2). In Section 4 we shall
argue that the temperature does not change much because
it adjusts itself to the value at which AGN heating balances
radiative cooling in the cluster core. We should make note of
the fact that the profiles in Fig. 2 are useful to understand
the physical processes in the simulated cluster but cannot
be taken as accurate predictions to be compared with ob-
servations because of the idealised gravitational potential
used in the simulations, which neglects the dominant stel-
lar component at ∼< 10 kpc (e.g. Mamon &  Lokas 2005). We
have also neglected the role of cosmic rays as an additional
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Figure 5. The thermal pressure, p = ρkT/µmp, the ratio of the ram pressure to the thermal pressure, ρv2/p, and the temperature, T ,
of the gas at two different times (t = 6Gyr in the upper row and t = 12 Gyr in the lower one) on a section that contains the jet axis and
is orthogonal to the line of sight used to plot Fig. 1. The charts have a side of 260 kpc. All colour scales are logarithmic.

non-equilibrium component, whose observational signature
mainly resides in the radio emission of galaxy clusters.

The cooling of gas in the outer parts of the cluster core
causes the cluster gas to flow inwards and slowly compress
the central region (Fig. 1). This secular compression is con-
trolled by the quasi-adiabatic equilibrium we have reached
within the cluster core. In a more realistic cosmological envi-
ronment, the merging of clumpy satellites of cold gas would
have triggered another phase of strong AGN activity, fol-
lowed by another long period of quasi-equilibrium.

4 DISCUSSION AND CONCLUSION

Our views on the thermal evolution of the hot gas in galaxy
clusters have changed considerably in recent years due to
data from CHANDRA and XMM (Fabian et al. 2003). These
X-ray satellites have found no evidence for gas below one
third of the virial temperature (Allen et al. 2001; Peterson
et al. 2003). Millimetre observations of CO lines with the
IRAM 30 Metre Telescope, the James Clerk Maxwell Tele-
scope and the Caltech Submillimeter Observatory have de-
tected the elusive cold molecular gas (Salomé et al. 2006
and references therein). However, measured cooling rates
are substantially lower than inferred from X-ray luminosity
(also see Bregman et al. 2006). Inefficient cooling in massive
haloes is also necessary to explain several galaxy properties

(Cattaneo et al. 2006, 2007; Croton et al. 2006; Bower et al.
2006).

There is increasing consensus that AGN feedback is the
reason why the cooling rate is much lower than one would
expect (e.g. Tabor & Binney 1993; Binney & Tabor 1995;
Tucker & David 1997; Ciotti & Ostriker 1997, 2001; Chura-
zov et al. 2001; Quilis et al. 2001; Reynolds et al. 2001, 2002;
Basson & Alexander 2003; Begelman 2004; Omma et al.
2004; Omma & Binney 2004; Ruszkowski et al. 2004; Zanni
et al. 2005; Brighenti & Mathews 2006; Fabian et al. 2006;
Mathews et al. 2006; Nusser et al. 2006; Sijacki & Springel
2006; Vernaleo & Reynolds 2006). Non-gravitational heating
is also needed to explain the high entropy floor of the ICM
and why the observed relation between X-ray temperature
and X-ray luminosity deviates from the virial relation (e.g.
McCarthy et al. 2002; Roychowdhury et al. 2004; Borgani
et al. 2005). AGN feedback can be radiative and mechanic.
Most of the computer simulations that follow the hydro-
dynamics of the interaction of AGNs with the ICM have
concentrated on mechanic feedback because of the direct
observational evidence that jets from AGNs can open large
cavities in the ICM (McNamara et al. 2005; Fabian et al.
2006).

However, while substantial work has been put into un-
derstanding the mechanisms through which jets affect the
ICM, the exploration of the long-term outcome of this in-
teraction and of the feedback that it returns to the central
engine has just started. Omma & Binney (2004) compared
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two simulations of a cooling flow cluster in which jets were
turned on at different times. They assumed that a later ac-
tivation of the central source results in more powerful jets,
since the central density of the ICM is higher at a more
advanced stage of the cooling catastrophe. They used this
as an argument to suggest that the interaction of the black
hole with the ICM is structurally stable. However, in nearly
all the studies done until now, the power and the duration
of the jets were set by hand following observational esti-
mates. Brighenti & Mathews (2006)’s 2D simulations and
Vernaleo & Reynolds (2006)’s 3D study, whose simulations
did not last long enough to attain the self-regulated regime
described in this article, are the only ones so far who have
attempted to relate the properties of jets to the cooling rate
of the ICM.

This paper fills this gap in our comprehension of the
problem by closing the feedback loop with a self-consistent
model of the interaction between the black hole and the
ICM. The accretion rate of the black hole is computed from
the density and temperature of the ICM. The power of the
jets is proportional to the accretion rate of the black hole
and the jets affect back the accretion rate of the black hole
by changing the properties of the ICM.

The specific model used to calculate the accretion rate
of the black hole is the one proposed by Bondi (1952). In
this model, which corresponds to spherical accretion of gas
that is supported by thermal pressure and static at infinity,
the accretion rate of the black hole is Ṁ• ∝M2

• s
−3/2 where

s ∝ pρ−5/3 ∝ Tn
−2/3

H is a measure of the entropy of the gas
around the black hole (Section 2.2).

In this work, we have simulated the evolution of the
ICM in a halo of Mhalo = 1.5 × 1014M⊙ described by the
NFW density profile (Navarro et al. 1997) and containing
a central black hole of M• = 3 × 109M⊙ starting from hy-
drostatic initial conditions. In our simulations, the growth
of the black hole is so small that M• is nearly constant, but
its value is important because it determines the power of
the central source. The black hole feeds energy back to the
ICM by the injection of hot plasma with an outflow speed
of vj ∼ 1400 km s−1) in two symmetric volumes at a small
distance from the black hole.

From our simulations of the interaction of the black
hole with the ICM, we learn two new fundamental results.
In presence of a massive black hole, a cooling-flow cluster
switches on an AGN of ∼ 1045 erg s−1soon after the onset of
the cooling catastrophe. Its lifetime is short, ∼ 2.5 × 108 yr,
because twin jets blow away and reheat the gas in the cluster
core. After the AGN phase, there are at least 4 Gyr during
which the accretion rate of the black hole and the mass of
the cold gas in the cluster core stay constant, suggesting
that a self-regulated equilibrium has been reached.

Turbulence stirred by jet instabilities mixes the jet
plasma with the ICM in the cluster core, as previously found
by Churazov et al. (2001), Quilis et al. (2001) and Reynolds
et al. (2002). A highly turbulent and highly pressurised state
of the ICM is essential for the effectiveness of our feedback
mechanism. Without it, the jet energy would have left the
cluster core and the AGN would have not heated the cool-
ing gas efficiently. Before the jets grew unstable, most of
the power was indeed deposited far from the centre. Self-
regulation was then impossible.

The violent outburst following the cooling catastrophe

Figure 6. The cavities that AGN feedback has opened in the
hot gas appear as lower density regions. Above is a density map
extracted from the simulation at t ∼ 8Gyr. Below is an observa-
tional image of the radio emission from the synchrotron plasma
that fills the X-ray cavities in M87 (Owen et al. 2000). The two
figures have the same physical size (∼ 70 kpc × 70 kpc) and show
an interesting morphological similarity.

causes the thermal and turbulent pressure to rise signifi-
cantly, until most of the jet energy is confined inside the
cluster core. This confinement allows energy released by the
black hole to have an immediate feedback on its accretion
rate. This ensures that an equilibrium is reached between
the accretion rate of the black hole and the temperature of
the surrounding gas.

The equilibrium state can be determined by balanc-
ing AGN heating with radiative cooling in the cluster core,
assuming that it is now a closed system, so that all the
energy released by the AGN remains within the bound-
aries of the core. Eqs. (5) and (8) give the heating rate
Pj ≃ 4πǫc2(GM•)2mpnHc

−3
s ∝ nHT

−3/2, while the total ra-
diated power is given by LX = nHΛ(T )MH/mp ∝ nHT

1/2,
where MH, the total hydrogen mass in the core, is assumed
constant (MH ∼ 1011M⊙). Given MH and M•, there is one
equilibrium temperature for which Pj = LX and its value its
independent of nH. From this simple argument, we compute
T = 2− 3× 107 K. This figure agrees with the results of our
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simulations (Fig. 2) and is slightly higher than the virial
temperature of our simulated cluster, Tvir ≃ 1.7 × 107 K.

If the mass of the black hole had been significantly lower
than the value considered here, the equilibrium temperature
would have been much lower than the virial temperature. As,
by definition, the virial temperature is that at which ther-
mal pressure balances the gravitational force, AGN heating
would not have been able to stop the contraction of the clus-
ter core with such black hole mass. The black hole would
have had to grow considerably for feedback eventually to
become efficient.

In addition, if the local cooling rate exceeds the local
heating rate around the black hole, the net effect is cool-
ing, the temperature decreases, the density increases and
the heating rate goes up. If, on the other hand, the heating
rate becomes larger than the cooling rate, than the temper-
ature increases, the density decreases and the heating rate
goes down. This thermal equilibrium is, therefore, likely to
remain stable and self-regulated for several Gyr, as our sim-
ulations have demonstrated. The infall of cold gas clumps
from outside the central region (such as those observed by
Salomé et al. 2006) may eventually give rise to a new period
of AGN activity.

The simulations presented in this paper prove that the
interaction of the AGN with the cooling flow evolves natu-
rally towards a self-regulated equilibrium state after a short
phase of strong activity. We suspect that this feature is ro-
bust and does not strongly depends on the mechanism that
thermalizes the power channelled into the jets.

Our simulations do not provide an accurate description
of an individual object such as M87, since, among other
approximations, we have neglected the stellar contribution,
which dominates the gravity in the central few kiloparsecs.
However, the halo and the black hole parameters were chosen
to mimic the values appropriate for M87. Therefore, a careful
comparison with M87 is useful because it gives us an idea
to what extent this simple model represents the physical
reality.

Bohringer et al. (1994) estimate from ROSAT data
that that the total luminosity of the Virgo cluster in the
0.1−2.4 keV band is LX ∼ 8×1043erg s−1. Only 70% of this
power comes from the hot gas in the halo of M87, while most
of the rest comes from M49 and M86. Note that this observa-
tional estimate is compensated by the fact that another 50%
of LX comes from outside the observation band. The final
luminosity of our simulated cluster, LX ∼ 9 × 1043erg s−1,
is therefore very close to value inferred from observations
of M87. To our opinion, it is even more significant that
the black hole accretion rate we have computed is consis-
tent with the value inferred by Di Matteo et al. (2003)
from studying M87 with the CHANDRA X-ray images: they
found Ṁ• ∼ 0.1M⊙ yr−1 and LBondi ∼ 5×1044 erg s−1.There
are also significant morphological similarities between the
cavities opened by the jets in our simulation and the radio
structures observed in M87 by (Owen et al. 2000) (see Figure
6). The duration of the active phase, tlife ∼ 2.5 × 108 yr, is
also in the range of what is expected for the typical lifetime
of a radio source.
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APPENDIX A: THE KOMATSU & SELJAK

HYDROSTATIC SOLUTION FOR THE HOT

GAS OF AN NFW HALO

If the distribution of the dark matter is governed by the
NFW (Navarro et al. 1996, 1997) density profile, then the
equation of hydrostatic equilibrium reads:

1

ρ

dp

dr
= −GMvir

r2
ln(1 + cx) − cx/(1 + cx)

ln(1 + c) − c/(1 + c)
. (A1)

Here Mvir is the halo mass within the virial radius rvir and
x ≡ r/rvir. For the NFW concentration parameter, c, we
follow Seljak (2000) and adopt:

c = 6(Mvir/1014M⊙)−0.2. (A2)

Bullock et al. (2001) have argued that a model in which
the concentration depends on the redshift of collapse agrees
better with the observation, but Eq. (A2) is perfectly ade-
quate for the purpose of constructing a density profile that
approximates that of the ICM of a galaxy cluster.

To be able to solve Eq. (A1) we must introduce an ad-
ditional constraint on the temperature profile. An isother-
mal sphere is inconsistent with the requirement that the gas
traces the dark matter in the outer parts of the halo. In-
stead, Komatsu & Seljak (2001) find a good agreement with
the measured X-ray profiles and with the observed mass-
temperature relation when the gas is described as a poly-
trope, with the relation

p = (γp − 1)ρ0ǫ0(ρ/ρ0)γp . (A3)

Here ρ0 and ǫ0 are the density and the specific internal en-
ergy of the gas at the bottom of the potential well, while
γp is the polytropic index. By substituting Eq. (A3) into
Eq. (A1), we find that:

γp

(

ρ

ρ0

)γp−1
d

dx

ρ

ρ0

= − 1

η0

1

x2

ln(1 + cx) − cx/(1 + cx)

ln(1 + c) − c/(1 + c)
,(A4)

where

η−1
0 ≡ GMvir

rvir(γp − 1)ǫ0
=

GµMvir

rvirkT0

(A5)

and T0 is the gas temperature in the cluster core. The general
solution of Eq. (A4) is

ρ

ρ0

=

{

1 − γp − 1

γpη0

c

ln(1 + c) − c
1+c

[

1 − ln(1 + cx)

cx

]} 1
γp−1

(A6)
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where the parameters ρ0 and η0 are determined by imposing
that ρ satisfies the conditions:

ρ(rvir) = fbρdm(rvir) (A7)

and

d lnρ

d lnr
(rvir) =

d lnρdm

d lnr
(rvir). (A8)

Here ρdm is the dark matter density distribution in the NFW
model and fb = 0.1 is the baryonic mass fraction. Eq. (A7)
gives:

ρ0 =
ρ0

ρ(rvir)
· fbρdm(rvir)

ρvir

· 3Mvir

4πr3vir

= (A9)

=
ρ0

ρ
(x = 1) · c2

3(1 + c)2
1

ln(1 + c) − c/(1 + c)
ρvir.

q. (A8) gives:

η0 =
1

γp

[

c+ 1

3c+ 1
+ (γp − 1)

c− ln(1 + c)

ln(1 + c) − c/(1 + c)

]

. (A10)

The conditions (A7) and (A8) guarantee that the gas density
profile and the dark matter density profile have the appro-
priate normalization and have the same slope at r ≃ rvir,
but do not guarantee that the two profile will not diverge at
r > rvir. However, Komatsu & Seljak (2001) point out that
one can fine tune the polytropic index γp to

γp = 1.15 + 0.01(c − 6.5) (A11)

so that ρ ≃ fbρdm for rvir/2 < r < 2rvir.
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