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THE FORMATION OF LOW-MASS STARS WITH HERSCHEL

Patrick Hennebelle1 and Frédérique Motte2

Abstract. We review the theories and the observations relevant for the
formation of low-mass stars, particularly emphasizing the aspects that
Herschel will contribute to develop.

1 Introduction

Star formation remains one of the most important and challenging problem of the
modern astrophysics. Its complexity comes from the large range of relevant spatial
and temporal scales in the problem and from the profusion of physical processes,
often non linear, which are playing a role in the formation of stars.

We briefly review the theories and the observations which have been developed
and carried out over the years, to explain the formation of low-mass stars. Since
covering the whole topic in only a few pages is hopeless, we focus on the aspects
which are more directly relevant in the context of the science that will be done
with the Herschel space observatory. In particular, given the angular resolution of
Herschel, we will address the scales of molecular clouds, clumps, and dense cores.
The inner part of dense cores, associated with the disk, its fragmentation, and the
launching of outflows are therefore excluded.

2 Formation of low-mass stars: theory

2.1 Overview

It is well established that stars form by gravitational collapse of molecular dense
cores. These cores are themselves embedded in molecular clouds and often, though
not always, inside filaments. However, the conditions through which the dense
cores form, collapse and fragment remain a matter of debate.
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In particular, a central and outstanding question, is the star formation effi-
ciency through the Galaxy. As pointed out by Zuckermann and Evans (1974),
if all the molecular gas observed in the Galaxy was collapsing in a freefall time,
then the star formation rate, would be 10 to 100 times higher than the observed
star formation rate ≃ 3 M⊙ yr−1 observed in the Galaxy. A lot of efforts have
been devoted to explain this low efficiency of star formation. Two main ideas have
been explored so far. The first is that magnetic field provides an efficient support
against gravity and delays the star formation (e.g. Shu et al. 1987). The second
postulates that turbulent motions observed in molecular clouds, prevent the clouds
to collapse in a freefall time (Mac Low & Klessen 2004).

In the following, we first present the basic theory of self-gravitating isothermal
gas, including Jeans length, self-gravitating equilibrium and collapse. We then
describe the effects induced by the magnetic field and the prediction of these
models regarding dense cores. Finally, we expose the influence of the turbulence
and its effects on the dense core formation.

2.2 Gravity and thermal support

Before going into the more complex situations of magnetized and turbulent clouds,
it is important to establish the basic principles of self-gravitating isothermal gas
dynamics.

2.2.1 Jeans length and freefall time

The Jeans length (Jeans 1905, Lequeux 2005) is easily derived by performing a
linear analysis of the self-gravitating fluid equations. Let us consider a cloud
of density ρ0, radius R, and sound speed Cs (note that strictly speaking a self-
gravitating isothermal cloud cannot have a uniform density because the pressure
forces should compensate the gravitational forces). A linear analysis leads to the
dispersion relation

ω2 = C2
sk

2 − 4πGρ0, (2.1)

which reveals that when the wave number, k, is smaller than
√

4πGρ0/Cs, the
waves cannot propagate and perturbations are amplified. From this we obtain the
Jeans length, λJ ,

λJ =

√

πC2
s

Gρ0

, (2.2)

where G is the gravitational constant. The Jeans length can be physically under-
stood in the following way. Self-gravity tends to induce contraction in a time scale
of the order of 1/

√
Gρ0. On the other hand, thermal pressure tends to reestab-

lish uniform density in a sound wave crossing time, R/Cs. If 1/
√
Gρ0 < R/Cs,

then the waves cannot erase the pressure fluctuations induced by the gravitational
contraction before the whole cloud collapses.
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Equation 2.1 shows that, for an isothermal gas, the Jeans length decreases with
density. Therefore, in a collapsing cloud the number of Jeans mass increases as
the collapse proceeds. Based on this argument, Hoyle (1953) proposed the concept
of recursive fragmentation by which a cloud is fragmenting more and more as it
becomes denser. However, as shown by Eq. 2.1, the growth rate of the gravitational
instability, decreases with k, meaning that the large scale perturbations evolve
more rapidly than the smaller scale perturbations. This implies that some sort of
equilibrium for the large scales is needed for the Hoyle’s idea to work.

In general, it is not possible to analytically compute the time for a cloud to
collapse. However, in the ideal case of a cold spherical cloud with uniform density,
one can calculate it exactly (see e.g. Lequeux 2005). The result, known as the
freefall time, is

τff =

√

3π

32Gρ0

. (2.3)

2.2.2 Equilibrium configurations

Equilibrium configurations are obtained when pressure forces compensate gravita-
tional forces. Such static solutions of the fluid equations are useful and convenient
guides. They allow to test numerical codes, perform more rigorous stability anal-
ysis than the Jeans analysis and can sometimes be compared directly with the
observations. The equations of equilibrium, namely the hydrostatic equation and
the Poisson equation, are respectively:

−C2
s∂Xρ+ ρ∂Xφ = 0, (2.4)

1

XD−1
∂X(XD−1∂Xφ) = −4πGρ. (2.5)

Combining these 2 equations leads to the so-called Lane-Emden equation:

1

XD−1
∂X

(

XD−1∂Xρ

ρ

)

= −
4πG

C2
s

ρ, (2.6)

where D is the dimension and X the spatial coordinate.
In plane-parallel geometry (D = 1), X represents the usual Cartesian coor-

dinate, z, whereas in cylindrical geometry (D = 2), X represents the cylindrical
radius, r. In the first case, a self-gravitating layer solution has been inferred by
Spitzer (1942) whereas in the second, a self-gravitating filament has been obtained
by Ostriker (1964). These two solutions are fully analytical. They are character-
ized by a flat density profile near X = 0. The former presents an exponential
decrease for large z whereas the latter decreases as r−4.

In spherical geometry (D = 3) (X represents the spherical radius, r), the solu-
tions of Eq. 2.6 are the so-called Bonnor-Ebert spheres (Bonnor 1956). In general,
these solutions are not analytical and must be obtained by solving numerically
Eq. 2.6. There is however a noticeable exception which is the singular isothermal
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sphere whose density is given by ρSIS = C2
s/2πGr

2. The density profile of the
Bonnor-Ebert sphere is flat in the inner part and tends toward the density of the
singular isothermal sphere at large radii. Since it is physically required that the
cloud has a finite radius, the solutions are obtained by truncating this profile at
any arbitrary radius, assuming pressure equilibrium with the medium outside the
cloud. This medium is supposed to be diffuse and warm. Therefore a whole fam-
ily of equilibrium solutions is obtained. They can be characterized by the density
contrast between the center and the edge. Stability analysis reveals that the solu-
tions which have a density contrast smaller than about 14 are stable and unstable
otherwise.

Stability analysis of the self-gravitating layer and filament have been performed
in various studies (e.g. Larson 1985, Fiege & Pudritz 2000). Both are unstable
to perturbations of wavelengths comparable to the Jeans length. In particular,
this suggests that cores distributed periodically, could develop by gravitational
instability within self-gravitating filaments.

2.2.3 Gravitational collapse

The gravitational collapse of a spherical cloud has been investigated in some details
both analytically and numerically. Since even in spherical geometry, the cloud is
described by 2 variables non linear equations, the analytical models have mainly
focused on self-similar solutions (e.g. Larson 1969; Penston 1969; Shu 1977; Whit-
worth & Summers 1985) which allow to reduce the equations of the problem to
simpler ordinary equations. These solutions have been useful to understand the
physics of the collapse and sometimes used in various contexts to provide easily
time-dependent density and velocity fields. Two main types of solutions have been
inferred. Larson (1969) and Penston (1969) derive a solution which presents super-
sonic infall velocity at large radii (≃ 3.3Cs) whereas Shu (1977) obtains a solution
in which the gas is initially at rest and undergoes inside-out collapse. A rarefaction
wave which propagates outwards at the sound speed, is launched from the cloud
center when the protostar forms. All self-similar solutions have constant accretion
rate equal to few up to several times C3

s/G. Note that in all solutions the density
field is proportional to r−2 in the outer part and to r−3/2 in the inner region which
has been reached by the rarefaction wave. Finally, note that the density of the
Larson-Penston solution is few times (4 to 7) larger than the density of the Shu’s
solution.

The collapse has also been investigated numerically. Larson (1969) starts with
a uniform density cloud and calculates the gas contraction up to the formation
of the protostar by using some simplified radiative transfer (see also Masunaga &
Inutsuka 2000). He shows that a first accretion shock develops at the edge of the
thermally supported core which forms when the dust becomes opaque to its own
radiation, i.e. at a density of about 10−13 g cm−3. This core is sometimes called
the first Larson core. A second accretion shock forms at the edge of the protostar
at much higher density (≃ 10−2 g cm−3). Foster & Chevalier (1993) start with a
slightly unstable Bonnor-Ebert sphere. Interestingly, they find that the collapse
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occurs very slowly in the outer part where only subsonic infall velocities develop.
In the inner part, however, supersonic motions appear. Indeed, they show that
convergence towards the Larson-Penston solution is achieved deep inside the cloud.
On the other hand, in the outer part of the envelope, the density profile turns out
to stay close to ρSIS. Triggered collapse has also been investigated by various
authors (e.g. Hennebelle et al. 2003). Faster infall velocities are then obtained
as well as densities few times denser than ρSIS. A common feature shared by the
numerical solutions is that the accretion rate varies significantly along time, unlike
what is inferred from the self-similar solutions.

2.3 Influence of magnetic field

As recalled previously, magnetic field has early been proposed to provide an im-
portant mechanical support to the gas (see e.g. Shu et al. 1987) which could
possibly explain the low star formation efficiency within the Milky Way. In this
section, we expose the basic principles of the magnetically controlled theory of star
formation.

2.3.1 Magnetic support and magnetic braking

The effect of the magnetic field is not easy to visualize because unlike the thermal
pressure, it is highly non isotropic. In particular, the magnetic forces, j×B, where
j is the electric current, vanishes along the field lines. An easy way to estimate
the magnetic support, is to compute the ratio of the magnetic over gravitational
energies. For simplicity let us consider again a spherical and uniform cloud of
mass M , volume V , radius R, threaded by an uniform magnetic field of strength
B. The magnetic flux within the cloud, ψ is equal to ψ = πR2B. As long as the
magnetic field remains well coupled to the gas (see next section), the magnetic flux
threading the cloud will remain constant along time. The ratio of magnetic over
gravitational energies for uniform density cloud threaded by a uniform magnetic
field, is:

Emag

Egrav

=
B2V

8π
× 2R

5GM2
∝ B2R4

M2
∝

(

ψ

M

)2

. (2.7)

Remarkably, the ratio of magnetic over gravitational energies is independent of the
cloud radius. This implies that if the cloud contracts or expands, the relative im-
portance of these two energies remains the same. This is unlike the thermal energy
of an isothermal gas, which becomes smaller and smaller compared to the gravita-
tional energy as the cloud collapses. It is clear from Eq. 2.7, that there is a critical
value of the magnetic intensity for which the gravitational collapse is impeded even
if the cloud was strongly compressed. Mouschovias & Spitzer (1976) have calcu-
lated accurately the critical value of the mass-to-flux ratio using the Virial theorem
and numerical calculations of the cloud bidimensional equilibrium. A cloud which
has a mass-to-flux ratio smaller than this critical value cannot collapse and is called
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supercritical (subcritical). It is usual to define µ = (M/ψ)/(M/ψ)crit. Large val-
ues of µ correspond to small magnetic fields and thus supercritical clouds.

Another important effect of the magnetic field is its ability to brake a rotating
cloud. This is due to the generation of torsional Alfvén waves which propagate
and transfer angular momentum from the cloud to the intercloud medium (Shu
et al. 1987). To estimate the time scale over which this process is occurring,
let us consider an intercloud medium of density ρicm and let us assume that the
magnetic field is parallel to the rotation axis. The waves propagate at the Alfvén
speed, Va = B/

√
4πρicm along a cylinder parallel to the magnetic field. Significant

braking will arise when the waves have transmitted to the intercloud medium a
substantial fraction of the cloud angular momentum. This is the case, when the
waves have reached a distance from the cloud, l, such that l×ρicm ≃ R×ρ0. That
is to say the waves have been able to transfer angular momentum to a mass of
intercloud medium comparable to the mass of the cloud. This gives an estimate
for the magnetic braking time, in case where the magnetic field and the rotation
axis are aligned:

τbr ≃
R

Va

ρ0

ρicm

. (2.8)

The braking time increases when ρicm decreases because if the intercloud medium
has a low inertia, its angular momentum is small. Another important configura-
tion is the case where the magnetic field and the rotation axis are perpendicular.
Similar considerations show that the braking time is proportional in this case to
√

ρ0/ρicm. The difference with the preceding case is that the angular momentum
is transmitted in the equatorial plane and not along the pole. Therefore the radius
of the cylinder inside which the waves have propagated, grows with time.

Since the densities of the cloud and intercloud medium are usually very differ-
ent, these relations show that the braking occurs more rapidly in the second case.
Therefore, magnetic braking tends to align rotation axis and magnetic field.

2.3.2 Ambipolar diffusion

Until now, we have assumed that the magnetic field and the gas were perfectly
coupled, implying field freezing. However at microscopic scales, the neutrals are
not experiencing the Lorenz force which applies only on charged particles. Strictly
speaking, this implies that at least two fluids should be considered, the neutrals
and the ions (in different contexts more than one fluid of charged particles must be
considered), to treat the problem properly. Since the two fluids are coupled to each
other by the collisions, the neutrals are nevertheless influenced by the magnetic
field if the gas is sufficiently ionized. Treating two fluids constitutes a significant
complication that one is willing to avoid. On the other hand, since the ionization
in molecular clouds is usually of the order of 10−7, the density of the ions is much
smaller than the density of the neutrals. It is thus possible to neglect the inertia
of the ions and assume mechanical equilibrium between the Lorenz force and the



Hennebelle & Motte: Low-mass star formation with Herschel 7

drag force. This leads to:

(∇× B) × B

4π
= γρρi(V − Vi), (2.9)

where ρi and Vi are the ions density and velocity respectively, γ ≃ 3.5× 1013 cm3

g−1 s−1 is the drag coefficient (Mouschovias & Paleologou 1981). From Eq. 2.9, the
ions velocity can easily be expressed as a function of the neutral velocity and the
Lorenz force. Considering now the induction equation, which entails the velocity
of the ions, and using Eq. 2.9, we obtain

∂tB + ∇× (B × V) = ∇×
(

1

4πγρρi
((∇× B) × B) × B

)

. (2.10)

The left part of this equation is identical to the induction equation except that the
velocity of the neutrals appears instead of the velocity of the ions. The right term
is directly responsible for the slip between the neutrals and the magnetic field.
Although it is of the second order, it is not rigorously speaking a diffusion term.
From this equation, it can easily be inferred a typical timescale for the ambipolar
diffusion.

τad ≃ 4πγρρiL
2

B2
, (2.11)

where L is the typical spatial scale relevant for the problem. In the context of star
formation, L could be the size of the cores, R. Ionization equilibrium allows to
estimate that the ions density is about ρi = C

√
ρ, where C = 3 × 10−16 cm−3/2

g1/2.

If a dense core is initially subcritical (therefore magnetically supported), the
diffusion of the field will progressively reduce the magnetic flux within the cloud.
So after a few ambipolar diffusion times, the cloud is becoming supercritical and
the magnetic field is not able to prevent the collapse any more. The important
and interesting question at this stage is, how much is the collapse delayed by this
process? In order to estimate this time, it is usual to assume that the cloud is in
Virial equilibrium that is to say: B2/4π ≃MρG/R (within a factor of a few) and
to compute the ratio of τad and τff , the freefall time (Shu et al. 1987). This leads
to:

τad
τff

≃ 8. (2.12)

Remarquably enough, τad/τff is independent of R and M , the size and mass of
the cloud (as long as the Virial assumption is verified). The important point is of
course that τad is roughly 10 times higher than τff . The implication is therefore
that ambipolar diffusion could possibly reduce the star formation rate significantly
making it closer to the observed value.
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2.3.3 Prediction of ambipolar diffusion theory

In order to make quantitative predictions, numerical simulations of magnetized
collapse controlled by ambipolar diffusion, have been performed (e.g. Basu &
Mouschovias 1995). These simulations are generally one dimensional and assume
a thin disk geometry. They explore a wide range of magnetic intensities, from
nearly critical cores, µ ≃ 1, to very subcritical cores, µ≪ 1. They also investigate
the effect of changing the ionization which results in a weaker coupling between
the magnetic field and the gas. Velocity and density profiles potentially useful for
comparison with observations, are therefore available in the literature. Here we
simply draw some of the most important features.

When the dense core is very subcritical, with values of µ as low as 0.1, Basu &
Mouschovias (1995) found that the infall velocity in the outer part of the envelope
is only a small fraction of the sound speed with values as low as 0.2×Cs whereas
in the inner part, it gradually increases and reaches values of about 0.5−0.8×Cs.
The collapse is significantly delayed and occurs in about 15 freefall times. For
nearly critical cores, µ ≃ 1, the infall velocity is roughly twice higher than in the
previous case whereas the collapse occurs after about ≃3 freefall times. Another
interesting prediction, is the evolution of the central mass-to-flux ratio. The value
of µ in the centre, smaller than 1 initially, grows with time as the cloud loses its
flux and eventually becomes larger than 1. By the time, of protostar formation,
typical values of µ are about ≃2. Interestingly, this does not depend too much
on the initial value of µ. An important prediction of the magnetically controlled
models, is therefore that typically, values of µ around 2 should be measured.
Values significantly higher than 2, would certainly indicate that the collapse is not
magnetically controlled.

2.4 Role of turbulence

The theory of magnetically controlled star formation, has been challenged by a
new theory based on supersonic turbulence (e.g. Mac Low & Klessen 2004) which
has been developed during the last decade. The general idea of this theory is that
turbulence prevents most of the gas to collapse in a freefall time and regulates the
star formation. Slightly different aspects have nevertheless been emphasized by
various authors.

2.4.1 Turbulent support and decay of turbulence

Unlike magnetic field, it is not straightforward to anticipate the influence of tur-
bulence on the star formation rate. This is because, on one hand, the turbulent
motions tend to spread out the gas, reducing its ability to collapse, but on the
other hand, the turbulent motions may also increase the gas density locally when
the flow is globally convergent. Moreover, the difficulty with theories involving
turbulence is that it appears hopeless to search for exact analytical descriptions,
even for highly idealized situations. Therefore most of our theoretical knowledge
of the interstellar turbulence is provided by numerical simulations. It appears



Hennebelle & Motte: Low-mass star formation with Herschel 9

nevertheless highly wishable to draw simple trends. To this purpose let us assume
that the turbulence is sufficiently isotropic and is an additional support that can
be described by a sound speed. Let Vrms be the root mean square of the velocity.
The effective sound speed of the flow is Cs,eff ≃

√

C2
s + V 2

rms/3. Since the tur-
bulence observed in molecular clouds is highly supersonic, V 2

rms is larger than C2
s

by typically a factor of 25 to 100. Therefore, Cs,eff ≃ Vrms/
√

3 and the turbulent
Jeans mass, MJ ∝ V 3

rms/
√
ρ. On the other hand, turbulence creates density en-

hancements that can be estimated by the Rankine-Hugoniot jump conditions for
an isothermal gas, ρ/ρ0 = (V/Cs)

2, where ρ0 is the mean cloud density. Com-
bining these two relations, we get the turbulent Jeans mass MJ ∝ Vrms, which
indicates that turbulence is globally supporting the cloud.

To go further than these very simple analytic estimates, it is necessary to per-
form numerical calculations. Before describing some results of these simulations,
it is necessary to emphasize the fast decay of turbulence which constitutes a severe
issue of the turbulent theory. Considering a turbulent piece of fluid of size L, a
robust conclusion, seems to be that a significant fraction (say more than half)
of the initial turbulent energy is dissipated in about one crossing time, L/Vrms.
This result, well established in the case of nearly incompressible fluids, has also
been inferred for numerical simulations of supersonic turbulence with and without
magnetic field (Mac Low & Klessen 2004). Therefore, if not driven (that is to say
when no external forcing is applied continuously to the flow), the turbulence decays
quickly and thus cannot delay very significantly the collapse of a self-gravitating
cloud. In order to explain the low star formation rate in the Galaxy, the turbulence
theory must invoke a driving source which continuously replenishes the turbulent
energy. At the present time, this constitutes a major problem of this theory.

Various numerical simulations have been performed to study directly the in-
fluence of the turbulence on star formation. The complete descriptions of these
studies cannot be achieved within the scope of this short summary and only some
of the most important aspects are described below.

2.4.2 Hydrodynamical turbulence

As anticipated above, decaying turbulence cannot delay star formation signifi-
cantly. Calculations done by Klessen et al. (2000) and Bate et al. (2003), indeed,
show that within a few freefall times, most of the gas has been accreted. We note
that, an interesting results has been obtained in this context. Bate et al. (2003)
find that the mass distribution of the stars formed by gravitational collapse in their
simulations closely follows the shape of the initial mass function of stars (IMF).

Driven turbulence can reduce the star formation rate if the driving is sufficient.
With a large scale driving (that is to say k = 1 − 2 where k counts the number
of driving wavelengths in the box), providing an effective Jeans mass of 0.6 in a
box which contains a total mass equal to 1 (that is to say that the box contains
more than one turbulent Jeans mass), Klessen et al. (2000) find that more than
half of the mass is accreted within one freefall time. The problem is less severe if
the driving is on smaller scales (k = 3 − 4 or k = 7 − 8) since in that case 3 to 6
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(depending on the scales at which driving is applied) freefall times are needed to
accrete half of the mass. If the driving is stronger, providing and effective Jeans
mass of 3.2, these numbers are typically multiplied by a factor of 3 to 4. Star
formation can be entirely suppressed if sufficiently strong driving is applied at
scales smaller than the thermal Jeans length inside the box. Klessen et al. (2005)
infer statistical properties of the sample of cores formed in their simulations. In
particular, they find that roughly 40% of the cores have subsonic internal velocity
dispersion, 40% transonic and 20% supersonic.

2.4.3 Turbulence in magnetized clouds without ambipolar diffusion

Driven turbulence in supercritical clouds has first been investigated by Padoan
& Nordlund (1999). In the absence of gravity and assuming isothermal equation
of state, they find that super Alfvénic clouds, that is to say clouds for which the
Alfvén speed is smaller than Vrms, match better the observed molecular clouds than
the trans-Alfvénic clouds. Padoan & Nordlund (2002) also infer that dense cores
formed in super-Alfvénic simulations, have a mass distribution which resemble the
IMF.

Decaying and driven turbulence with self-gravity have been respectively in-
vestigated by Gammie et al. (2003) and Vázquez-Semadeni et al. (2005) for
various field strengths. Various clumps and cores properties such as shape, corre-
lation with magnetic field, mass spectrum or age, have been inferred from these
simulations and often compare well with observations. In contrast to Padoan &
Nordlund (1999), it has not been found in these works that the characteristics of
super Alfvénic clouds match the observations better.

2.4.4 Turbulence in subcritical magnetized clouds with ambipolar diffusion

Turbulence in subcritical clouds in the presence of ambipolar diffusion, has been
investigated by Basu & Ciolek (2004) and Li & Nakamura (2005). These simula-
tions combine the magnetic support and the turbulent motions. Since the clouds
are initially subcritical, ambipolar diffusion plays an important role since it allows
to reduce locally the magnetic flux. Interestingly, it has been found that in this
context turbulence tends to accelerate the star formation. This is because, turbu-
lence creates stiff gradients, due to the formation of shocks, in which the ambipolar
diffusion takes place quickly. Indeed, Eq. 2.11 shows that the ambipolar diffusion
time decreases with the spatial scale, L.

A very interesting results is that these simulations are able to reproduce the
low star formation efficiency observed in the Milky Way provided the initial value
of µ is small enough (typically µ ≃ 1) and the turbulence is sufficiently strong
(typically Vrms ≃ 10 × Cs). As expected, all cores produced in these simulations,
tend to be rather quiescent with typically subsonic motions.
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3 Formation of low-mass stars: observations

3.1 A generally accepted scenario

Low- to intermediate-mass (0.1 − 8 M⊙) stars are forming within a molecular
cloud which undergoes a series of contraction and fragmentation phases until the
formation of a self-gravitating, starless cloud fragment called “pre-stellar dense
core/condensation”. Conceptually, the latter should be the initial core which
will collapse to form a single or, at most, a binary star. Observationally, it
may correspond to starless gravitationally-bound cloud structures which are dense
(104−106 cm−3 volume-averaged densities), small-scale (∼0.01–0.1 pc diameters),
and cold (∼10–20 K mass-averaged temperatures). At some point, a stellar embryo
forms within the initial core which then enters the “protostellar phase”. There, the
protostar accretes material from its circumstellar infalling envelope and drives an
outflow which maybe removes its angular momentum. As soon as the protostellar
envelope dissipates, it reveals of “pre-main sequence/T Tauri star” surrounded by
first a protoplanetary disk and then a debris disk.

The above scenario has been established thanks to an empirical evolutionary
sequence derived from infrared surveys and (sub)millimeter maps of solar-type
young stellar objects (YSOs) (see e.g. Fig. 1). First, depending on their infrared
spectral index, low-luminosity YSOs have been divided into three classes: Class I
→ Class II → Class III, from evolved protostars to classical, and then weak T
Tauri stars (Lada 1987). On the basis of (sub)millimeter dust continuum obser-
vations, the YSO classification scheme has then been extended toward younger
sources with the addition of the stages of Class 0 protostars and pre-stellar cores
(André et al. 1993; Ward-Thompson et al. 1994). In this classification, pre-stellar
cores represent the initial core on the verge of collapse. Class 0 sources, distin-
guished by large submillimeter to bolometric luminosity ratios and self-embedded
in massive circumstellar envelopes, are believed to be young protostars at the be-
ginning of the main accretion phase. Class I sources are interpreted as more evolved
protostars which have already accumulated the majority of their final stellar mass
but are still accreting matter from a residual envelope. Class II and Class III YSOs
correspond to pre-main sequence stars surrounded by a circumstellar disk, which is
optically thick and optically thin, respectively. The empirical observational classi-
fication scheme of Class I to Class III sources was used to support the “standard”
theory of low-mass star formation, which describes the ideal gravitational infall
of a singular isothermal sphere originally at rest (e.g. Shu et al. 1987). In con-
trast, the characteristics of Class 0 and pre-stellar cores suggest that the initial
dense core resembles more a Bonnor-Ebert sphere out of equilibrium (e.g. Foster
& Chevalier 1993, Hennebelle et al. 2003). Sections 2.2.2–2.2.3 shortly present
these two classes of models and Sect. 3.3 summarizes the existing constraints on
the initial conditions of the collapse.

The earliest phases of low-mass star formation (i.e. pre-stellar cores and Class 0
protostars) are crucial to be studied because they are holding the key of the final
mass of the star (see, e.g., the review by André et al. 2000). Mainly constituted
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Fig. 1. Taken from André 1994: Evolutionary sequence of low-mass young stellar objects

(with a stellar mass on the main sequence assumed to be 1 M⊙) based on their spectral

energy distributions (on the left) and their circumstellar masses (on the right).
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of cold dense gas, these YSOs have spectral energy distributions peaking in the
far-infrared to submillimeter range, around 100 − 200 µm (see top left corner of
Fig. 1). Herschel is uniquely suited to study these objects, especially because of
its broad wavelength coverage of cold SEDs (see Fig. 3 of the chapter on high-
mass star formation) and its unmatched resolution at far-infrared wavelengths.
According to their typical sizes and masses, Herschel will be able to probe the
pre-stellar cores and Class 0 protostars with enough resolution and sensitivity in
star-forming regions located at up to 500 pc from our Sun. The unprecedented
SPIRE-PACS wavelength coverage will give robust measurements of their spectral
energy distributions, which, as shown in Fig. 1, is important for determining their
evolutionary status.

3.2 The origin of the IMF: a fundamental open question

The question of the origin and possible universality of the initial mass function
(IMF, see Salpeter 1955) is crucial for both star formation and galactic evolution
but remains a matter of debate. Indeed, numerous molecular line studies of cloud
structure have attempted, without success, to relate the mass spectrum of ob-
served clumps to the stellar IMF (see, e.g., the review by Williams et al. 2000).
There has recently been a growing body of evidence that the IMF of nearby star
clusters is at least partly determined by pre-collapse cloud fragmentation. In-
deed, ground-based (sub)millimeter continuum surveys of ρ Ophiuchi, Serpens,
and Orion B revealed pre-stellar condensations whose mass distributions resemble
the stellar IMF (Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000;
Motte et al. 2001; Stanke et al. 2006; see e.g. Fig. 2). Therefore and at least in
the low- to intermediate-mass range (0.1 − 5 M⊙) probed here, these pre-stellar
condensations could be the direct progenitors of protostars, i.e., the structures
(initial cores) within which the individual protostellar collapse is initiated. A
plausible scenario, supported by some numerical simulations of cluster formation
(Klessen et al. 2000; Padoan et al. 2002), could be the following: First, cloud tur-
bulence generates a field of density fluctuations, a fraction of them corresponding
to self-gravitating fragments; second, these fragments (or “kernels”) decouple from
their turbulent environment and collapse to protostars after little interaction with
their surroundings (e.g. Myers et al. 1998; André et al. 2007).

Present ground-based studies are limited by small-number statistics (in general
less than 100 objects) and low sensitivity (usually objects have masses > 0.1 M⊙).
Deeper, more extensive, far-infrared to (sub)millimeter surveys should be done
to search for the pre-stellar condensations more massive than 10 M⊙ and less
massive than 0.1 M⊙. Surveys in a variety of star-forming regions (from our
solar neighborhood to the Galactic center) are also clearly required to investigate
possible environmental effects.

In that context, the “Gould Belt” (Probing the origin of the stellar IMF) Key
Programme of Herschel aims at checking if the IMF is indeed determined by cloud
fragmentation at the pre-stellar stage of star formation. Coordinated by André &
Saraceno, this Guaranteed Time Key Programme is jointly proposed by the SPIRE
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Fig. 2. Adapted from Motte et al. (1998) and Bontemps et al. (2001): Cumulative

mass distribution of the pre-stellar condensations in the ρ Oph protocluster (blue his-

togram, complete down to ∼0.1 M⊙) compared with the IMF of field stars (pink curve,

Kroupa et al. 1993) and that of ρ Oph T Tauri stars (red star-like markers).

and PACS consortia, and the Herschel Science Centre (André & Saraceno 2005;
see also http://starformation-herschel.iap.fr/gouldbelt/). The “Gould Belt” project
will carry out unbiased photometric surveys, with both SPIRE and PACS, of the
nearby (dSun = 100 − 500 kpc) star-forming clouds composing the Gould Belt. It
will therefore provide, for the first time, the mass and luminosity functions for
complete samples of thousands of pre-stellar condensations and Class 0s down to
the proto-brown dwarf regime (0.01 − 0.08 M⊙) and up to intermediate-mass ob-
jects (up to 8 M⊙). Such a study is expected to revolutionize our knowedge of the
origin of the stellar IMF.

3.3 Initial conditions of the protostellar collapse

In order to distinguish between collapse models (see e.g. Sect. 2), observations of
both the density and the velocity profiles of pre-stellar cores/condensations and
protostellar envelopes are required. The density structure of well-recognized ob-
jects has been extensively investigated in submillimeter continuum emission (e.g.
Ward-Thompson et al. 1994; Shirley et al. 2000; Motte & André 2001) and mid-
infrared absorption (e.g. Bacmann et al. 2000; Alves et al. 2001). While proto-
stellar envelopes generally follow a ρ(r) ∝ r−2 to ∝ r−1.5 density profile, pre-stellar
cores ressemble more a Bonnor-Ebert sphere with a flattening at small radii and
a sharp edge at some outer radius. In cluster-forming regions, the protostellar
envelopes of Class 0 sources are generally denser than what is predicted for the
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collapse of a thermally-supported initial core. It suggests either the existence of
an additional support (turbulence and/or magnetic field) or initial conditions far
from a quasi-static equilibrium. The results obtained on the density structure of
the earliest phases of low-mass star formation seem to support the standard the-
ory of the protostellar collapse in isolated regions and more dynamical scenarios
in proto-clusters (see e.g. Motte & André 2001).

However, the above interpretations are very uncertain due to the fact that dust
properties (temperature and emissivity) are unknown and generally assumed to be
constant through pre-stellar dense cores/condensations and protostellar envelopes.
Herschel will give more secure constraints on the initial conditions of the protostel-
lar collapse by making simultaneous and direct measurements of both the density
and temperature structures (e.g. André et al. 2004). The Garanteed Time Key
Programmes of André & Saraceno (“Gould Belt”) and Henning et al. (see Sect. 3.5
of the chapter on high-mass star formation) will make such analysis. Moreover,
the large spatial dynamic range of the “Gould Belt” project will probe the link
between diffuse interstellar medium and compact self-gravitating condensations,
thereby setting strong constraints on possible core formation mechanism(s).

4 Conclusion

With the advent of the Herschel satellite and soon after the ALMA interferometer
we are entering a very promissing era for the studies of the earliest phases of star
formation. Large-scale imaging surveys complemented by high-resolution studies
will surely solve many of the fundamental questions we currently ask ourselves,
such as the origin of the stellar IMF and the initial conditions of the protostellar
collapse.
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