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(Spécialité Physique des Particules)

par

Serguei Ganjour

Composition du jury

Président: Jacques Chauveau (Examinateur)

Rapporteurs: Daniel Denegri
Simon Eidelman
Robert Fleischer

Examinateurs: Roy Aleksan
Ursula Bassler
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Abstract

This report of French “Habilitation à Diriger des Recherches” summarizes my scien-
tific activities from 1995 to 2007. During this period of time, my research work was
related to the particle physics experiment BABAR. The BABAR experiment has been
running since 1999 at the PEP-II e+e− asymmetric B-factory located at SLAC. This
experiment searches for CP violation in the system of B mesons and tests the Stan-
dard Model through the measurements of the angles and the sides of the Unitarity
Triangle.

My research work is divided in five main topics: study of the BABAR magnet sys-
tem and measurement of the magnetic field in the central tracking volume; project of
the particle identification system based on aerogel counters for the forward region of
the detector; conception of the magnetic shield and measurements of the fringe field
in the region of photomultipliers of the DIRC system, the principal particle identi-
fication system of BABAR; development of the partial reconstruction technique of B
mesons and study of the B0 → D(∗)+

s D∗− decays; measurement of CP violation in the
B0 → D∗∓π± decays and constraint on the Unitary Triangle parameter sin(2β + γ)
using these decays.

Keywords: CP Violation, BABAR.

Résumé

Ce mémoire d’habilitation à diriger les recherches, retrace mon activité scientifique
de 1995 à 2007. Durant ces dix années environ, mon travail de recherche a été in-
timement lié à l’expérience de physique des particules BABAR. L’expérience BABAR

en fonctionnement depuis 1999 au SLAC auprès de l’accélérateur PEP-II, recherche
la violation de CP dans le système des mésons B qui sont produits à la résonance
Υ (4S). En outre, BABAR a pour vocation de tester le Modèl Standard, notamment à
travers la mesure des angles et des côtés du triangle d’unitarité, lié à la matrice de
mélange des quarks du modèle standard électrofaible.

Mon activité de recherche s’est organisée autour de cinq axes majeurs: l’étude
du système magnétique de BABAR et la mesure du champ dans le volume central
du détecteur de trace; le projet du système d’identification des particules basée sur
des compteurs aerogel dans la région avant; la conception du blindage magnétique
et la mesure du champ dans la région des photomultiplicateurs du système principal
d’identification des particules, le DIRC; le développement de la méthode de recon-
stuction partielle des mésons B et l’étude des désintégrations B0 → D(∗)+

s D∗−; la
mesure de la violation de CP dans les désintégrations B0 → D∗∓π± et la contrainte
des angles du trianle d’unitarité par la mesure de sin(2β+γ) avec ces désintégrations.

Mots-clés: Violation de CP , BABAR.
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Introduction 1

Introduction

This report of French “Habilitation à Diriger des Recherches” summarizes my sci-
entific activities since the summer of 1995, when I joined the BABAR collaboration.
During this period of time, my research work was related mostly to this experiment.
This report does not include my scientific work in the period from summer 1999 to
summer 2002 that has been devoted to the defense of my thesis of doctor in physics.

The BABAR experiment has been running since 1999 at the PEP-II e+e− asymmet-
ric B-factory at SLAC operating at the energy of the Υ (4S) resonance. The main goal
of this experiment is the search and the precise measurement of CP violation in the
system of B mesons and the tests of the Standard Model through the measurements
of the angles and the sides of the Unitarity Triangle.

Since its discovery in 1964 [1], the CP violation phenomenon remains one of the
fundamental problems of modern physics. Although CP violation is an important
ingredient to explain disappearance of antimatter in the Universe, neither its origin
nor magnitude are yet well understood. In the framework of the current theory that
explains different phenomena in particle physics, the Standard Model, CP violation is
connected with the origin of the fermion masses. The search of the latter phenomenon
is the most important task of the LHC experiments, where huge experimental efforts
have been invested during the last years. The discovery of the Higgs boson, that could
be the origin of the masses, is the main goal of the LHC experiments.

My first experimental work in the BABAR collaboration has been devoted to the
project of the particle identification system. Several options for such a system were
proposed at the early stage of the experiment. I have participated in the research
and development of the particle identification system based on aerogel Cherenkov
counters covering the forward region of the detector (Chapter 3). The prototypes of
the aerogel counters have been successfully tested with a beam at CERN. Due to cost
problems, the forward particle identification system has been excluded from the final
design of BABAR. However, the results of these investigations have been published
since they are of a broad interest for other researchers.

After the decision to use only the Detector of Internally Reflected Cherenkov Light,
DIRC, as the principal particle identification system of BABAR, I have joined the DIRC
group and contributed to the measurement of the fringe field of the BABAR solenoid
in the region corresponding to the faces of the DIRC photomultipliers (Chapter 4).
The first step of my work included calculations of the shielding components. The
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results of this study were used in the design of the magnetic shield. The second part
of my research was related to the measurement of the field in the region of the DIRC
photomultipliers. I have been responsible for the design and construction of the filed
mapper that allowed us to perform such measurements before the commissioning of
the experiment. A dedicated method of demagnetization, developed in this work,
allowed us to guaranty a field magnitude of less then 1 G in the measured region.
This provides a safe operation of the DIRC system at all time of detector operation.

In parallel, I took part in the studies of the BABAR magnet system by perform-
ing calculations of the magnetic field and of its precise measurement in the central
tracking volume. Measurement and modelization of the solenoidal field (Chapter 2)
have been performed at a precision as good as 1.7 G. This model of the magnetic
field has successfully been applied for the reconstruction of the charged particles in
the tracking system of BABAR.

Since the summer 1999 to the spring of 2002 my research was devoted to the study
of the inclusive production of D(∗)+

s mesons from B decays and the investigation of the
feasibility of a partial reconstruction technique for the B0 → D(∗)+

s D∗− decay channel.
The results of this work have been included in my doctoral thesis [2] defended in April
2002. This study is not a part of the present report.

After the defense of my thesis, I performed a further study of the partial re-
construction technique that allowed the publication of a measurement of the B0 →
D(∗)+

s D∗− branching fractions and the polarization in B0 → D∗+
s D∗− decays (Chap-

ter 5). In the fall of 2003 I took the responsibility of the IHBD (Inclusive Hadronic B
Decays) analysis group convener and stayed until summer 2005. This group analyzed
the B meson decays with a partial reconstruction technique.

Since 2003 my scientific research has been related to the study of CP violation
in the B0 → D∗∓π± decays and measurement of the CKM parameter sin(2β + γ)
with this decay channel (Chapter 6). At that time, BABAR had recorded approxi-
mately 80 fb−1 of integrated luminosity, and therefore, the measurement of small CP
violation effects became feasible. In the first measurement of the CP asymmetry in
B0 → D∗∓π± decays, it was demonstrated that partial reconstruction is a very effi-
cient method for the challenges of the time-dependent CP violation measurements.
A remarkable constraint on the CKM parameter sin(2β + γ) has been obtained for
the first time. An updated measurement based on 232 millions produced BB pairs,
published about one year later, in 2005, represents the most precise CP violation
measurement (∼ 1.5%) in the decays of B mesons.

I have put a lot of efforts in the program of sin(2β + γ) CKM parameter deter-
mination in BABAR. In particular, I have played an active role (chair of the internal
review committee) in the CP asymmetry measurements with B0 → D(∗)∓π±/ρ± using
the method of full reconstruction. I have reported the combined constraint and the
perspectives of the sin(2β+γ) measurements on the CKM workshops (Appendix E.3).

During my membership in the BABAR collaboration, I have actively participated
in the scientific program of the experiment. I took the responsibility to serve in the
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review committees for several analyzes, for example, measurement of CP violation in
the charmless penguin and the B0 → D(∗)+D(∗)− decay channels. I have also reported
the results of CP violation measurements at physics conferences and workshops. One
example is given in Appendix F.
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Chapter 1

CP Violation Phenomenon

The violation of CP symmetry is a fundamental property of nature which plays a key
role in the understanding of the evolution of the Universe. Since neither its origin nor
its magnitude are yet well established, it deserves particular studies.

This chapter gives an overview of CP violation phenomenon. The general formal-
ism describing the B0-B0 system, the implications of CP non conservation, and the
generation of CP violation in the Standard Model are discussed. The detail discussion
of this subject can be found in Ref. [3].

1.1 Why do we study CP violation?

The requirement of the conservation of various symmetries greatly simplifies the elab-
oration of the physical theories. The conservation of energy, momentum and spin
involves invariance principles of the physical law under continuous transformations
such as translation in time, space or rotation, respectively. An other category of con-
servation laws, for example conservation of electric, baryonic and leptonic charge and
strong isospin is associated with the dynamics of the processes. They act on abstract
spaces such as phases or isospin and also involve continuous transformations. The
category of the discrete transformations which are also connected with the dynamics
of the interaction plays a special role. These transformations are charge conjugation,
parity and time reversal.

1.1.1 Discrete symmetries C, P and T

For a particle described by the wave function ψ(
→
p,

→
s ) where

→
p and

→
s denote its

momentum and spin, the action of the charge conjugation is to change the particle

into its antiparticle without modifying
→
p and

→
s . Thus the transformation of charge

conjugation C can be expressed as

C|ψ(
→
p,

→
s )〉 = ηC |ψ(

→
p,

→
s )〉 (1.1)
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where ηC is a phase factor. The antiparticle (ψ) is defined by changing the sign of all
the charges associated to the particle (electric, baryonic, leptonic...).

The parity transformation P changes the space vector
→
r into − →

r . This means

that the momentum
→
p becomes − →

p , while orbital momentum remains unchanged

(
→

L=
→
r × →

p). Hence

P |ψ(
→
p,

→
s )〉 = ηP |ψ(− →

p,
→
s )〉 (1.2)

where ηP is a phase factor.

Under time reversal transformation T , t is changed to −t and therefore
→
p is mod-

ified into − →
p . Moreover the wave function is also replaced by its complex conjugate

due to the fact that it should satisfy the Schrödinger equation. Thus

T |ψ(
→
p,

→
s )〉 = ηs

T |ψ∗(− →
p,− →

s )〉 (1.3)

where ηs
T is a phase factor depending on the spin.

1.1.2 Matter-antimatter asymmetry in the Universe

There is one fundamental problem in modern cosmology that relates to CP violation,
and that is the observed asymmetry between baryons and antibaryons in the Universe

nBar << nBar, nBar/nγ ∼ 10−9 ÷ 10−10 (1.4)

where nBar, nBar, and nγ are the densities of antibaryons, baryons and photons,
respectively. In 1967, the necessary conditions to generate the Baryon Asymmetry in
the Universe (BAU) have been postulated by Sakharov [4]:

• since the initial and final number of baryons are different, i.e. ∆nbar ≡ nBar −
nBar 6= 0, transitions violating the baryon number have to exist;

• C and the product of C and P parities, CP , have to be violated. Otherwise for
any transition changing the baryon number N → f exists the conjugate process
N̄ → f̄ which produces the same population of antibaryons;

• transitions satisfying the criteria above have to be active in the expending Uni-
verse, i.e. with deviation from thermal equilibrium. Otherwise the thermal equi-
librium produces equal populations of particles and antiparticles.

In Grand Unified Theories (at scales of ∼ 1015÷16 GeV), or even in the Standard
Model at sufficiently high temperatures, there are baryon number-violating processes.
There is a class of theories [5] where the electroweak phase transition could have
dramatic consequences on any baryon asymmetry generated at higher temperature.
However, such theories must include CP violation from sources beyond the minimal
Standard Model. Indeed, calculations made in that model show that generated matter-
antimatter imbalance is not sufficient to produce the observed number of baryons to
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photon ratio (Equation 1.4). Since it is difficult to produce large enough BAU at the
electroweak scale, one expects other sources of CP violation at large scales. Thorough
studies of this phenomenon are therefore of a great interest.

1.1.3 Conservation of the discrete symmetries

Interaction between theory and experiment plays an essential role in all studies of
discrete symmetries C, P and T . The fundamental property of these symmetries is
described by CPT theorem [6], proposed by Lüders and Pauli in the early 50ties. Based
on a very general hypothesis of locality and causality, all field theories that respect the
Lorentz invariance are automatically invariant according to C ·P ·T transformation [7].
This leads to very important consequences. For example, the lifetimes and masses of
a particle and its antiparticle are equal. The experimental measurement of the mass
difference for a particle and its antiparticle confirms the conservation of the CPT
symmetry. As an illustration, some experimental mass differences are the following:

|me+ −me− | ≤ 0.02 eV, |mp −mp| ≤ 1 eV, |mK −mK | ≤ 3.6 10−10 eV (1.5)

The conservation of C parity in the strong interactions is verified by comparing the
angular distributions for the charged pions, for example in the reaction pp→ π+π−π0.
It was shown that C parity is conserved at the percent level. It is easier to check
the conservation of C parity in electromagnetic processes. For example the reaction
e+e− → µ+µ−π0 is forbidden if C is conserved. Since this decay is not observed,
one can set an upper limit at 5 × 10−6. The reaction p + F 19 → Ne20∗ → O16 + α
is forbidden if P is conserved. No such reaction is observed, which allows one to
make very precise tests of P parity conservation in strong interactions. This leads
to an upper limit of the order of 10−12. Thus, C and P symmetries are conserved
in the strong and electromagnetic interaction within experimental errors. Long time,
it was thought that all processes in particle physics are invariant according to these
transformations. However, as mentioned above, C has to be violated at some moment,
because the world is made of matter. The weak interactions play a very special role
in this context.

In 1957, Wu [8] has discovered the violation of P symmetry by studying the β
decays of the 60Co nucleus. Then another experiment confirmed the violation of P
and C symmetries in weak interactions. The pion decays π+ → µ+(−1)ν(−1) and
π− → µ−(+1)ν(+1) (number in parentheses show the helicity) are governed by weak
interaction since a neutrino is involved. The measurement of the muon helicity via the
angular distributions of electron produced in its decay, shows that both Charge Con-
jugation and Parity are violated in a maximal way. However, the CP transformation
where C and P applied consequently, seems to be conserved.

In 1964, Christenson, Cronin, Fitch and Turlay have discovered CP violation in
the system of neutral kaons [1]. For almost 36 years, the neutral K0 system has
remained the only system where this phenomenon has been experimentally observed.
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Further precision measurements of CP violation parameters, allowed us essentially
to rule out a number of models that enable to explain this phenomenon. Indeed,
only one model remained, the model of Kobayashi and Maskawa [9] based on 3 × 3
matrix of quark mixing. The study of CP violation in the system of B mesons was a
great interest, since the first confirmation of the interpretation of CP violation in the
Standard Model has been obtained. The first measurements of the Unitarity Triangle,
discussed below, allowed building a coherent picture between CP violation and the
weak decays of quarks.

1.2 The B0-B0 system

This section describes the quantum mechanics of a charge conjugated system of two
neutral mesons (for example, the B0 = d̄b is the antiparticle associated with the par-
ticle B0 = db̄). It is important to note that the formalism defined here is independent
on any theoretical model and particularly the Standard Model.

1.2.1 Mixing of neutral B mesons

In the early 50ties, in order to explain the phenomenon of associated production of
K0-mesons and Λ-baryons, Gell-mann proposed to introduce a new quantum num-
ber called Strangeness S associated with the kaon system. The Strangeness must be
conserved in strong and electromagnetic interactions (∆S = 0). Furthermore, one
can predict that K0 and K0 have to be mixed [10] since they have a common final
state π+π−. Thus, if a K0 propagates in space, it can oscillate into K0 and visa versa
via virtual intermediate states, where for these decays are |∆S| = 1. Consequently,
the suggestion was made that K0 and K0 are not the physical states, but instead
are superpositions of the mass eigenstates K1 and K2. Like the kaons, which have
an associated quantum number S, the neutral particle systems called the D0 and B0

mesons, have their own quantum numbers C (charm) and B (beauty), respectively.
There are two systems of neutral B mesons involving b quarks: Bd mesons consist

of one b̄-type antiquark and one d-quark. Bs mesons are made of one b̄ and one s. Let
us describe the B0-B0 system with a formalism which can be transfered to any other
system composed of a neutral particle and its antiparticle. As for the kaon system,
the B0 and B0 are not physical states. Therefore, the arbitrary state

ψ = a|B0〉 + b|B0〉 (1.6)

has to satisfy the Schrödinger equation

i
d

dt







a

b





 = H







a

b





 =
(

M − i
Γ

2

)







a

b





 . (1.7)
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M and Γ are 2×2 Hermitian matrices, called dispersive (due to process involving
intermediate virtual states) and absorptive (due to process involving intermediate
real states) parts of the transition amplitude from B0 and B0, respectively. The off-
diagonal elements in these matrices are important for the discussion of CP violation.
One can demonstrate [11] that imposing CPT invariance, one gets

H11 = H22, H12 = H∗
21 (1.8)

In order to obtain the mass eigenstates, the matrix H has to be diagonalized. The
eigenstates |BL〉 and |BH〉 can be written as

|BL〉 = p|B0〉 + q|B0〉 (1.9)

|BH〉 = p|B0〉 − q|B0〉 (1.10)

The complex coefficients p and q obey the normalization condition |q|2 + |p|2 = 1.
The eigenvalues λL and λH of the matrix H are obtained by solving the equation
Hv = λv. Assuming CPT invariance (Equation 1.8), they are

λL = H11 +
√

H12H21 = ML − i

2
ΓL (1.11)

λH = H11 −
√

H12H21 = MH − i

2
ΓH (1.12)

Thus, the eigenstates have well defined masses and widths

ML = M11 +Re

√

(

M12 − i
2
Γ12

)(

M∗
12 − i

2
Γ∗

12

)

MH = M11 −Re

√

(

M12 − i
2
Γ12

)(

M∗
12 − i

2
Γ∗

12

)

ΓL = Γ11 − 2Im

√

(

M12 − i
2
Γ12

)(

M∗
12 − i

2
Γ∗

12

)

ΓH = Γ11 + 2Im

√

(

M12 − i
2
Γ12

)(

M∗
12 − i

2
Γ∗

12

)

(1.13)

and hence

∆mB = MH −ML = −2Re

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

∆ΓB = ΓH − ΓL = 4Im

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

(1.14)

The ratio q/p can be expressed in the terms of the M , Γ- matrix elements:

q

p
=

√

√

√

√

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

= −∆mB − i
2
∆ΓB

2(M12 − i
2
Γ12)

(1.15)
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It is important to note that q/p is not an observable. Indeed, since the |B0〉 and
|B0〉 are only defined to a relative phase, one may change the convention by using
CP |B0〉 = eiα|B0〉 This is equivalent of using eiα|B0〉 for the B0 wave function. Thus,

q/p ≡
√

〈B0|H(∆B = 2)|B0〉/〈B0|H(∆B = 2)|B0〉 is not invariant since q/p becomes

eiαq/p. Therefore, only its modules can be measured.

1.2.2 Time evolution of B0 mesons

The lifetime difference of two Bd mesons is expected to be negligible ∆ΓB/ΓB ' 10−2.
It is rather safe and model independent assumption [12]. Indeed, an ideal mixing of
B0 and B0 is governed by the parameter xd defined as

xd = ∆mB/ΓB (1.16)

where ΓB = (ΓH +ΓL)/2. This was measured for the B0
d system to be xd = 0.73±0.05.

Thus, one obtains
∆ΓB << ∆mB (1.17)

For the further considerations in this report, the width Γ in B0-B0 system is assumed
to be the same for two mass states. Hence, the Equations 1.14, 1.15 can be simplified
at a precision O(10−2):

∆mB = 2|M12|, ∆ΓB = 2Re(M12Γ
∗
12)/|M12|, q/p = −|M12|/M12 (1.18)

One notes that the mass difference of two Bd mesons has been also measured directly

from the observation of the oscillation period between B0
d and Bd

0
to be ∆mBd

=
0.507 ± 0.005 ps−1 [13].

Starting with the time dependent equations for the physical states

|BL(t)〉 = e−(ΓL/2+imL)t|BL(0)〉, |BH(t)〉 = e−(ΓH/2+imH )t|BH(0)〉 (1.19)

let us examine the time evolution of B0 and B0, once they are created. Taking into
account Equation 1.17, one obtains

|B0
phys(t)〉 =

1

2
e−(im+Γ

2
)t[(ei∆mt/2 + e−i∆mt/2) |B0〉

+ (ei∆mt/2 − e−i∆mt/2)
q

p
|B0〉] (1.20)

|B0
phys(t)〉 =

1

2
e−(im+Γ

2
)t[(ei∆mt/2 − e−i∆mt/2)

p

q
|B0〉

+ (ei∆mt/2 + e−i∆mt/2) |B0〉] (1.21)

Here, the following notations have been used:

Γ = (ΓH + ΓL)/2, m = (mH +mL)/2, ∆m = mH −mL. (1.22)
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One can compute now the probability of the transition B0(t) → f for the pure state
B0 at time t = 0:

|〈f |H|B0
phys(t)〉|2 = e−Γt|Af |2| cos(∆mt/2) + iλ sin(∆mt/2)|2 (1.23)

= e−Γt|Af |2|
[

1

2
(1 + |λ|2) +

1

2
(1 − |λ|2) cos(∆mt) − Imλ sin(∆mt)]

The time evolution for the initial B0 can be obtained in a similar way:

|〈f |H|B0
phys(t)〉|2 = e−Γt|Āf |2| cos(∆mt/2) + i

1

λ
sin(∆mt/2)|2 (1.24)

= e−Γt|Āf |2|
[

1

2
(1 + |λ|2) − 1

2
(1 − |λ|2) cos(∆mt) + Imλ sin(∆mt)]

where

λ =
q

p

Āf

Af
(1.25)

and Af = 〈f |H|B0〉, Āf = 〈f |H|B0〉. Thus, the comparison of these transition prob-
abilities may exhibit CP violation.

1.3 Three types of CP violation

It is very important to note that manifestation of CP violation can be elaborated
without involving any particular theory. The CP violation effects can be classified in
the following three model independent ways:

1. Direct CP violation, which occurs in both charged and neutral decays. The
final state f can only originate from the flavor of the initial B, i.e. it is possible
to determine unambiguously the nature of the B. CP violation is observed, if
Pr(B → f) 6= Pr(B̄ → f̄)

2. CP violation in mixing, which occurs when two neutral mass eigenstates
are not CP eigenstates. CP violation due to the B0-B0 mixing is observed if
Pr(B0 → B0) 6= Pr(B0 → B0).

3. CP violation in the interference between decays with and without
mixing, which occurs in the decays into final states that are common for B0

and B0.

1.3.1 Direct CP violation

The interference of several decay amplitudes may result into CP -violating effects.
Let us assume two amplitudes A1 and A2 contribute to the decay B → f , where f
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is a particular final state. Two amplitudes Af and Āf̄ that correspond to two CP
conjugated processes can also be defined as

Af = 〈f |H|B〉, Āf̄ = 〈f̄ |H|B̄〉 (1.26)

If the probability of B → f process is not equal to the probability of B̄ → f̄ transition,
the CP violation occurs. This yields the following requirement independent of phase
conventions:

∣

∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

∣

6= 1 ⇒ Direct CP violation (1.27)

Taking into account that only the weak CKM phases φ1 and φ2 are modified by CP
transformation, the total amplitudes of two processes are

Af = A1 + A2 = |A1|eiφ1eiδ1 + |A2|eiφ2eiδ2

Āf̄ = Ā1 + Ā2 = |A1|e−iφ1eiδ1 + |A2|e−iφ2eiδ2 (1.28)

where δ1 and δ2 are the CP conserving phases due to the strong interactions in the
final state. Thus, the asymmetry of two CP conjugated processes is

af =
Pr(B → f) − Pr(B̄ → f̄)

Pr(B → f) + Pr(B̄ → f̄)

=
2|A1||A2| sin(φ1 − φ2) sin(δ1 − δ2)

|A1|2 + |A2|2 + 2|A1||A2| cos(φ1 − φ2) cos(δ1 − δ2)
(1.29)

This asymmetry is significantly different from zero if the following conditions are
satisfied:

• the magnitudes of the two amplitudes are of the same order, |A1| ' |A2|;

• the two amplitudes have different CKM phases, φ1 − φ2 6= 0;

• the two amplitudes have different strong phases, δ1 − δ2 6= 0.

1.3.2 CP violation in mixing

Another quantity (see Equation 1.15) that is independent of phase conventions is

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

∣

∣

∣

∣

∣

(1.30)

It implies
∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

6= 1 ⇒ CP violation in mixing (1.31)
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The B0-B0 mixing may exhibit an asymmetry in the transition B0 → B0 and B0 →
B0 In this case, one can write the asymmetry as

aCP =
Pr(B0 → B0) − Pr(B0 → B0)

Pr(B0 → B0) + Pr(B0 → B0)
=

|p
q
|2 − | q

p
|2

|p
q
|2 + | q

p
|2 (1.32)

Once B0-B0 pairs are produced, this asymmetry can be observed, for example, by
measuring the difference between the number of same sign positive leptons (B0B0 →
l+l+ +X) and negative leptons (B0B0 → l−l− +X). One notes that aCP asymmetry
is also an indication of T violation.

1.3.3 CP violation in interference

In the third type of CP violation, which occurs in the interference between decays
with and without mixing, the final states can be produced from both B0 and B0:

B0 → f, B0 → f

The condition above holds for several final states, but particularly for CP eigenstates:

CP |fCP 〉 = ηCP |fCP 〉,

where ηCP is the CP parity of the final state (ηCP = ±1). In this case, CP violation
can be observed by interplay between mixing and decays, e.g.:

B0

B0

f
A

A

M
ixing

The quantity of interest here is an invariant λ of Equation 1.25, that is independent
of phase conventions:

λCP ≡ q

p

ĀfCP

AfCP

= ηCP
q

p

Āf̄CP

AfCP

(1.33)

When both direct (Equation 1.27) and mixing (Equation 1.31) CP is conserved, the
relative phase between (q/p) and (ĀfCP

/AfCP
) becomes important. It implies

λCP 6= ±1 ⇒ CP violation in interference (1.34)

In this report, we assume the Standard Model prediction |q/p| ' 1. Indeed, the
magnitude of |q/p| − 1 is expected to be of the order of 10−3. Hence, one gets:

|〈fCP |H|B0〉| = |〈fCP |H|B0〉| (1.35)
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Thus, the time dependent asymmetry can be expressed using Equations 1.23, 1.24 as

afCP
(t) =

Pr(B0(t) → fCP ) − Pr(B0(t) → fCP )

Pr(B0(t) → fCP ) + Pr(B0(t) → fCP )

=
(1 − |λCP |2) cos ∆(mBt) − 2ImλCP sin(∆mBt)

1 + |λCP |2
(1.36)

This asymmetry will be significant if any of the three types of CP violation are
present. However, neglecting the direct CP violation |λCP | = 1, the equation above
can be considerably simplified:

afCP
(t) = −ImλCP sin ∆(mBt) (1.37)

One notes, it is possible that |q/p| = 1 and |λCP | = 1, i.e. there is no CP violation in
either mixing or decay, while the CP asymmetry in Equation 1.37 is non zero due to
ImλCP 6= 0.

1.4 Standard Model and CKM matrix

Non conservation of CP symmetry has been introduced in the Standard Model (SM)
in 1973 [9], by requiring three families of quark and lepton doublets
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(1.38)

Amongst other things, the remarkable success of the SM is demonstrated by the fact,
that the measured mass of the t quark (mt = 174.2 ± 3.3 GeV/c2 [13]) is consistent
with the SM prediction derived from the measured mass ratio of the Z and W bosons.
The introduction of the spontaneous SU(2) × U(1) symmetry breaking by the Higgs
mechanism [15] allows one to generate the mass of each fermion through a Yukawa
type coupling. Its interaction Lagrangian can be written as

LY ukawa = −
(

u′
L m u′

R + d
′

L

∼
m d′

R + h.c.
)

(

1 +
Φ0

v

)

, (1.39)

where Φ0 is the scalar field of the neutral Higgs and v is its value in the new vacuum.
The quark fields u′

L,R and d′
L,R are vectors in flavor space for the left- and right-

handed up- and down-type quarks, respectively,

u′
L,R =

1 ∓ γ5

2















u′

c′

t′















, d
′

L,R =
1 ∓ γ5

2















d′

s′

b′















, (1.40)
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m and
∼
m are 3×3 matrices of arbitrary complex numbers. Since m and

∼
m are

not diagonal, one needs to define the physical fermion fields uL,R = VL,Ru′
L,R and

dL,R =
∼

V L,R d′
L,R, where VL,R and

∼

V L,R are unitary matrices. The mass matrices in

Equation 1.39 are diagonalized in terms of these new fields with mD = VLmV †
R and

∼
mD =

∼

V L
∼
m

∼

V
†

R. The coupling to the charged W± introduces the mixing between
families, while the observed absence of the flavor changing neutral currents means
that the coupling of the physics quarks to the neutral Z preserves the flavor. Thus,
the interaction Lagrangian for the charged coupling is

L =
g√
2

(

uLγ
µW+

µ VdL + dLγ
µW+

µ V†uL

)

(1.41)

where V = VL

∼

V
†

L is a unitary matrix called Cabibbo-Kobayashi-Maskawa (CKM) or
quark-mixing matrix [9, 14]:

V =















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















. (1.42)

The elements of the CKM matrix are related to the mass of the fermions. There
were several attempts to explain this connection, but none is able to describe the
experimental data. Since there exists no obvious way to deduce the values of these
elements from theory, it is necessary to measure them in order to verify the predictions.

Let us see how the CKM matrix can be constructed and what are its properties.
Being unitary this matrix can be constructed from a product of rotation matrices.
The general expression of V can be deduced from n(n − 1)/2 mixing angles and
(n − 1)(n− 2)/2 phases, where n is the number of fermion families. It is interesting
to note that only with more than two families the elements of CKM matrix can be
complex. Therefore, only in this case CP violation can be generated through the
interference of two diagrams involving different matrix elements. In particular, three
mixing angles and a single phase are the fundamental parameters of the theory with
three families.

There exist many different parameterizations of the CKM matrix. The most fa-
mous parameterization was proposed by Wolfenstein [16] with parameters (λ,A, ρ, η):

V =















1 − λ2

2
λ Aλ3(ρ+ iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1















+ O(λ4), (1.43)

where η carries the CP violating phase information and λ = sin θC . The angle θC is
the Cabibbo angle (λ = 0.2205 ± 0.0018). This approximation is at the order of λ3,
which is good enough at the present experimental sensitivity.
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The unitarity of the CKM matrix leads to six independent relations, which imply
the sum of three complex quantities to be equal zero. Each of them can be geometri-
cally presented in the complex plane as a triangle. Knowing the experimental values
for the various |Vij|, only one

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.44)

has 3 sides of the same order. This triangle is commonly called the “Unitarity Tri-
angle”. Figure 1.1 shows the rescaled Unitarity Triangle (UT) derived from Equa-
tion 1.44 choosing a phase convention with VcdV

∗
cb being real and dividing the length

of all sides by |VcdV
∗
cb|. Thus, two vertices of the triangle are fixed at (0,0) and (1,0)

while the remaining vertex is placed at (ρ, η). Three angles of the UT are denoted
by α(φ2), β(φ1) and γ(φ3). They can be expressed via matrix elements of the CKM
matrix as

α(φ2) ≡ arg
[

− VtdV
∗
tb

VudV ∗
ub

]

, β(φ1) ≡ arg
[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ(φ3) ≡ arg
[

−VudV
∗
ub

VcdV ∗
cb

]

. (1.45)

These physical quantities can be extracted from the measurement of CP asymmetry
in the different B decay modes. The consistency of various measurements provide
tests of the SM.

+B0
d

J/ψB0
d Ks

0

+

Ks
0

η

ρ

B(0,1)

A(  )ρ,η

C(0,0)

_
 

ubud

cd cb

V V
V

*

V*
VV

V V

*
tbtd 

cd cb*

  

π  π  , ρ  ρ
_

φ,(*) (*)
  D   K     , D Bd

(*)π

γ(φ )

α(φ )

β(φ )3 1

2

Figure 1.1: The unitarity triangle. Some B decay modes, which allow one to measure
the angles are shown.
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In order to estimate the feasibility to measure the three angles, it is useful for
experimentalists to know what might be their potential values. Using the experimental
results of CP violation in the neutral K0 system (εK), neutral B-meson mixing (|Vtd|,
|Vts|), and CKM matrix elements form semileptonic decays (|Vub|, |Vcb|), the region of
the apex of the UT can be constrained in the imaginary plane. Figure 1.2 illustrates
the allowed region of (ρ, η) constrained from the experimental results in 1999, i.e.
before commissioning of the B-Factories. The predicted values for the unitarity angles
are [11]:

−0.6 ≤ sin 2α ≤ 0.9, 0.45 ≤ sin 2β ≤ 0.82, −0.60 ≤ sin 2γ ≤ 1 (1.46)

0.06<|Vub/Vcb|<0.10

χs>18.2

0.701<χd<0.766 with 157 MeV<fBBB
1/2<257 MeV

|εK| with 0.71<BK<0.99

ρ

η

βγ

α

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

Figure 1.2: Experimental constraints of the unitarity triangle before observation of CP
violation in the B0 system.
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1.5 The BABAR experiment

The primary goal of the BABAR experiment is a systematic study of CP violation in
the decays of B mesons. The experimental program of this experiment implies the
answers to the following questions:

1. does the CP violation phenomenon exist in the B meson system?

2. can we describe this phenomenon by the parameters of the CKM matrix in
the SM? In particular, will high precision measurements of the CKM matrix
elements coincide with the parameters of the UT?

3. are any signatures of the New Physics (NP) beyond the SM in the rare decays
of the B mesons?

Since CP violating effects in the B system are large enough, a relatively small sample
of events allows one to perform significant measurement. Unfortunately, the decay
channels which are interesting for CP violation have very small branching fractions
(of the order of 10−4 or less). Therefore, a large sample of B’s (about 107) is neces-
sary to perform these measurements. Thus, the accelerator luminosity must be a few
1033 cm−2 s−1, which has been realized in the last generation of B-factories [17, 18].

Observation of CP violation in B0
d −B0

d system has been reported in 2001 [19, 20].
Measurement of sin 2β quantity exploited the decays of B mesons to charmonium
final state such as B0

d → J/ψK0
S

. Since this great discovery BABAR and BELLE
performed precision tests of the SM by measuring the angles and the sides of the UT.

1.5.1 Facility

The Υ (4S) resonance produced in e+e− collisions is a very good laboratory for study-
ing B mesons. Although the cross section σ(e+e− →Υ (4S))=1.1 nb (Figure 1.3) is
not so large, the Υ (4S) mass is just above the BB̄ threshold, so it is the cleanest
source of BB̄ pairs. It consists of about 50% of B+ B− and 50% of B0

dB
0
d. It is also

important to say that no other particles are produced which allows one to get a good
tagging efficiency. Due to the limited phase space, the B mesons from Υ (4S) → BB̄
decay are produced almost at rest in the center of mass frame. Thanks to the asym-
metry in the beam energies, the B mesons are boosted with a significant momentum
in the laboratory frame. This enables the measurement of the time-dependent CP
asymmetry in the decays of neutral B mesons.

The accelerator complex PEP-II used by the BABAR experiment is located at the
Stanford Linear Accelerator Center (SLAC). PEP-II [21, 22] is an e+e− storage ring
system designed to produce a luminosity of at least 3×1033 cm−2 s−1. It operates at a
center of mass energy corresponding to the Υ (4S) resonance at

√
s = 10.58 GeV since

1999. PEP-II consists of a High Energy Ring (HER) for electrons and a Low Energy
Ring (LER) for positrons. The asymmetric energies of 9 GeV for the electron and of
3.1 GeV for the positron beam provide a boost in the laboratory frame of βγ=0.56.



1.5. The BABAR experiment 19

Figure 1.3: Hadronic cross section in the Υ region.

1.5.2 Method

In e+e− collisions at the Υ (4S) energy (the quantum numbers of this resonance are
JPC = 1−−) BB̄ pairs are produced in a coherent L = 1 state. For the neutral
B’s that means that at any time there is always exactly one B0 and one B0 until
one of them decays. Thus, only at that time the nature of the second meson (B0

or B0) is defined. However, if one of the particles decays, the other continues to
evolve due to B0-B0 mixing, and therefore events with two B0 or two B0 decays may
happen. Thus, one should consider the BB̄ system as a whole instead of individual B
mesons. Since the wave function of the BB̄ pair is antisymmetric, the time-dependent
asymmetry as defined in Equation 1.36 is governed by the time between the two B
decays ∆t = t2−t1. Thus, the reference time (t0) is not the Υ (4S) decay time anymore,
but the time at which one of the B mesons is identified. The consequence of this is
that it is mandatory to measure ∆t if one wants to use the interference between B
decays with and without B0-B0 mixing for CP violation search.

The time between two B decays has to be measured as the flight distance of the
B meson using L = βγct. Assuming that the Υ (4S) resonance is produced with a
boost βγ, the distance ∆z can be expressed as

∆z = βγcτ
[

t2 − t1
τ

]

+ γβcmcτ cos θ∗B

[

t2 + t1
τ

]

, (1.47)

where βγ is the boost of the Υ (4S), cτ is the average flight distance of a B meson and
βcm is its velocity in the Υ (4S) center of mass (βcm '0.07), θ∗B is the angle between B
meson produced in the Υ (4S) rest frame with respect to the beam direction. For most
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studies the last term in Equation 1.47 can be neglected. Thus, assuming βγ '0.56,
one obtains βγcτ ≈250µm, which is measurable with today’s technique.

Besides the measurement of ∆z, the flavor of the B0 at time t = t0 has to be
determined. There are several techniques for tagging the initial flavor of a B meson.
They are based on the determination of the charge of the b quark. The most useful
methods are tagging using leptons and kaons.

• The Lepton Tagging. The charge of the b quark in the decays b → clν can
be deduced from the charge of the lepton. Since the total inclusive branching
fraction (B(B → Xceνe)+B(B → Xcµνµ)) is about 20%, this is very attractive.

• The Kaon Tagging. In the direct cascade b → c→ s, the charge of the s quark
is the same as the charge of b, and therefore, if the s quark produces a charged
kaon, its charge should have the same sign as the charge of the initial b.

To conclude, measurements of CP violation require the ability to tag the quark
content of one of the B mesons, and to reconstruct exclusively the second B decay,
and to measure the time between these two B decays.
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Chapter 2

BABAR Magnetic Field Map

This chapter describes my scientific activity for the magnet system of the BABAR

experiment, where I am collaborating since 1995. The first part gives a brief overview
of the BABAR detector with emphasis to the central tracker. Then, I describe in
details the magnet system and the field requirements. The main part of this chapter
presents the results of the field computation and the field mapping of the central
tracking volume of BABAR. The magnetic field calculations have been performed in the
period 1996-1998, while the major work for the mapping of the BABAR solenoid took
place in spring 1998 at SLAC. The results of this work are described in Appendix A
and [23, 24].

2.1 The BABAR detector

The BABAR detector (Figures 2.1, 2.2) [25] measures the charged particles by a com-
bination of a five-layer (double-sided) silicon vertex tracker (SVT), which provides
the measurements of the impact parameters and the track angles, and of a 40-layer
central drift chamber (DCH) used for the measurements of the track momentum and
its energy loss. The tracking system is embedded in a 1.5 T solenoidal field produced
by a superconducting magnetic coil and provides good momentum resolution. The
DCH is surrounded by the Detector of Internally Reflected Cherenkov Light (DIRC).
It consists of 12 sectors of quartz bars readout by a matrix of about 11000 photo-
tubes arranged on the internal surface of a water tank. The electromagnetic showers
are measured by the Electromagnetic Calorimeter (EMC) composed of CsI(Tl) crys-
tals. The Instrumented Flux Return (IFR) with resistive plate chambers provides
the identification of the muons and neutral hadrons. Charged hadrons are identified
using the ionization energy loss (dE/dx) measured in the DCH and SVT, and the
Cherenkov radiation detected in the DIRC.
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Figure 2.1: The BABAR Detector (side view).

2.1.1 Central tracker

The tracking system of the BABAR detector consisting of the central drift chamber
and the vertex tracker is arranged inside a magnetic field of 1.5 T produced by a
superconducting magnet. It provides a typical momentum resolution of

δpT/pT = (0.13 ± 0.01)% · pT + (0.45 ± 0.03)%, (2.1)

where pT is given in GeV/c.
The SVT provides the required vertex resolution for the measurement of the CP vi-

olation and other decay-time-dependent measurements. In addition, when the charged
particles have a low transverse momentum (pT < 120 MeV/c) and cannot be measured
by the central drift chamber, the SVT is capable to act as an independent tracker.

The SVT design has been studied in order to minimize the multiple scattering.
It takes into account the physical constraints imposed by the PEP-II geometry, such
as the presence of the permanent magnets nearby the interaction point, which are
necessary to separate the beams shortly after the interaction point. The polar angle
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Figure 2.2: The BABAR Detector (front view).

acceptance is −0.87 < cos θlab < 0.96 (−0.95 < cos θcm < 0.87) and is limited by
the beamline elements. The SVT consists of five double-sided layers of silicon de-
tectors assembled on carbon fiber support cones. The first three layers provide the
tracking resolution while the last two are necessary to measure the low momentum
tracks independently from the drift chamber information. The single hit resolution
in azimuthal and longitudinal planes depends on the angle of incidence of the tracks
and varies from 20 to 40µm. The achieved average hit reconstruction efficiency is
above 98%. The SVT precision determines the impact parameter resolution for the
measurement of high transverse momentum tracks, where the distance between two
vertices is reconstructed with a resolution of about 50µm. Two B decay vertices are
separated with a typical accuracy of 110µm. A detailed description of the SVT and
its components can be found in [26].

The main purpose of the DCH is the precise and efficient measurement of charged
particle parameters such as momenta and angles, for particles with transverse mo-
menta pT above about 120 MeV/c. The DCH complements the information about the
impact parameter and the direction of the track measured by the SVT. The recon-
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struction of decay vertices, for example K0
S
, outside of the SVT requires, in addition

to the transverse momenta and position, the measurement of the longitudinal position
with an accuracy of about 1 mm. The DCH has also to provide the particle identifi-
cation at relatively low momenta by measuring the ionization loss (dE/dx) and has
to supply information for the charged particle trigger.

The DCH has an outer radius of 809 mm and a length of 2800 mm. The interaction
point is shifted by 367 mm relatively to the center of the chamber, in order to im-
prove the forward acceptance, given the boost for the Υ (4S) events. The acceptance
of the DCH covers the polar angle range −0.92 < cos θlab < 0.96. Forty layers of small
hexagonal cells provide spatial and amplitude measurements. The longitudinal posi-
tion is measured by placing the wires in 24 layers at a small angle with respect to the
z-axis. The design of the drift chamber has been studied to minimize the amount of
material in front of the calorimeter. By choosing low-mass aluminum field wires and
helium based gas (80%He+20%C4H10) the material thickness is less than 0.2%X0.
The DCH provides an average single point resolution of 125µm.

2.2 Magnet system

The BABAR magnet system provides the magnetic field which enables charged particle
momentum measurement, serves as a hadron absorber for hadron/muon separation
and provide the overall structure and support for the detector components. To provide
a designed momentum resolution for the charged tracks, the magnetic field mapping
and subsequent corrections have to be determined in the tracking volume to a preci-
sion of 2 G.

2.2.1 Field requirements

The BABAR magnet system consists of a superconducting solenoid, a segmented flux
return and a field compensating or bucking coil. Detector performance criteria and
geometry considerations drive the design of the solenoid and the flux return. The
magnitude, uniformity and map precision specifications for the magnetic field are
derived from drift chamber track finding and momentum resolution requirements.
Studies of B0 → π+π− show that a magnetic field of 1.5 T is necessary to achieve a
mass resolution of about 20 MeV/c2. A field uniformity in the tracking volume is an
important parameter of the detector magnet system. To simplify track finding and fast
and accurate track fitting, the magnitude of the magnetic field within the tracking
volume is required to be uniform within a few percent. To meet the momentum
resolution of the drift chamber (see Equation 2.1) it is sufficient that the random
errors in the field determination are about a tenth of a percent, i.e. of about 15 G.
However, the systematic errors (correlated from point to point) can lead to momentum
uncertainty significantly larger than the statistical error. Simulation studies show that
such a systematic precision has to be as good as 2 G.
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To produce the high luminosity of PEP-II, high beam currents and a large number
of closely spaced beam bunches are required. The bunches are separated magnetically
in the horizontal plane by a pair of dipoles (B1) and a series of offset quadrupoles
(Q1, Q2, Q4 and Q5), as shown in Figure 2.1. The BABAR magnet was designed to
minimize disturbance of operation of the PEP-II beam elements.

The samarium-cobalt B1 dipole and Q1 quadrupole magnets are located inside the
solenoid. Although these magnets can maintain the high longitudinal field of 1.5 T ,
they can not tolerate a large radial component Br. Assuming linear dependence of
Br on r, the radial field can not exceed 0.25 T at r = 200 mm. Otherwise, their field
properties are degraded due to partial demagnetization. The conventional iron Q2,
Q4 and Q5 quadrupole magnets are placed outside the field of the BABAR solenoid.
Consequently, they are exposed to the solenoidal stray fields. The Q2 quadrupole is
situated within the forward end of the instrumented end door flux return. Since it is
most acted by the solenoid fringe field, a skew octupole moment is induced resulting
from the magnetic field in its vicinity. The luminosity is critically dependent upon
the Q2 field quality. Hence, an adequate shielding of the BABAR central field becomes
important to ensure the quality of the quadrupole field.

2.2.2 Magnet coils

The BABAR magnet is a thin superconducting solenoid within a hexagonal barrel flux
return (Figure 2.2). The magnetic field of 1.5 T is obtained by injecting a constant
current of 4596 A in the solenoid. The conductor is operated at 45% of the critical
current, with a peak field in the conductor of 2.5 T . This gives a large safety margin.

The combined thickness of the vertex detector, drift chamber, particle identifica-
tion system, electromagnetic calorimeter, and appropriate clearances set the solenoid
diameter to be 3060 mm. Solenoid length of 3513 mm is also determined by the length
of the nested subsystems. The designed thickness of 350 mm limits the momentum
threshold for detecting muons and the efficiency of K0

L
detection within the instru-

mented flux return.
Magnetic uniformity is achieved by increasing the current density in regions at

both ends of the solenoid. This is done by adding more aluminum stabilizer to the
central region conductor, which reduces the current density there. To optimize the
detector acceptance due to unequal beam energies, the center of the BABAR detector
is offset by the 367 mm in the electron beam direction with respect to the Interaction
Point (IP). As a result of the symmetry of the solenoid and this offset the designed
field uniformity in the region of the drift chamber is within a few percents.

As it will be described in Section 4.2.1, to reduce the stray field to an acceptable
level for the DIRC photomultipliers and the PEP-II quadrupoles, a bucking coil,
mounted at the face of the backward door and surrounding the DIRC strong support
tube, is designed. To optimally control the fringe fields and avoid a magnetization of
the DIRC magnetic shield, the currents in the solenoid and bucking coil are ramped
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together. Although the optimal operating current is 200 A, a current of up to 575 A
is reachable to demagnetize the DIRC shield (see Section 4.2.6).

2.2.3 Flux return

The flux return assembly supports the detector components on the inside and provides
an external flux path for the 1.5 T magnetic field of the superconducting solenoid.
It consists of the barrel and the end doors which are connected by a structural steel
and filler plates. A room for cables and utilities from the inner detector is reserved in
this interface. Subsequently, separation and movement of the end doors are required
by beam line components and by the need to provide ready access to inner detectors.

The segmented geometry of the flux return allows tracking of muons and provides
for detection ofK0

L
mesons. The total thickness of the steel layers in the barrel and end

door is determined both by the minimum steel required to avoid magnetic saturation
and by the need for sufficient thickness to ensure that most of the pions interact
in the steel. The minimal steel thickness to prevent pion punch-through is 550 mm
(∼3.6 interaction lengths). Plate segmentation and thicknesses are specified both for
efficient identification of K0

L
mesons and for distinguishing muons from pions based

on range measurements.

2.3 Magnetic field map

The goal of the magnetic field mapping and subsequent corrections is to determine
the magnetic field in the tracking volume to a precision of 2 G.

2.3.1 Field computations

Extensive calculations of the magnetic field were performed to develop the detailed
design of the flux return, solenoid coil, and the bucking coil. The fields were modeled in
great detail in two and three dimensions. Although most of the basic design work was
performed in two dimensions, several three dimensional calculations were necessary
to assure the accuracy of the model. These studies have been performed using a
commercial software [27].

Great demands are placed on the detector design by the magnetic forces. There
are three kinds of such forces:

• symmetric magnetic force on the end doors;

• axial force on the solenoid due to the forward-backward asymmetry of the steel;

• superconducting coil quench induced forces.
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These forces were analyzed for the components such as endplates of the DCH and the
EMC and were found not to be a problem [23].

Calculations of the leakage of field into the PEP-II magnets, the impact of that
leakage on the multipole purity, and the shield design of the quadrupoles have been
performed with two and three dimensional models of the quadrupoles [23, 28].

Three-dimensional studies were made to examine the effects of the different non-
axisymmetric aspects of the detector iron. These φ asymmetric elements in the doors
and barrel iron are:

1. holes for cable access, rails, and lead screws of the plug removal mechanism;

2. vertically running channels for services to the liquid helium cryostat;

3. iron spacers along the door boundaries and interior parts for the RPC detectors;

4. warped shape of one of the front doors as a manufacture effect;

5. vertically running channels at the top half of the front doors;

6. hexagonal shape of the barrel iron;

7. access slots for cables in each hexagonal side of the barrel iron.

Before starting detailed three-dimensional calculations of BABAR, a thorough com-
parison between two- and three-dimensional axisymmetrical models has been per-
formed. This comparison gave a comforting assurance of the model consistency in
the regions of interest. The maximal difference is about 5 G in front of the edge of
Q2, where the gradient of the field is also maximal. In the other regions such as the
central tracking volume and the region of DIRC photomultipliers the consistence is
better than 1 G. It was verified that the difference between the two models becomes
smaller with condensation of the mesh.

Due to the complexity of the BABAR design, two three-dimensional models are
considered, one with left-right symmetry and another with top-bottom symmetry.
Each φ asymmetric element has been included at least in one of the model. These
models were used to compute the field in the central tracking volume and the region
of the DIRC photomultipliers (see Section 4.2.2).

2.3.2 Apparatus and data set

A filed mapping device was built specifically for the BABAR magnet based on a design
concept developed at Fermilab [29]. It consists of a transport mechanism that could
move a set of Hall probes throughout the inside volume of the solenoid. This mech-
anism consists of a long spindle with a rotating inner shaft held inside a pipe. One
end of the pipe is rigidly attached to a cart on wheels. The cart moved on precision
rails along the spindle axis such that the spindle could travel through the central hole
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of the front end plate. This allowed the tip of the spindle to be positioned anywhere
along the axis inside the solenoid when the end plate doors are closed. The magnetic
probes were mounted on a narrow plate (propeller) at right angles to the rotating
shaft at the tip end.

Measurements were obtained from five sets of Bz, and Br and two Bφ Hall probes.
These probes were equally spaced along a radial direction, each having the same φ.
Each pair of high accuracy Bz and Br probes were encapsulated together in one unit,
while the less accurate Bφ probe was an individual unit. In addition to the Hall probes,
one NMR probe was placed at a fixed radius of 89 mm and a φ value of 180◦ away
from the other probes. It provides a very precise field reference near the z-axis as a
function of z for |z| < 1 m (z = 0 at the magnet center). The NMR measurements
set the absolute scale of the magnetic field. The probes were mounted rigidly on a
separate plate that was attached at the propeller plate. The z coordinate of the probes
was controlled by the cart position on the rails, the φ coordinate by the rotation of
the spindle shaft, and the r coordinate by the placement of the probe plate along
the propeller arm. The z and φ placement was done under computer control. The
probe plate could be manually installed to one of three radial positions. The radial
placement of the probe plate and the nominal coordinates of each probe on the plate
are shown in Figure 2.3.

Knowing the placement and the alignment of the probes is crucial for measuring
the magnetic field. For example, a 1 mrad rotation of a Br probe in the (r, z) plane
results in an error of 15 G in that probe from the 1.5 T Bz field. Precision optical
alignment tools were used to determine the position and orientation of the sensors
transverse to the z-axis. These alignment corrections were attributed both to the
probe coordinates as well as the probe field measurements.

The data sets were taken at field settings of 1.5 T and 1.0 T . As a cross check,
data sets at the nominal field of 1.5T and two outermost positions of the propeller
were repeated. Control measurements were made at a standard reference point at
z = 0 and φ = 0 between each grid movements in z. This provides a quality check of
the data.

Measurements ranged from -1.8 m to +1.8 m in intervals of 0.1 m in z, and in 15◦

azimuthal steps from 0◦ to 345◦ for each of three different radial positions of the
Hall probe plate. At each z − φ grid point, the field readings from the 13 probes
(5−Bz, 5−Br, 2−Bφ, and 1−NMR) were recorded, together with the coil current
and environmental temperatures. A data set consists of a full range over the z grid
points, and a full range of the 24 φ-grid points at each z setting and three different
radial positions of the Hall probe plate. This sums to 46320 points of the full field
map used in the fit model.



2.3. Magnetic field map 29

#2 z,r

#4 z,r
#1

#2
#5 z,r

φ

φ

#1 z,r

#3 z,r
#2 z,r

#4 z,r
#1

#2
#5 z,r

φ

φ

#1 z,r

#3 z,r

#2 z,r

#4 z,r
#1

#2
#5 z,r

φ

φ

#1 z,r

#3 z,r

NMR NMR NMR

Pos.1
Pos.2

Pos.3

890mm

130mm

280mm

655mm

1255mm

Figure 2.3: The nominal radial coordinates of the Bz, Br and Bφ Hall probes at each
of three positions of the probe plate. The NMR probe is fixed to the spindle away from
the other probes at a fixed radius as described in the text.

2.3.3 Field model and data fitting

The magnetic field in a source-free region can be described by a scalar magnetic
potential ψ satisfying the Laplace equation

52ψ = 0 (2.2)

The solution of this equation expressed in cylindrical coordinates, ψ(z, r, φ) appli-
cable to the inner volume of a solenoid is a linear combination of the terms containing
trigonometric, hyperbolic, and Bessel (In or Jn) functions. The magnetic fields is given

by the gradient of the magnetic scalar potential, ~B = −5 ψ.

Polynomial field functions

The φ-symmetric field functions derived from the φ-symmetric Laplace potential func-
tion are written as
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Bz(z, r) =
∑

i

(si cos(kiz) − ci sin(kiz))I0(kir)

Br(z, r) =
∑

i

(si sin(kiz) + ci cos(kiz))I1(kir)

Bφ(z, r) = 0 (2.3)

These equations can be used to fit measured Bz, Br, Bφ field values by choosing
appropriate values for the k variables and fitting for the c and s coefficients. However,
since the k values are arbitrary, it is difficult to pick an appropriate set that would
minimize the number of terms required to fit the data.

An alternate method uses a set of polynomials to fit the data. Polynomials may
be derived from the above set of equations by expanding each trigonometric or Bessel
term into a series, collecting terms of equal rank, and replacing the resulting factors
∑

sik
n
i and

∑

cik
n
i by new fitting parameters Pn. Then, one can fit these parameters

for as many terms as required to describe the data to a certain level of accuracy.
The series expansion of the φ-symmetric Laplace field functions gives the following
polynomial field functions, shown for terms up to order n

BZ(z, r) =
n

∑

i=0

Pi(i!)(−1)
i+1
2

i
∑

k=0(2)

(−1)k/2zi−krk

(i− k)!2k((k/2)!)2

BR(z, r) =
n

∑

i=1

Pi(i!)(−1)
i+1
2

i
∑

k=1(2)

(−1)k/2zi−krk

(i− k)!2k((k/2)!)((k + 1)/2)!

Bφ(z, r) = 0 (2.4)

The (i+1)/2, k/2, and (k+1)/2 terms must be truncated to whole integers in the
above expressions, and the k-summation is stepped by 2. Note, the same Pi fitting
parameters appear in Bz and Br in order to satisfy Maxwell’s equations, since both
equations are derived from the same magnetic potential. As we demonstrate later,
the fit was improved by using terms up to P40.

Angular dependent fields

Since the BABAR magnet iron is not φ symmetric it is required that φ dependent
field terms be added to the fitting model. According to the presence of φ asymmetric
elements described in Section 2.3.1, the following functional terms were added to the
field model:

• A magnetic dipole term oriented along the Z-axis at each hole on the end plate
gives an approximate representation of the field from the missing magnetized
iron.
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• For extended objects such as the linear RPC spacers, a rectangular shaped pole
was used instead. A rectangular pole is achieved by placing a rectangular loop
of current in the plane of the end plate that circumvents the object, giving a
pole pointing along the Z-axis over the length of the rectangle.

• The asymmetry due to the warped doors can be modeled in part by an annular
dipole of varying width along its circumference. An annular dipole consists of
two current loops in the plane of the end plate having opposite currents and
origins slightly displaced from each other.

• The barrel iron surrounding the solenoid coil is in the shape of a hexagon, so a
field component with six-fold symmetry in φ would be expected at large radii.
This six-fold asymmetry can be modeled with a few trigonometric-Bessel terms
(with n = 6) added to the fitting model. It was also found necessary to include
trigonometric-Bessel terms with n = 2 and n = 1. The source for these fields
is not precisely known, but a slightly flattened hexagonal barrel would give an
n = 2 component, while a slightly off-centered component (coil or iron) could
give an n = 1 component.

Data fitting

A non-linear least squares fitting program was used to fit the model to the measured
data. Assumed errors of measurement for data points within the tracking volume are
presented in Table 2.1.

Probe Precision

NMR 0.1 G

Bz Hall 1.0 G

Br Hall 1.0 G

Bφ Hall 3.0 G

Table 2.1: Precision of probes used in the field mapping.

Fits were done with a varying number of polynomial terms to establish the mini-
mum order. The χ2 per degree of freedom decreases with the number of polynomial
terms below 40 terms. Forty terms were used in the final fits. The final configuration
includes 80 floating parameters summarized in Table 2.2.



32 Chapter 2. BABAR Magnetic Field Map

Number of parameters Type of term

4 Magnetic axis terms (X0, Y0, θXZ , θY Z)

40 Polynomial strength

1 Bessel (n=1)

2 Bessel (n=2)

3 Bessel (n=6)

9 Dipole, (22 total)

14 Rectangular pole, (20 total)

7 Annular pole

Table 2.2: Fitting parameters used in the filed model.

2.3.4 Results

A resulting χ2 per degree of freedom of 2.89 is found in the final fit. This implies that
the product of two effects: the model is not yet complete, and the assumed errors
are too small, deteriorate the obtained χ2. We increase all the measuring errors by a
factor of 1.7. This allows us to obtain the ideal fit with a χ2 per degree of freedom of
1.0. We find the root mean square of the residuals to be 1.7 G for points within the
tracking fiducial volume and 4.8 G for all the measured points. In the tracking region
the field is very uniform, the measured Bφ component is about 10 G. As a result, the
variation of the field transverse to the trajectory, along the path of a high momentum
track is at most 2.5% from maximum to minimum within the tracking volume [25].

Figure 2.4 shows the results of the measurements and two dimensional calculations
of Bz component at r = 805 mm which is outer radius of the DCH. The agreement is
at that level of 10 G. Figure 2.5 presents the variation of Br with φ. Three dimensional
Mermaid calculations allow us to estimate the major effects and to predict the angular
behavior of the field. The bumps at φ = 90◦ and 270◦ can be associated with the
vertical chimney cut-out in the BABAR doors. One sees, the simulation reproduces
very well the shape of the field, while its magnitude is slightly shifted. We have also
observed about 15 G variation of Br component at z = 0 due to the magnetic axis
being tilted with respect to the geometrical axis of the BABAR yoke. One can estimate
an angle between these two axes of about 1 mrad. Note that this effect has not been
taken into account in the Mermaid calculations. This explains the difference of the
field magnitude in data and simulation.

It is important to note that, during the mapping process, the permanent magnet
dipoles (B1) and quadrupoles (Q1) were not installed yet. Their presence inside the
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solenoid leads to field perturbations. One source of such perturbations is the fringe
fields of the B1 and Q1 permanent magnets and the dipole and quadrupole trim coils
mounted on Q1. The fields associated with the trim coils were measured and param-
eterized before the installation. Another source of field perturbation is due to the
permeability of the permanent magnet material which ranges from 1.11 to 1.13 in the
z direction. The NMR (Hall) probes were installed between the forward (backward)
B1 and Q1 to measure the effect of the permeability. The induced magnetization in-
creases the Bz by about 90 G at the IP and decreases slowly with increasing radius.
These perturbations were included in the BABAR field model.

2.4 Conclusion

Since its successful commissioning, the magnet system has been operated without
problems. The magnetic field within the BABAR super conducting solenoid (3.8 m
long by 3 m diameter, at a field of 1.5 T ) has been measured with a set of Hall
probes mounted on the specially built field mapping device. The measurements were
fit to a functional model which contains polynomial terms to order 40 for the Bz and
Br field components, a few trigonometric-Bessel terms having one-, two-, and six-fold
φ symmetry, and 24 dipole terms positioned on the end plates to describe the non-
uniform iron distribution of these plates. The measurements and the model agree to
1.7 G (rms) within the BABAR tracking volume, and to 4.8 G in the fully mapped
volume (−1.8 < z < 1.8 m, r < 1.3 m). In the tracking region, the magnetic field
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meets the specifications, both in magnitude and uniformity. Predictions of the fields
in the BABAR magnet were made using the Mermaid computer program. Comparisons
of the measurements with the predictions gave comforting assurance that there were
no significant errors in the measurements.
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Chapter 3

Particle Identification System ATC

Powerful particle identification for hadrons and leptons over a large range of solid
angle and momentum is an essential requirement to meet the physics objectives of
BABAR. This chapter presents my contribution to the research and development of the
forward particle identification system based on Aerogel Threshold Counters (ATC)
for the BABAR experiment in the period of the detector design [30]. I summarize
the results obtained with the prototypes of the 4-layer design of the ATC system
developed by the Novosibirsk group, where I was working at that time. This work has
been done in collaboration with A. Buzykaev and E. Kravchenko. The other design
versions of the ATC system proposed by LAPP and INFN groups were tested together
with 4-layer option at the same test beam setup. The common papers with the results
of this experiment were published in Ref.[31].

First, I briefly overview the project of the particle identification system in BABAR.
The main part of this chapter is devoted the test beam results with prototypes of the
forward particle identification system. These counters have been tested with the PS
T10 beam line at CERN in 1995. Research and development of threshold Cherenkov
counters which include analysis of the test beam data for the 4-layer option of the
ATC system, study of aerogel and light reflector properties have been a significant
part of my research in 1995-1997 (Appendix B).

3.1 Particle identification overview

As described above (Section 1.5), the study of CP violation requires particle identi-
fication, both to reconstruct exclusive final states and to tag the flavor of the other
B in the event. Information from the drift chamber, electromagnetic calorimeter, and
muon chambers allow us to identify most of the leptons and many of the hadrons.
However, this information is not sufficient to discriminate charged pions and kaons
with momenta above 0.7 GeV/c, or protons from pions and kaons above 1.3 GeV/c. The
maximal momenta of the kaons used for the tagging of B via decay cascade b→ c→ s
are about 2 GeV/c. In contrast, the pions and kaons from the rare two-body decays
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B0 → π+π−, K+π− have momenta between 1.7 and 4.2 GeV/c.

Figure 3.1: Project of the particle identification system for the BABAR experiment. It
consists of the barrel DIRCand forward ATC systems [30].

To meet these requirements a system containing two types of Cherenkov detectors
has been designed for BABAR [30]. The barrel region (25.5◦ < θ < 147◦) is covered
by a DIRC [32], which provides good performance over the whole momentum range
while occupying only a thin radial region. An ATC covers the forward region (17.1◦ <
θ < 23.6◦) enlarging the kaon tagging acceptance and providing π/K separation up
to 4.3 GeV/c. Figure 3.1 shows the layout of the main components of the particle
identification system designed for BABAR. The boundary between the systems was
chosen to maximize the acceptance for particle identification within the constraints
of magnet length and calorimeter position and angle. Both systems maintain low mass
in order to minimize a deterioration of energy resolution of photons detected in the
EMC.

3.2 The Aerogel Threshold Counters

The forward PID detector is a silica aerogel Cherenkov counter covering the polar
angle range 17.1◦ < θ < 23.6◦. Both kaon tagging and pion identification are achieved
with two refractive indices, n ' 1.0065 (low) and n ' 1.05 (high).
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There are two key components in the ATC system: the aerogel radiator and the
readout device. Aerogel with good optical quality is produced by Airglass, Jet Propul-
sion Laboratory (JPL), and the Boreskov Catalysis Institute at Novosibirsk [33].

In order to collect Cherenkov photons efficiently inside the solenoid, the photon
detector must work in magnetic fields up to 1.5 T , have a large UV-sensitive area
with high quantum efficiency, and have low noise. The baseline design uses bialkali
fine mesh photomultiplier tubes (FM PMT) from Hamamatsu with a high quantum
efficiency photocathode. The average thickness in front of the endcap calorimeter is
9.5% of a radiation length.

Figure 3.2: Schematic view of ATC detector.

Two geometrical designs covering the forward region of the BABAR detector have
been considered:

• The first one, is a 2-layer, 2 ring design. There is one layer of high index aero-
gel and one layer of low index aerogel in each ring. The counters are readout
by Hamamatsu, 1.5” (2”) for the high (low) index, fine mesh photomultipliers
(FM), or by Hybrid-Photo-Diodes (HPD). These photo-detectors are attached
at the aerogel containers with a pyramidal shaped air light guide located on the
top and on the bottom of the rings, as shown in Figure 3.2.
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• The second design consists of 4 layers (2 super-layers). Each super-layer includes
two counters: one with low, another with high aerogel indices. The second super-
layer is shifted with respect to the first one by half of the counter size. This allows
us to prevent a loss of signal when a particle crosses the phototube in one of
the layers. Each high (low) index cell is readout by 2 (3) 2” Hamamatsu FM
phototubes (Appendix B.1).

The 2-layer design with FM PMT readout has been chosen as the baseline option
of the ATC system. This decision has been approved based on the results of the test
beam, described in the next section.

3.3 Test-beam results with prototypes

3.3.1 Beam line and apparatus

The prototypes of the BABAR ATC system have been tested in the PS T10 beam line
at CERN. The beam provides positive and negative particles with momenta between
1 and 5 GeV/c. The beam components are mainly pions and protons. The beam line
shown in Figure 3.3, was equipped with two gas Cherenkov counters filled by CO2 at
a 4.3 bar pressure. It was triggered by the coincidence of three scintillator counters,
where the extension of the latter one (1×1 cm2) has limited the beam size. In addition,
1 cm thick veto scintillator counter readout by CAMAC scaler, was used to count
the number of particles crossing the setup in a 1µm gate.

Figure 3.3: The T10 beam line with the apparatus

The following 2-layer design prototypes were placed on a moving table:

• The low index cell had a dimension of 10 × 10 × 14 cm3. It was filled with 5
aerogel blocks of 9.5×9.5 cm2 front face and 2.6 cm thick. The aerogel produced
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by Jet Propulsion Laboratory (JPL), had a nominal refractive index of 1.008.
It is readout by either one 2” Hamamatsu fine mesh (FM) phototubes or two
1” Hybrid Photo-Diodes (HPD).

• The high index cell had a dimension of 10 × 10 × 6 cm3. Two sets of aerogel
produced by the different manufactures such as Airglass with an index n=1.055
and Boreskov Catalysis Institute in Novosibirsk with an index n=1.050 have
been tested. The counter was readout by either a 1.5” Hamamatsu FM photo-
multipliers or one 1” HPD device.

The following 4-layer prototypes were placed nearby:

• The low index prototype with an aerogel thick of 69 mm was readout by three
2” Hamamatsu FM photomultipliers. Two sets of aerogel were tested: one set
with n=1.012 produced by the Boreskov Catalysis Institute in Novosibrsk, and
a second one with n=1.008 produced by the Jet Propulsion Laboratory (JPL).

• The high index prototype was readout by two 2” Hamamatsu FM photomulti-
pliers. It was filled with 21 mm thick aerogel produced in Boreskov Catalysis
Institute in Novosibrsk (SAN-95) with the refractive index of 1.05.

The walls of counters were wrapped with three layers of 250µm PTFE film on top
of aluminized mylar. In order to remove water from the aerogel, all the blocks were
baked before being exposed to the beam.

3.3.2 Results

The prototypes were exposed to a 5 GeV/c negative pion beam (β ' 1). The events
were selected by requiring a clean signal in both gas Cherenkov counters and only
1 count withing 1µ s in the veto counter to reduce pile up events. As an example,
Figure 3.4 shows the observed number of photoelectrons in the high index (1.050)
prototype of the 4-layer option of the ATC system. To study the inhomogeneity of
the light collection of the counter, four different points were exposed. The Monte
Carlo simulation that uses the measured aerogel and reflector optical quantities have
also been performed. One observes that the results are in good agreement. We have
also studied the signal induced by below threshold particles. To select the protons,
the absence of signal in both gas Cherenkov counters was required instead. Figure 3.5
show the detected number of photoelectrons as a function of the beam momentum
for both pion and proton beams. We use a theoretical curve [13] normalized on the
number of photoelectrons measured with pions (β ' 1) to fit the proton data (circles).
Dashed lines correspond to a ±1σ variation of such a normalization. A non-zero
signal corresponding to protons with momentum below Cherenkov threshold (pth =
2.93 GeV/c) is due to δ-electrons, Cherenkov light from the reflector and scintillations
in the aerogel.
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Figure 3.4: Detected number of photo-
electrons for the “high” index prototype
(4-layer option) for the different posi-
tions of the pion beam (β ' 1).

Figure 3.5: Detected number of photo-
electrons for the high aerogel index pro-
totype (4-layer option) as a function
of momentum. The result obtained with
a pion beam (squares) is fitted with a
straight line, while a theoretical curve
(see the text) is used to fit the proton
data (circles).

Enhancement of the signal in an aerogel counter is possible by shifting the photon
spectrum to the red region, where the transparency of aerogel, the reflection of PTFE,
and the quantum efficiency of the photocathode are essentially advanced. The low
index prototypes of the 2-layer option were tested with the use of PMP-420 wavelength
shifter. The last layer of PTFE covering the walls parallel to the beam direction
was impregnated with this shifter dissolved in acetone. The wavelength shift from
' 350 nm to ' 420 nm has increased the signal by about 35% (65%) in the center
(farthest) point and weakened its dependence on the distance to the light detection
device.

Measured numbers of photoelectrons for all prototypes involved in this test beam
experiment are summarized in Table 3.1. The numbers for the 4-layer options in this
table are corrected for the difference in the low aerogel indices and the thickness of
the aerogel in the high index counter between the prototype and the project. The
low index prototypes of 2-layer option have been equipped with PMP wavelength
shifter. Based on experimental spectra obtained with pion and proton beams, we
have calculated the probability P(p → π) for a proton to emit light in the counter
and to be identified as a pion, and the probability P(π → p) for a pion, not to emit
light in the counter and to be identified as a proton. We choose the point at the
optimal threshold (the one where these two probabilities are equal) as a figure of



3.3. Test-beam results with prototypes 41

Low (n=1.008) High (n=1.05)

Prototype Background Signal (β = 1) P(p→ π), % Signal (β = 1)

2-layer FM PMT 0.9 13.4 4.0 10.0

2-layer HPD 0.6 8.6 3.3 9.7

4-layer FM PMT 0.3(0.5) 7.8(11.4) 3.2(5.6) 11.0

Table 3.1: Number of photoelectrons detected in the prototypes in the different condi-
tions. Proton contamination at the optimal threshold P(p → π) is also indicated for
low index prototypes. The light yield of the 2-layer design counters (n=1.008) has been
enhanced by using the PMP-420 wavelength shifter. The actual measured numbers for
4-layer option counter (n=1.012) is indicated in parenthesis, while the main numbers
are estimated for the project aerogel index (n=1.008).

merit of our detector performances (see Appendix B.6).

3.3.3 Aerogel optical parameters

A powerful π/K/p separation requires maximizing the Cherenkov light collection in
the counter. To meet this requirement, a high transparency of the aerogel blocks
becomes a key property of the radiator. The direct comparison of two aerogel manu-
facturers has been done using the high aerogel index prototype (2-layer option with
fine-mesh PMT readout). Figure 3.6 shows the observed number of photoelectrons
as a function of vertical distance to the center of the box for the aerogel samples
produced by Boreskov Catalysis Institute (SAN-95) and Airglass. The latter one has
significantly smaller signal amplitude that is diminishing very rapidly with the dis-
tance from the PMT window.

It is very difficult to measure correctly the aerogel absorption length indepen-
dently of the scattering length. However, a specially developed method, described
in [34] allows us to perform such a measurement in the laboratory without the beam.
Figure 3.7 shows the measured absorption length of the SAN-95 sample as a func-
tion of wavelength. This allowed us to perform the Monte Carlo simulation of the
light collection in the counter. The results of such a simulation were described in
Section 3.3.2. In year after the test beam experiment with prototypes of the BABAR

ATC system at CERN, Boreskov Catalysis Institute has tested a new technology of
aerogel production. The absorption length of the produced samples with such a tech-
nology has significantly improved. The result for SAN-96 blocks are also included in
Figure 3.7.
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Figure 3.6: Number of photoelectrons
versus the vertical distance to the cen-
ter of the counter box (2-layer op-
tion). The photomultiplier is located at
y=5 cm. The solid line corresponds to
the SAN-95 (Novosibirsk) aerogel, while
the dashed line corresponds to the Air-
glass aerogel.

Figure 3.7: The absorption length of
aerogel produced in Boreskov Catalysis
Institute (n=1.05). The prototypes of
the ATC system were filled with SAN-
95. New technology of the aerogel pro-
duction (SAN-96) allowed an essential
improvement of its absorption length af-
ter the test beam experiments.

3.4 Conclusion

Several prototypes of the BABAR ATC system have been tested in a beam line at
CERN. Counters equipped with aerogel blocks of low (1.008) and high (1.050) re-
fractive indices have been exposed to pion and proton beams. The observed average
number of photoelectrons for β = 1 particles is greater then 10 p.e. for the high aerogel
index and about 8 p.e. for the low index. The study of background induced by parti-
cles with momentum below the Cherenkov threshold shows that one can reach a pion
efficiency of about 96% for a proton misidentification as low as 4%. This corresponds
to about 3.2σ separation power between pions and protons. We conclude that aero-
gel counters can be used to construct a powerful and compact particle identification
device in the momentum range of 0.4-4.3 GeV/c.

Taking into account a combination of several parameters such as detector perfor-
mances, amount of material, cost, complexity, we selected a 2-layer option with fine
mesh photomultiplier readout as a baseline design for BABAR.

However, due to the cost problem, the forward particle identification system, based
on aerogel counters has been excluded in the final design of BABAR. This has also
allowed us to bring the endcap EMC closer to the interaction point and, consequently,
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diminish the number of crystals. One has to note that the other B-factory experiment
BELLE has used the aerogel Cherenkov counters as a principal particle identification
system of the detector [35].





Chapter 4. Particle Identification System DIRC 45

Chapter 4

Particle Identification System DIRC

This chapter describes my contribution to the DIRC system of the BABAR detector.
The Detector of Internally Reflected Cherenkov light (DIRC) [36] is the principal parti-
cle identification system of the BABAR detector. Due to the complex non-symmetrical
geometry of BABAR, the external detector components, like the final focus elements
and the photon detectors of the DIRC, are placed in a very strong fringe field. Thus,
the shielding of these components for detector operation is an important challenge of
the experiment. The first step of my work included calculations of the shielding com-
ponents that were accounted in the design of the magnetic shield. Then my research
was related to a measurement of the field in the region of the DIRC photomultipli-
ers. I have been responsible for the design and construction of the field mapper that
allowed us to perform such measurements before commissioning of the experiment.
This work was my main activity in 1996-1998. The results of this work have been
published in [37] (Appendix C).

First part of this chapter gives a brief overview of the DIRC system of the BABAR

detector. The main part describes in details the results of simulation and measurement
of the fringe field of the BABAR 1.5 T solenoid. Finally, I discuss the physics highlights
related to the performances of the DIRC system.

4.1 The Detector of Internally Reflected Cherenkov

light (DIRC)

Figure 4.1 shows the basic principle of the DIRC. Charged particles, produced at the
interaction point inside the detector, traverse the quartz bars in which Cherenkov
radiation is produced. The angle θc of this radiation with respect to the incident
particle is a measure of the velocity v of these particle from the equation cos θc = 1/nβ
with β = v/c, where c is the velocity of light and n=1.473 is the mean refractive index
of the quartz radiator. The Cherenkov photons propagate along the rectilinear bars
by total internal reflection, preserving the angular information and exiting outside
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the detector into a large pure water tank, called the standoff box. Using the position
of the photo-tube and the arrival time of the signals, the DIRC is a three-dimensional
imaging device. Since the tracking system provides the track position and angles,
the measured photon propagation angles are used to determine the Cherenkov angle.
The arrival time of the signal can be also related to the propagation angles and
provides an additional constraint, which is very useful to avoid ambiguities in the
signal association due to high background rates.
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Figure 4.1: Schematic view of DIRC quartz radiator bar and the photon detection
region.

The DIRC consists of quartz bars inside the detector and of the standoff box,
supporting photomultipliers outside the detector at the backward end. The bars are
supported by a mechanical structure which is attached to the barrel iron via special
structural elements. The water tank is composed of a cylinder, a cone and 12 cylin-
drical sections. 10752 photomultipliers are mounted on the sectors placed at about
1.17 m from the quartz bar exit point to permit a precise measurement of the angle for
each photon. The standoff box is arranged inside a special low magnetic field volume,
which diminishes the value of the fringe fields from the main solenoid.

A single photon angular resolution of about 10.2 mrad is obtained with an average
of 30 photons per track which corresponds to about 2.8 mrad for the Cherenkov angle.
A timing precision of 1.7 ns is measured. The separation between charged kaons and
pions is approximately three standard deviation at 3.5 GeV/c.
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4.2 Simulation and measurement of the fringe field

4.2.1 Magnetic shielding

Due to the asymmetric beam energies, the detector is not forward-backward symmet-
rical with respect to the interaction point, as can be seen in Figure 2.1. Potentially,
this places crucial final focus elements in a very strong fringe field of the BABAR flux
return. Such a field would degrade the performance of the quadrupoles, reducing the
luminosity significantly. The solution in the backward (negative z) region, as indicated
in the figure, is to mount a bucking coil on the flux return steel encircling quadrupole
Q2. This reduces the BZ component field at Q2 to less than 100 G.

In addition to the potential effect on the accelerator, the operation of the DIRC
PMTs is also challenged by these fringe fields. Even though they are mounted more
than a meter from the outside surface of the flux return they could not operate in the
ambient magnetic fields, which far exceed the few Gauss limit for efficient operation.
Although it would have been possible to shield each PMT with mu-metal individually,
this approach would have reduced the overall photon detection efficiency [36]. An
alternative method is to surround the entire SOB with an iron enclosure to shield
against stray fields.

Due to the lack of simple symmetries and the superposition of the fringe fields of
the BABAR flux return and the bucking coil field, the design of an optimal shielding
configuration was a considerable challenge. Nevertheless, the solution described here
reduces the fringe field at the photomultipliers to an acceptable level of less than 1 G.

4.2.2 Simulation of the BABAR magnetic circuit

In order to satisfy the PMT and Q2 requirements, it was soon recognized that a
combination of active (bucking coil) and passive elements (iron) was necessary.

The BABAR magnetic circuit consists of two active elements: a thin cryogenic
solenoidal magnet, generating a 1.5 T magnetic field, and the bucking coil in the
backward direction. The passive elements are also grouped into two parts. The first are
those elements with a geometry determined by the central apparatus of BABAR such
as the barrel and endcaps (forward and backward) of the IFR, the flux return plugs
(forward and backward), along with part of the DIRC support structure. The second
part is the DIRC magnetic shield (Figure 2.1), whose design had to accommodate
the existing geometry and magnetic fields due to the other elements. The shield
geometry is most strongly determined by the position and shape of the SOB, which
is cantilevered from the Support Gusset. In the backward plug region, the DIRC
support structure is part of the magnetic circuit, but the fused silica bars and bar
boxes require holes in this part of the circuit, increasing the fringe field in the backward
direction significantly. This ensemble of elements makes calculation of the resulting
magnetic field extremely complicated, even if an axisymmetric (or 2D) approximation
is used.
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The primary mechanical constraints considered during the design of the DIRC
shield were:

• that the beam elements must be contained within the shield cylinder;

• that access to the drift chamber is made inside the shield cylinder;

• that the magnetic shield and its support, resting on the skid plates, should also
provide a counterweight for the BABAR IFR backward doors, when opened;

• that the shield should provide a stop for the backward plug against movements
in the -z direction due to a potential seismic event.

To minimize the maximum transverse field at the photomultipliers an iterative
series of axisymmetric studies of the structure were performed to determine optimum
bucking coil current that would allow accelerator Q2 magnet operation. The principle
parameters investigated were: the position of the bucking coil; the thickness, shape
and permeability of the iron shield; the size of the magnetic gap between the shield
iron, and the plug and SST; the dimensions of the support gusset; and the radius at
which the shield inner cylinder connects to the outer shield.
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Figure 4.2: Results of the 2D model of
BABAR using the measured permeabil-
ity. The figure displays the B⊥ along a
surface containing the PMT faces from
probe 2 to probe 0.

Figure 4.3: B⊥ vs. azimuthal angle cal-
culated in the left-right symmetry model
of BABAR. The coordinate system has
the downward direction at 0◦.

A set of shield design parameters was derived from this exercise that predict
that the magnetic field transverse to the PMT axis B⊥ at the PMT faces would
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be less than 0.2 G, as seen in Figure 4.2 (the three probe positions are defined in
Section 4.2.4). This configuration requires a bucking coil current of about 30.7 kA-
turns. The optimum to produce the lowest field at Q2 is higher by about 15 %,
requiring a modest compromise.

Three-dimensional studies were made to examine the effects of the different non-
axisymmetric aspects of the BABAR iron (Appendix C.3.3). Due to the complexity
of the BABAR magnetic circuit, it was not possible to make a 360◦ model within
the computer memory limitations. Therefore, two models are considered, one with
left-right symmetry and another with top-bottom symmetry.

The results of the 3D simulations show that the expected B⊥ inside the DIRC
shield is less than 1 G with angular variations of about ± 0.2 G. The B⊥ for the
left-right symmetric model varies between 0.3 G and 0.7 G as seen in Figure 4.3.
Since a possible residual field was not included in the model, the measured azimuthal
dependence can be different in detail from the prediction.

In addition, the calculations show that in the case of a quench of the main solenoid
or if power to the bucking coil is lost, the field in the shield iron can reach 7000 G
instead of 500 G when both coils are on. The resulting coercive force is about 1 Oe
for the very pure iron used in the shield construction. Therefore, the residual field of
the iron would give an additional contribution to the fringe field in the PMT region.

The residual field distribution inside the shield was estimated using a simplified
simulation. The value of the maximum perpendicular component at the PMT reaches
about 3 G on the uppermost PMT and about 2 G on the lowermost PMT. In this
model, the residual field due to the coercive force exceeded the expected fringe field
inside the shield. This result led to a special effort to consider the use of the bucking
coil to demagnetize the shield. In this method, the amplitude of the bucking coil
current should vary about zero. It was predicted that about ten cycles of bucking
coil current would be enough to decrease the residual fields to acceptable levels in a
reasonable time.

4.2.3 Design and construction of the shield

The magnetic shield has been designed at Saclay. It is based on the following consid-
erations:

• All connections are welded including the support structure, except for the cover
plate and the flange on the fixed part of the inner cylinder to allow the opening
of the SOB;

• since bending of the iron (required for some components) strongly affects per-
meability, especially at low H, the entire structure must be annealed after con-
struction; the best results were obtained by using a temperature of 850 ◦C for
4 hours.
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Figure 4.4: DIRC shield in the process of being adjusted (left). Shield fully mounted,
except for the top of cover plate (right).

The construction of the shield was the responsibility of KHI. The ultra low car-
bon steel used was the proprietary material EFE, manufactured at Kawasaki Steel
Corporation (KSC). The permeability and coercive force of the completed structure
were measured at KSC and exceeded the specifications. Figure 4.4 shows the shield
as it is being aligned and mounted, before mounting the SOB.

4.2.4 Magnetic field mapper

The aim of the DIRC magnetic field mapper is to measure the field components inside
the shield at positions corresponding to the faces of the PMTs. It consists of a rigid
support structure, mounted on the horsecollar, which can rotate about the beam axis.

The mechanical design of the mapper is shown in Figure 4.5. Three-dimensional
probes are placed at three positions along the PMT rows, at the two extremes and in
the middle. Figure 4.6 shows the functional diagram of the magnetic field measure-
ment system.

A rigid frame is attached to the platform moving around the circular rail mounted
on the horsecollar. All elements, such as frame, removable platform and circular rail
are fabricated from aluminum alloy. The movement of the platform along the rail is
provided by three rollers. Three 3D probes are fixed on the arc of the frame.

The step motor mounted on the platform provides the motion of the frame. The
motor has no permanent magnet inside. A worm gear is used to transfer the rotation
momentum of the rotor.

The potentiometric method with the use of nichrome wire resistor of 0.8 mm
diameter is used to measure the azimuthal angle φ. This wire is located in the groove
on the rail. An electric contact attached to the platform moves along the rail together
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Figure 4.5: Location of the probes on the rigid frame.

with the platform. The wire resistor is supplied by 100 mA current. The accuracy
of the azimuthal angle measurement is about 0.2◦ Figure 4.6 shows the functional
diagram of the fringe field mapping.

4.2.5 Probes

Both ferro-probes (Magnetically Modulated Permalloy Probes or MMPP) and Hall
probes are used. Each set of 3D probes consists of one 3D ferro-probe and one 3D
Hall probe located next to each other. The sensitive volume of a set is a cube of
20 × 20 × 20 mm3. The locations of the 3D probes on the rigid frame correspond to
the faces of the PMTs as shown in Figure 4.5. The measurement coordinate system
has 0◦ as the downward direction, rotating in the clockwise direction as viewed from
the rear of BABAR.

Ferro-probes are used to measure relatively low fields up to about 10 G. The ferro-
probe is supplied with a measuring electronic unit which transforms magnetic field
into voltage with coefficient of about 0.5 V/G. Each 3D ferro-probe is arranged inside
a cube of 10 × 10 × 10 mm3.
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Figure 4.6: Functional diagram of the magnetic field measurement system

The design of one coordinate ferro-probe is shown in Figure 4.7. It consists of
permalloy core of 20 µm diameter and 7 mm long located in the quartz tube. This
core was annealed in advance and has very small coercive force. The common exci-
tation and compensation coils are wound along the quartz tube. The signal coil is
wound at the middle of the tube. Figure 4.8 shows the electronic block diagram of
MMPM. Rectangular 16 kHz impulses from generator are applied to the excitation
circuit. The signal in the signal coil is proportional to B derivative in the core. The
second harmonic (2f=32 kHz) of this signal is proportional to the measured Bext. An
integrating ADC with a multiplexer is used to read out the probes with 14-20 bit
resolution for two scales: 8 V and 0.5 V. The long-term zero drift is less than 0.02 G
within a 20-30◦ temperature range.

Hall probes are used to measure relatively high fields exceeding 5 G, thus over-
lapping the ferro-probe sensitive region. One 3D set of Hall probes consists of three
probes glued on the sides of an aluminum cube, 3×3×3 mm3. This unit is assembled
in a box 9 × 15× 62 mm3. The stabilized DC current source which is used to supply
the Hall probes has a stability of 10−5.

A special calibration system is used to measure the zero offset and sensitivities
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Figure 4.7: One-coordinate ferro-probe
or MMPP

Figure 4.8: Electronic block diagram of
MMPM

of the probes. The calibration is performed with the help of Helmholtz coils located
inside a zero field box manufactured from annealed permalloy. It can produce magnetic
fields up to 50 G. A Hall probe calibrated by an NMR probe has been used to measure
the coefficient between the current and magnetic field of this coils. The estimated error
is 0.1%.

4.2.6 Results

To establish a baseline, mapper measurements were made with no solenoid field. The
maximum remnant field in the BABAR doors, support gusset and skid plates was about
0.9 G. The mounting of the shield greatly reduced the influence of the remnant field at
the PMT positions due to the BABAR doors. More importantly, a very low measured
field (less than 0.2 G) demonstrated that the iron used in the shield construction had
a very low residual field.

The solenoid and bucking coils were ramped together in 5 steps to the nominal
operating currents. Measurements were made at each step.

At the nominal currents, the maximum component of the field at the PMT per-
pendicular to its long axis is 0.8 G, which is acceptable for PMT operation. The
bucking coil current was varied to determine the optimum currents for PMT and
quadrupole operation. It was increased to 230 A in 10 A steps and then was reduced
back to 200 A. The current was then reduced to 170 A in 10 A steps. The optimum
current for Q2 operation is near 200 A, and this value was chosen for the operating
point.

The maximum value of B⊥ at the PMTs differed in the two 200 A measurements
due to hysteresis effects; in fact, it was reduced from 0.8 G to 0.6 G. At 170 A, the
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Figure 4.9: B⊥ vs. azimuthal angle with
the solenoid at its nominal current and
the bucking coil at the optimum current
for Q2, 200 A.

Figure 4.10: B⊥ vs. azimuthal angle with
the solenoid at its nominal current and
the bucking coil at the optimum current
for Q2, obtained with overshoot current
260 A.

three probes had the same maximum value of 0.5 G, which is the optimum for the
PMT. This value is about 15 % lower than that at 200 A, in good agreement with
the calculation.

The bucking coil current was cycled back to 200 A as follows: 170 A → 230 A →
180 A → 220 A → 190 A → 210 A → 200 A at which point a reduction in the hysteresis
was observed. Figure 4.9 shows the scan at the final 200 A current. The maximum
B⊥ is about 0.8 G and a left-right asymmetry is observed, probably due to residual
shield magnetization. Various demagnetization schemes were developed successfully
for the cases when either the main solenoid quenches or the bucking coil power is
lost. The residual magnetization can be compensated by raising the bucking coil to a
current above 200 A, called the overshoot current, and then lowering the current to the
nominal 200 A current. It was found that this was not only possible, but optimum in
that the apparent BABAR left-right asymmetry could be compensated. In Figure 4.10
we see the compensation of left-right, around the optimum value of Iover=260A. This
result is in relatively good agreement with the calculations (Figure 4.3) though some
residual field probably still influences the probe 0 result.

During normal BABAR operation the magnetic field in the SOB is monitored
continuously by 12 probes in 4 locations.
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4.3 Physics performances

The DIRC plays a central role in B meson selection and its flavor tagging. The
D0 → K−π+ coming from D∗+ → D0π+ → (K−π+)π+ decay is a good control sample
to study the pion and kaon identification capabilities of the DIRC. Figure 4.12 shows
the K−π+ invariant mass spectrum from inclusive D∗ production. The comparison
of the D0 yield with and without positive kaon identification allows us to extract
the efficiency of the particle identification of the single kaon. Figure 4.12 shows the
measured selection efficiency and misidentification for kaon tracks from such a sample,
as a function of track momentum in laboratory frame.
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Figure 4.11: Invariant K+π− mass spec-
trum for kinematically reconstructed D0

mesons in the decay D∗ → D0π, with-
out (top) and with (bottom) the use of
the DIRC to identify the kaon.

Figure 4.12: The efficiency and misiden-
tification for kaon tracks

To illustrate the quality of the hadron particle identification, the charmless B →
h+h′− (h, h′ = π, K) decays can be considered. The CP asymmetry in the tree level
contribution to the decay B0 → π+π− is related to the CKM angle α of the unitarity
triangle. Furthermore, the ratios of B branching fractions to various ππ and πK states
are sensitive to the angle γ. In the Standard Model B0 → K+π− occurs through two
different mechanisms (“penguin” and “tree”), which carry different weak phases and,
in general, strong phases. Thus, one predicts a large direct CP violation of about 10%
in this decay. BABAR has performed measurements of the branching fractions and CP
asymmetries in B → π+π−, K+π− and K+K− decays [38].
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Figure 4.13: Distribution of B me-
son mass enhanced in K+π− (solid
histogram) and K−π+ (dashed his-
togram) (a),asymmetry AKπ calculated
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Figure 4.14: a) The proper-time distri-
bution of combined D0 and D0 WS can-
didates in the signal region. The result
of the fit allowing (not allowing) mix-
ing but not CP violation is overlaid as a
solid (dashed) curve. Background com-
ponents are shown as shaded regions. b)
The points represent the difference be-
tween the data and the no-mixing fit.
The solid curve shows the difference be-
tween fits with and without mixing.

Since the charged particles from two-body decays B → h+h′− are in the momen-
tum range 1.75 < p < 4.25 GeV/c, dE/dx has a little discrimination power for particle
identification. However, the Cherenkov angle θc measured in the DIRC provides sep-
aration between kaons and pions about 4σ at 3 GeV/c declining to about 2.5σ at
4.1 GeV/c. The maximum-likelihood fit uses θc as one of the variables to determine
the event yield of the four π+ π−, K+π−, K−π+ and K+K− simultaneously. The
measured yields of K+π− and K−π+ allowed us to observe the direct CP asymmetry

AKπ =
nK−π+ − nK+π−

nK−π+ + nK+π−

= −0.133 ± 0.030(stat) ± 0.009(syst) (4.1)

at the level of 4.2 standard deviations using a data sample of 227 million BB pairs.
Figure 4.13 shows the distributions of the reconstructed B meson mass (mES) for
data samples enhanced in signal Kπ decays using a probability ratios, and AKπ as a
function of mES.

One more example of excellent hadron identification performances of BABAR can
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be illustrated by a recent evidence of the D0-D0 mixing [39]. The wrong-sign (WS)
decay D0 → K+π− can be produced via the doubly Cabibbo-suppressed (DCS) decay
D0 → K+π− or via mixing followed by a Cabibbo-favored (CF) decay D0 → D0 →
K+π−. The DCS decay has a small rate of order tan4 θC ≈ 0.3% relative to the CF
decay. We distinguish D0 and D0 by their production in the decay D∗+ → π+D0. In
RS decays the slow pion π+ and kaon have opposite charges, while in WS decays the
charges are the same. The time dependence of the WS decay rate is used to separate
the contributions of DCS decays from D0-D0 mixing. Figure 4.14 shows the proper-
time distribution for WS data. The fit results with and without mixing are shown as
the overlaid curves. The fit with mixing provides a substantially better description of
the data than the fit with no mixing. This result is inconsistent with the no-mixing
hypothesis at a significance of 3.9 standard deviations.

Thus, the DIRC is a ring-imaging Cherenkov detector that is very well-matched to
the hadronic particle identification requirements of BABAR. The detector performance
provides an excellent possibility to perform the physics program of the experiment.
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Chapter 5

Method of Partial Reconstruction

This chapter describes my contribution to the study and development of a partial re-
construction technique used for the B meson reconstruction. The preliminary study
of the B0 → D(∗)+

s D∗− decays with this technique has been performed and included
in my thesis work [2]. The final measurement has been done one year after and pub-
lished in Physical Review D (see Appendix D, [40]). Several precision measurements
using this technique were published in the period of my convenership of the Inclu-
sive Hadronic B Decays (IHBD) analysis working group in 2003-2005. They are also
discussed in this chapter.

I briefly describe the methods of full and partial reconstruction of B mesons.
The main section summarizes the analysis highlights and the results obtained for the
B0 → D(∗)+

s D∗− decays. A measurement of the D+
s → φπ+ branching fraction is then

reported. A set of precise measurements conducted with the partial reconstruction is
discussed in conclusion.

5.1 Theoretical tools for quark flavor physics

The experimental observables, except the direct measurements of the angles of the
UT, that are presently used to constrain ρ and η (see Section 1.4) depend on hadronic
matrix elements. The QCD, theory of strong interaction, has been tested to high pre-
cision in the perturbative regime, where the coupling constant αs is small. However,
quantitative predictions in low-energy regime remain difficult. There exist several ap-
proaches to non-perturbative QCD which allow an application of a few general tech-
niques to evaluate the matrix elements that are relevant for quark flavor physics. Most
of the model independent theoretical tools, effective theories, exploit that some quark
masses are smaller while the the others are greater than ΛQCD, a typical hadronic
scale, of order of 500 MeV. This allows one to construct small parameters, expending
in which provides perturbative calculations of hadronic physics. However, in many
cases the relevant hadronic scale may not be much smaller than the mass of the b
quark. Thus, experimental inputs are required to verify how well these expansions
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work.
There exist two basic approaches: one approach, chiral symmetry, is derived from

the limit of small u, d, and s-quark masses compared to ΛQCD (mq → 0, where
q = u, d, s), another approach, heavy quark symmetry (HQS) [41], is constructed
from the heavy-quark limit, where c and b-quark masses are larger than ΛQCD (mq →
∞, where q = c, b). Since the u and d-quark masses are small, the SU(2) isospin
symmetry between u and d is a very good approximation. The expected corrections
to the chiral limit are suppressed by (md − mu)/ΛχSB, where ΛχSB ' 1 GeV is the
chiral symmetry-breaking scale, and are usually of the order of a few percent at the
amplitude level. However, the full SU(3) symmetry is broken by ms/ΛχSB, and is
expected to have typically 20-30% corrections. Deviation from the heavy quark limit
can be estimated using heavy-quark effective theory (HQET) [42], which provides a
systematic expansion in powers of αs(mQ) and ΛQCD/mQ (Q = b, c).The former type
of corrections are calculable perturbatively, while the latter ones can be parameterized
by a minimal set of hadronic matrix elements that can be extracted from data or
estimated using non-perturbative techniques.

Factorization hypothesis plays a special role in the understanding and the predic-
tions of relations between amplitudes of two-body decays of the B mesons. Tradition-
ally, naive factorization assumes that the decay amplitude of B → M1M2 transition
can be estimated as a product of two independent currents: one can mediate the
B → M1 transition, and another describes the vacuum → M2 transition. In other
words, the matrix element factorizes as

〈M1(p
′),M2(q)|jµAµ|B(p)〉 = 〈M1(p

′)|jµ|B(p)〉 × 〈M2(q)|Aµ|0〉, (5.1)

where p, p′, and q are the four-momenta of B, M1 and M2, respectively. Most of the
calculations based on the factorization approach exploit the Lorentz invariant form
factor motivated by HQET to parametrize the hadronic matrix element of the B →
M1 transition. The value of the form factor is given for the minimum or maximum
value of the transfered momentum, q2 = 0 or q2 = q2

max, and then extrapolated to an
intermediate value using different phenomenological models. The decay constant is
involved in the matrix element of the axial-vector or vector current between M2 and
vacuum:

〈P (q)|Aµ|0〉 = iqµfP (5.2)

for a pseudoscalar meson P with four-momentum q, and

〈V (q, ε)|Vµ|0〉 = εµMV fV (5.3)

for a vector meson V with the four-momentum q and the polarization vector εµ.
Indeed, the “color transparency” can justify factorization [43], only if the meson

M1 that inherits the spectator-quark from the B is heavy, while M2 is light. In the
limit that the mass of the heavy quark is infinitely large, the recoil of the light quark
does not change the velocity of the heavy quark. In this picture, the QCD interactions
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of the light quark are not perturbed by the transition of one heavy quark to another.
An important consequence of this theory is that all heavy meson decays are governed
by one single form factor. The dominance of the factorizable amplitude can also be
confirmed by the QCD limit, where number of colors Nc is very high. One concludes
that the non-factorizable corrections are suppressed by a factor of 1/N 2

c .
Factorization hypothesis is a very powerful phenomenological tool for the quark

flavor physics. It provides the framework to understand a large number of two-body
decays of the B mesons. Recently, this approach has been expended for several specific
cases. For example, the heavy-quark limit allowed calculations of the second order
corrections in the loop diagrams for the B → Dπ transitions [44]. However, several
questions still remain. They basically include the study of application field of the
factorization and importance of the non-factorizable corrections [45].

5.2 Reconstruction of B mesons

Two different analysis techniques, full reconstruction and partial reconstruction, are
used for the B meson reconstruction in BABAR. The full reconstruction technique is
the standard method which employs the exclusive reconstruction of all decay prod-
ucts. This allows one to obtain a very clean B sample using beam energy constraint
which significantly improves the B mass resolution. In the partial reconstruction tech-
nique, only one meson from the B decay and the soft (low-momentum) particle from
the decay of another non-reconstructed, “missing”, meson are used. Applying kine-
matic constraints consistent with the signal decay mode, the four-momentum of the
“missing” meson is calculated. Signal events are peaked in the mmiss distribution at
the nominal mass of the non-reconstructed meson. This method eliminates the effi-
ciency loss associated with the missing meson reconstruction, although an ambiguity
relative to the B direction increases the combinatorial background.

5.2.1 Full reconstruction

When all decay products of the B meson are reconstructed in the detector, the full
reconstuction technique provides a complete information on the kinematic of the
original particle, i.e. its momentum pB and energy EB. Two almost uncorrelated
kinematic variables, are used for background rejection. The beam-energy substituted
mass

mES =
√

E2
CM/4 − p2

B (5.4)

where pB is the center-of-mass (CM) B momentum and ECM is the total CM energy
of the beams. The signal mES has a typical resolution of about 2.5-3 MeV, which is
about 10 times more accurate than the invariant mass computed by a simple sum
of the 4-momenta of the measured decay products. The background shape in mES is
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described by an ARGUS function [47]

A(y) = αy
√

1 − y2 exp(sf(1 − y2)), (5.5)

where y = 2mES/ECM. The second discriminative variable is the difference between
the CM energy of the reconstructed B meson EB and the beam energy in the center-
of-mass frame ECM/2:

∆E = EB − ECM/2 (5.6)

∆E is insensitive to the boost and peaks at zero for e+e− → BB events. The signal
can be fitted with a Gaussian on the top of the background which is usually a linear
function.

5.2.2 Partial reconstruction

Examples of the modes, which can be reconstructed partially are B → D∗−X, where
X = π+, ρ+, a1, D

(∗), D(∗)+
s . Let us consider the method of partial reconstruction

based on the B0 → D(∗)+
s D∗− decay mode1 since it is connected to the analysis being

presented in this chapter. In selecting candidates for the decays B0 → D(∗)+
s D∗−,

no attempt is made to reconstruct the D0 from D∗− → D0π−
s decays. A soft pion

from D∗− decay is combined with the fully reconstructed D(∗)+
s , where the total D(∗)+

s

and πs charge is required to be zero. Given the four-momenta of the D(∗)+
s and π−

s ,
and assuming they originate from a B0 → D(∗)+

s D∗− decay, energy and momentum
conservation yields the following equations:

PB0 = P
D

(∗)+
s

+ PD∗ (5.7)

PB0 = P
D

(∗)+
s

+ Pπs
+ PX (5.8)

Here, where PB, P
D

(∗)+
s

, PD∗ , Pπs
and PX are the four-momenta of the B0, D(∗)+

s ,
D∗, the soft pion, and the missing particle X, respectively. In the CM frame, the B
mesons are monoenergetic. Therefore, assuming that the decay is two-body like as in
Equation 5.7, it is straightforward to calculate the angle of the B direction relative
to the D(∗)+

s :

cos θB0 =
M2

D∗−
−M2

B0 −M2

D
(∗)+
s

+ ECMED
(∗)+
s

2pB0p
D

(∗)+
s

, (5.9)

where Mx is the nominal mass of particle x [52], E
D

(∗)+
s

and p
D

(∗)+
s

are the measured

CM energy and momentum of the D(∗)+
s meson, and pB0 =

√

E2
CM/4 −M2

B0 . Thus,

the four-momentum of the B0 can be calculated up to an unknown azimuthal angle
φ around the D(∗)+

s flight direction, as shown in Figure 5.1. This calculation uses the
constraint of the known CM energy and the masses of the B0 and D∗− mesons.

1Reference to a specific decay channel or state also implies the charge conjugate decay or state.

The notation D
(∗)+
s refers to either D+

s
or D∗+

s
.
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Ds

B

π s

φ

Figure 5.1: Definition of the arbitrary angle φ.

At this point, the angle φ around the D(∗)+
s is degenerated as we have no means of

determining it without any further assumption. A possibility is to postulate X = D0.
In that case, one can solve the Equations 5.7, 5.8 and extract the angle φ with a
4-fold ambiguity. However, it was decided not to do so as one prefers to deduce the
φ-dependent missing mass using cos θB0 and the measured momenta of the D(∗)+

s and
soft pion as

mX ≡
√

|PX(φ)|2 =
√

(PB0 − P
D

(∗)+
s

− Pπs
)2 , (5.10)

The missing mass should be the D0 mass if the B0 → D(∗)+
s D∗− decay occurs. This

variable is used to determine the background by studying both side bands and wrong
sign combination as well as Monte Carlo as will be shown later. However, to derive
the missing mass mX , one needs to fix the angle φ. In this analysis the missing mass
is defined with an arbitrary choice for the angle φ, such that the B0 momentum pB

lies in the same plane as pπ and p
D

(∗)+
s

momenta. It is important to note that signal
discrimination against background is independent of the choice of the value of φ.

5.3 Study of B0 → D(∗)+
s D∗− decays

It has been verified experimentally that the factorization hypothesis describes well
the semileptonic decays and non leptonic modes of the B mesons with relatively low
q2. For example, B → D∗π, D∗ρ branching fractions and polarization for D∗ρ are well
described by this approach. The B0 → D(∗)+

s D∗− decays can only occur via cs quarks
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pair coupling with a W boson emitted externally in b → cW transition. Thus, these
decay modes are well suited to test factorization for final states with two heavy quarks.
The factorization assumption in these decays would also allow further extraction of
the values of the decay constants f

D
(∗)
s

. Thus, precise knowledge of the B0 → D(∗)+
s D∗−

branching fractions and the polarization in decays of B mesons to vector-vector final
states B0 → D∗+

s D∗− provide a test of the details of the factorization assumption in
the relatively high q2 regime [46].

Reported measurements of the B0 → D(∗)+
s D∗− branching fractions and polariza-

tion in the decay B0 → D∗+
s D∗− exploit the method of partial reconstruction. The

data used in this analysis correspond to an integrated luminosity of 20.8 fb−1 recorded
by BABAR in 1999 and 2000 at the Υ (4S) resonance. This data set corresponds to
about 22.7 million produced BB pairs.

5.3.1 Event selection

For each event, the ratio of the second to the zeroth order Fox-Wolfram moment [48],
using all charged tracks and neutral clusters in the event, is computed. This ratio is
required to be less than 0.35 in order to suppress continuum e+e− → qq events, where
q = u, d, s, c.

We reconstruct D+
s mesons in the decay modes D+

s → φπ+, D+
s → K∗0K+ and

D+
s → K0

S
K+, with subsequent decays φ→ K+K−, K∗0 → K−π+ and K0

S
→ π+π−.

These modes were selected since they offer the best combination of branching fraction,
detection efficiency and signal-to-background ratio. The charged tracks are required
to originate from the interaction point within ±10 cm along the beam direction and
±1.5 cm in the transverse plane, and leave at least 12 hits in the DCH.

Kaons are identified using dE/dx information from the SVT and DCH, and the
Cherenkov angle and the number of photons measured with the DIRC. For each
detector component d = {SVT, DCH, DIRC}, a likelihood LK

d (Lπ
d) is calculated

given the kaon (pion) mass hypothesis. A charged particle is classified as a “loose”
kaon if it satisfies LK

d /L
π
d > 1 for at least one of the detector components. A “tight”

kaon classification is made if the condition
∏

d L
K
d /L

π
d > 1 is satisfied.

Three charged tracks consistent with originating from a common vertex are com-
bined to form a D+

s candidate. In the case of the decay D+
s → φπ+, two oppositely

charged tracks must be identified as kaons with the loose criterion, with at least one
of them also satisfying the tight criterion. No identification criteria are applied to the
pion from the D+

s decay. The reconstructed invariant mass of the K+K− candidates
must be within 8 MeV/c2 of the nominal φ mass [13]. In the decay D+

s → φπ+, the
φ meson is polarized longitudinally, resulting in the kaons having a cos2 θH distribu-
tion, where θH is the angle between the K+ and D+

s in the φ rest frame. It is required
that | cos θH | > 0.3, which retains 97% of the signal while rejecting about 30% of the
background.

In the reconstruction of the D+
s → K∗0K+ mode, the K−π+ invariant mass is
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required to be within 65 MeV/c2 of the nominal K∗0 mass [13]. This wider window
leads to a fraction of combinatorial background much larger than in the D+

s → φπ+

mode. To reduce this background, as the K∗0 is also polarized longitudinally, we
require | cos θH | > 0.5. In addition, substantial background arises from the decays
D+ → K∗0π+ and D+ → K0π+, which tends to peak around the nominal D+

s mass.
This background is suppressed by requiring that the kaon daughter of the K∗0 sat-
isfy the loose kaon identification criterion, and that the other kaon satisfy the tight
criterion.

For the decay mode D+
s → K0

S
K+, the π+π− invariant mass must be within

15 MeV/c2 of the nominal K0
S

mass, and the charged kaon is identified using the
tight criterion. To improve the purity of the K0

S
sample, the angle α between the K0

S

momentum and the flight direction defined by its decay vertex and the primary vertex
of the event is determined. It is required that cosα > 0.98 to reject the combinatorial
background.

The invariant mass MDs
of all D+

s candidates is required to be within three stan-
dard deviations (σDs

) of the signal distribution peak Mpeak
Ds

seen in the data. D+
s

candidates satisfying all the above selection criteria are combined with photon can-
didates to form D∗+

s → D+
s γ candidates. The candidate photons are required to

satisfy Eγ > 50 MeV, where Eγ is the photon energy in the laboratory frame, and
E∗

γ > 110 MeV, where E∗
γ is the photon energy in the CM frame. When the photon

candidate is combined with any other photon candidate in the event, the pair must
not form a good π0 candidate, defined by a total CM energy E∗

γγ > 200 MeV and an
invariant mass 115 < Mγγ < 155 MeV/c2.

5.3.2 B meson reconstruction

D∗+
s candidates used in the partial reconstruction of the decay B0 → D∗+

s D∗− must
satisfy |∆M − ∆Mpeak| < 2.5 σ∆M , where ∆Mpeak is the peak of the signal ∆M =
M(D+

s γ) − M(D+
s ) distribution observed in the data. The CM momentum of the

D(∗)+
s candidate is required to be greater than 1.5 GeV/c. D(∗)+

s candidates satisfying
these criteria, in addition to those described in Section 5.3.1, are then combined with
π− candidates to form partially reconstructed B0 → D(∗)+

s D∗− candidates. Since the
transverse momentum of the pion in signal events is less than 210 MeV/c, no specific
criteria of the number of DCH hits are required for the pion candidate.

Due to the high combinatorial background in the ∆M distribution, more than
one D∗+

s π− candidate pair per event is found in 20% of the events. To select the best
candidate in the event, the following χ2

χ2 =
(

Mi −Mpeak
i

σi

)2

+
(

MDs
−Mpeak

Ds

σDs

)2

+
(

∆M − ∆Mpeak

σ∆m

)2

(5.11)

is calculated for each D∗+
s candidate, where Mi is the invariant mass of the inter-

mediate φ, K∗0, or K0
S

candidate, depending on the D+
s decay mode, Mpeak

i is the
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Figure 5.2: D+
s π

− missing mass distri-
butions of data events. All the D+

s de-
cay modes have been combined in this
plot. The curves show the result of the fit
(see text) indicating the signal and back-
ground distributions.

Figure 5.3: D∗+
s π− missing mass distri-

butions of data events. All the D+
s de-

cay modes have been combined in this
plot. The curves show the result of the fit
(see text) indicating the signal and back-
ground distributions.

corresponding peak of the signal Mi distribution, and σi is its width. Only the can-
didate with the smallest value of χ2 in the event is accepted.

The missing mass distributions of partially reconstructed B0 → D(∗)+
s D∗− decays

are shown in Figures 5.2 and 5.3. A clear signal peak is observed. We perform a
binned maximum likelihood fit of these distributions. The fit function is the sum of
a Gaussian distribution and a background function fB given by

fB(mmiss) =
C1(M0−mmiss)

C2

C3+(M0−mmiss)
C2
, (5.12)

where Ci are parameters determined by the fit, and M0 = MD∗ −Mπ = 1.871 GeV/c2

is the kinematic end point. The fits find 3704±232 and 1493±95 peaking events under
the Gaussian peak in the sum of the D+

s π
− and D∗+

s π− plots, respectively. However,
due to the presence of peaking backgrounds, discussed below, further calculation is
needed in order to extract the signal yields and the branching fractions.

5.3.3 Background study

The missing mass distribution of the backgrounds has been studied in great details
with a Monte Carlo simulation. It includes both BB and qq̄ continuum events. Two
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kinds of backgrounds are considered: “peaking” background is enhanced under the
signal peak at the high end of the missing mass spectrum, and “non-peaking” back-
ground has a more uniform missing mass distribution. There are two sources of the
peaking background:

• Cross Feed (CF): If the soft photon from D∗+
s → D+

s γ decay is not recon-
structed, B0 → D∗+

s D∗− decays may lead to an enhancement under the signal
peak of the D+

s π
− missing mass spectrum. Similarly, the B0 → D+

s D
∗− decays

may lead to a peaking enhancement in the D∗+
s π− mmiss spectrum, due to the

combination of a D+
s with a random photon.

• Self-Cross Feed (SCF): This is due to true B0 → D∗+
s D∗− decays in which the

D+
s is correctly reconstructed, but combined with a random photon to produce

the wrong D∗+
s candidate, resulting in a peaking enhancement in the D∗+

s π−

spectrum.

We compute the reconstruction efficiency of correctly reconstructed signal B0 →
D(∗)+

s D∗− decays, as well as cross feed and self-cross feed, for events in the signal
region mmiss > 1.86 GeV/c2.

In addition to the above backgrounds, we also considered a possible contribution
from the charged and neutral B decays B → D(∗)+

s D∗∗. These backgrounds were
simulated with four D∗∗ states: D∗

0(j = 1/2), D1(2420), D1(j = 1/2) and D∗
2(2460),

and their contribution has been determined to be negligible, due mainly to the D(∗)+
s

CM momentum cut. Figure 5.4 shows a comparison of the missing mass distributions
in data and Monte Carlo events.

5.3.4 Results

The signal yields in the D+
s π

− and D∗+
s π− mmiss peaks are obtained from the fits

described above. In calculating the branching fractions from these yields, one has to
take into account the fact that the peaks consist not only of correctly reconstructed
signal, but also of cross feed and self-cross feed. This is done by inverting the 2 × 2
efficiency matrix. Its diagonal elements correspond to the sum of signal and self-cross
feed efficiencies, while off-diagonal terms are the cross-feed efficiencies.. The efficien-
cies corresponding to transverse and longitudinal polarization of B0 → D∗+

s D∗− have
been weighted according to the measured polarization as described below. With this
procedure, the B0 → D(∗)+

s D∗− branching fractions are determined to be

B(B0 → D+
s D

∗−) = (1.03 ± 0.14 ± 0.13 ± 0.26)% ,

B(B0 → D∗+
s D∗−) = (1.97 ± 0.15 ± 0.30 ± 0.49)% (5.13)

and their sum is

ΣB(B0 → D(∗)+
s D∗−) = (3.00 ± 0.19 ± 0.39 ± 0.75)%, (5.14)
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Figure 5.4: The missing mass distribution of (a) D+
s π

− and (b) D∗+
s π− combinations

for data (data points) and Monte Carlo (histogram). The contributions from the BB̄,
cc and uds are shown separately. The CF and SCF backgrounds are included in the
total histogram, not in the hatched BB histogram.

where the first error is statistical, the second is the systematic error from all sources
other than the uncertainty in the D+

s → φπ+ branching fraction, and the third error,
which is dominant, is due the uncertainty in the D+

s → φπ+ branching fraction
B(D+

s → φπ+) = (3.6 ± 0.9)% [13].
The measurement of the fraction of the longitudinal polarization ΓL/Γ in the B0 →

D∗+
s D∗− decay mode is performed using the events reconstructed in the signal region

(Mmiss > 1.86 GeV/c2). To reduce the systematic error due to large backgrounds, the
polarization measurement is done with only the channel D+

s → φπ+, which has the
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best signal to background ratio. Figure 5.5 shows the missing mass distribution for
such a decay. Two angles are used: the helicity angle θγ between the D∗− and the
soft photon direction in the D∗+

s rest frame, and the helicity angle θπ between the
D∗+

s and the soft pion direction in the D∗− rest frame. Since the B meson is not
fully reconstructed, we compute θγ and θπ by constraining mmiss to the nominal D0

mass [13] to obtain a unique kinematical solution for the azimuth φ.
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Figure 5.5: D∗+
s π− missing mass distri-

bution of data events. Only D+
s decays

into φπ+ final state are included in the
polarization measurement. The curves
show the result of the fit (see text) in-
dicating the signal and background dis-
tributions.

Figure 5.6: Projections of the number
of background-subtracted data events on
the cos θγ and cos θπ axes. The result of
the two-dimensional fit is overlaid.

The two dimensional distribution (cos θγ , cos θπ) is divided in five bins in each
dimension. The combinatorial background, as well as the cross feed and the self-cross
feed obtained using the Monte Carlo simulation, are subtracted. The resulting signal
distribution is corrected bin-by-bin for the detector efficiency, which is obtained from
the simulation. Finally, a two-dimensional binned minimum-χ2 fit is performed on
the efficiency-corrected signal distribution using the following function:

d2Γ

d cos θπ d cos θγ
∝ ΓL

Γ
cos2 θπ sin2 θγ + (1 − ΓL

Γ
) sin2 θπ

1 + cos2 θγ

4
. (5.15)

The resulting fit has a χ2 of 23.1 for 25 bins with two floating parameters (ΓL/Γ and
total normalization). Figure 5.6 shows the data and the result of the fit projected on
the cos θγ and cos θπ axes.



70 Chapter 5. Method of Partial Reconstruction

From the fit, the fraction of a longitudinal polarization is determined to be

ΓL/Γ = (51.9 ± 5.0 ± 2.8)%, (5.16)

where the first error is statistical and the second is systematic. The polarization
measurement is consistent with theoretical prediction assuming factorization ranging
from 50 to 55% [49]. The results listed above are also in a good agreement with
previous experimental results [50, 51].

5.3.5 Systematics

Table 5.1: Sources of systematic error (%) for B0 → D(∗)+
s D∗− branching fractions

and B0 → D∗+
s D∗− polarization. The uncertainty in the D+

s → φπ+ branching
fraction is not included in this table.

Source B0 → D+
s D

∗− B0 → D∗+
s D∗− σ(ΓL/Γ)

Background subtraction 2.7 5.9 0.5

Monte Carlo statistics 4.2 6.0 2.7

Polarization uncertainty 0.8 0.5 -

Cross Feed 3.2 2.4 -

NBB 1.6 1.6 -

B(φ→ K+K−) 1.6 1.6 -

Particle identification 1.0 1.0 0.1

Tracking efficiency 3.6 3.6 0.5

Soft pion efficiency 2.0 2.0 0.2

Relative branching fractions 10.2 10.2 -

B(D∗+
s → D+

s γ) - 2.7 -

Photon efficiency - 1.3 0.1

π0 veto - 2.7 0.3

Total systematic error 13.1 15.1 2.8

The various contributions to the systematic errors of the branching fractions and
polarization measurement are summarized in Table 5.1. The dominant systematic
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error is due to the uncertainty in our knowledge of the three D+
s decay branching

fractions. To evaluate the uncertainty due to the background subtraction, the signal
yield is determined in an alternative way, by counting the number of events in the
histogram after a bin-by-bin subtraction of the background, determined from the
Monte Carlo simulation. The difference of the signal yields is taken as a systematic
error. This also accounts for the systematic error due to a possible deviation of the
signal shape from a Gaussian.

The Monte Carlo statistical errors in the determination of the signal and the
cross feed efficiencies are propagated to the systematic error. The uncertainty in the
calculation of the B0 → D∗+

s D∗− polarization is propagated to the branching frac-
tion systematic error. The systematic error due to charged particle reconstruction
efficiency error is 1.2% times the number of charged particles in the decay. An ad-
ditional error of 1.6% is added in quadrature to account for the uncertainty in the
reconstruction efficiency of the soft pion. This error results as 2% in total error.

The systematic error due to the excluding π0 overlap (π0 veto) requirement was
studied by measuring the relative yield of inclusive D∗+

s production in data and Monte
Carlo events. To evaluate this error, the selection with and without the π0 veto was
applied for the final photon from D∗+

s → D+
s γ decay.

For the polarization measurement, the level of the various backgrounds depends
on the charged, neutral and particle identification efficiencies. The fit was repeated
varying the background according to the errors in these efficiencies, and the resulting
variations in ΓL/Γ were taken as the associated systematic error.

To check that the simulation accurately reproduces the background mmiss dis-
tributions in the data, a systematic data-Monte Carlo comparison is made in con-
trol samples containing no signal events. These samples are events with 1.78 <
mmiss < 1.85 GeV/c2; events in the D+

s sideband 1.89 < MDs
< 1.95 GeV/c2 or

1.985 < MDs
< 2.05 GeV/c2; events in the D∗+

s sideband 170 < ∆M < 300 MeV/c2;
wrong sign D(∗)+

s π+ combinations in either the MDs
and ∆M sidebands or signal

regions; and candidates in which mmiss was calculated using the negative of the CM
D(∗)+

s momentum p∗
D

(∗)+
s

. The difference between the data and the Monte Carlo sim-

ulation of these control samples is consistent with zero withing statistical errors.

5.4 Measurement of B(D+
s → φπ+)

As it was demonstrated above, measurements of B(B0 → D(∗)+
s D∗−) are limited

by the uncertainties on the D+
s partial decay rates. A substantial improvement can

therefore be obtained using a partial reconstruction technique where the D+
s is not

explicitly reconstructed. Partial reconstruction allows an unbiased measurement of the
D+

s → φπ+ branching fraction, which has important implications for a wide range
of D(∗)+

s and B physics, as most of the D+
s decay branching fractions are normalized

to it [52]. As an example, an improved measurement of B(D+
s → φπ+) would reduce
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the experimental uncertainty on the constraint on the Unitary Triangle parameter
sin(2β + γ) from the measurement of the CP violating asymmetry in B0 → D(∗)∓π±

decays (see Section 6.2.8).
Indeed, the B0 → D∗+

s D∗− → (D+
s γ)(D

0π−) decay can be reconstructed in two
different ways. The first method implies a combination of the fully reconstructed D∗−

decay with the photon from the D∗+
s → D+

s γ decay, without explicit D+
s reconstruc-

tion. The measured event yield which is independent on the D+
s → φπ+ branching

fraction, allows us to compute B(B0 → D∗+
s D∗−). The second method uses a combi-

nation of the fully reconstructed D∗+
s with the soft pion from D∗− → D0π− decay,

without explicit D0 reconstruction. From the measured event yield the product of
B(B0 → D∗+

s D∗−) and B(D+
s → φπ+) can be extracted. First, improved measure-

ment of D+
s → φπ+ branching fraction exploits a combination of these two methods

of the partial reconstruction. Preliminary result of this measurement has been re-
ported on LP 2003 conference in Fermilab [53]. This result has been obtained based
on about 20 fb−1 of integrated luminosity data set.

Further improvement has been achieved by increasing the analyzed data sample
about a factor six. Figure 5.7 shows the missing mass distribution recoiling against
the D∗−γ system based on 123 million BB events, assuming that a B0 → D∗−γX
decay took place. To extract the signal yield an unbinned maximum-likelihood fit
to the mmiss distribution is applied. The signal peak is well modeled by a Gaussian,
while the combinatorial background is described with the threshold function given in
Equation 5.12. From the measured event yield, the B0 → D∗+

s D∗− branching fraction
is computed to be [54]

B(B0 → D∗+
s D∗−) = (1.88 ± 0.09 ± 0.17)%, (5.17)

where the first uncertainty is statistical and the second is systematic. This result is
independent of the partial decay rates of the D+

s mesons and consistent with Equa-
tion 5.13. Although, it reduces the total uncertainty by a factor of about three.

Full reconstruction of the B0 → D∗+
s D∗− decay via D+

s → φπ+ (φ → K+K−)
measures the branching fraction product B(B0 → D∗+

s D∗−) × B(D+
s → φπ+). The

number of fully reconstructed B0 candidates is obtained from a fit to the mES spec-
trum. Fit is performed with the sum of a Crystal Ball [55] function, and a threshold
ARGUS function [47]; the latter accounts for the combinatorial background. Fig-
ure 5.8 shows the fit of the fully reconstructed data sample. Combination of the
yields of two methods results:

B(D+
s → φπ+) = (4.81 ± 0.52 ± 0.38)%, (5.18)

where the first uncertainty is statistical and the second is systematic. The main source
of the systematic uncertainty is due to modeling of the signal and background shapes.
This result represents an improvement by about a factor of two over previous mea-
surements [52, 56].
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Figure 5.7: D∗−π+ missing mass distri-
butions of data events. The curves show
the result of the fit (see text) indicating
the signal and background distributions.

Figure 5.8: Fit (solid line) to the mea-
sured mES distribution. The background
component is shown as the dashed line.

5.5 Conclusion

The first BABAR data allowed one to develop a dedicated technique of partial recon-
struction for many decay channels. Although not all B decay channels can be studied
by this method, an unique opportunity of precise measurements of important quan-
tities occurs due to high selection efficiency enhanced by non reconstructed meson.
Asides branching fractions, such fundamental quantities as the B0 lifetime τB0 and
the B0 −B0 mixing frequency ∆md were measured [57, 58].

Bunches of unique measurements have been performed with the partially recon-
structed B0 → D∗+l−ν̄l decay mode. The first direct measurement of the branching
fraction f00 for Υ (4S) → B0B0 reported in Ref. [59]

f00 = 0.487 ± 0.010(stat) ± 0.008(syst) (5.19)

does not depend on the branching fractions of B0 → D∗+l−ν̄l and D∗+ → D0π+,
on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of
isospin symmetry. The most precise measurement of τB0 and ∆md exploits the partial
reconstruction of B0 → D∗+l−ν̄l decays. With a sample of about 50 000 lepton-tagged
signal events the following results are obtained [58]:

τB0 = (1.504 ± 0.013 (stat) +0.018
−0.013 (syst)) ps,

∆md = (0.511 ± 0.007 (stat) +0.007
−0.006 (syst)) ps−1. (5.20)

Dedicated studies using a partial reconstruction technique with the BABAR detec-
tor allowed a reliable application of this method for precision measurements of CP
violation which are discussed in the next chapter.
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Chapter 6

CP violation in B0 → D∗∓π± decays

This chapter describes my activity in the analysis of BABAR data since 2003. At
that time, BABAR had recorded approximately 80 fb−1 of integrated luminosity, and
therefore, a measurement of small CP violation effects become feasible. Previous thor-
ough investigations of the method of partial reconstruction for the B decays allowed
us to apply reliably this method for the challenges of time-dependent CP violation
measurements in B0 → D∗∓π± channel.

The first measurement of CP asymmetry in the B0 → D∗∓π± decays has been
presented at the EPS 2003 conference in Aachen and, then, published in “Physical Re-
view Letter” [60]. As a next step of this program, an updated result using 232 millions
of BB events recorded by the BABAR experiment, has been published in “Physical Re-
view D” [61]. This work has been performed in collaboration with Marco Zito, Marie
Legendre and Abi Soffer. I have also presented the complete review and perspectives
of sin(2β + γ) measurement for the CKM workshops [62, 63]. The publications and
workshop proceedings are presented in Appendix E.

In the first part of this chapter I briefly summarize the experimental methods that
allow the measurement of the UT angle γ. The main section presents the analysis
highlights and the results of CP violation measurement in the B0 → D∗∓π± decays
with a partial reconstruction technique. I also describe the frequentistic method used
to constrain sin(2β + γ). Finally, the current experimental status and the future
perspectives of sin(2β + γ) measurement are discussed.

6.1 Measurements of CKM angle γ

Measuring the angles of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity trian-
gle [9] allow us to overconstrain this triangle and to test the Standard Model inter-
pretation of CP violation in the quark sector. A crucial step in this scientific program
is the measurement of the angle γ = arg (−VudV

∗
ub/VcdV

∗
cb) of the unitarity triangle

(UT) related to the CKM matrix. The experimentalists concentrate on two major
methods to measure the UT angle γ. One method exploits the time-dependent anal-
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ysis of the B0 → D(∗)∓π± decays. Another method utilizes the measurement of direct
CP violation in B+ → DK+, where the neutral D can be both D0 and D0 (and where
D0 also stands for D∗0).

The neutral B meson decay modes B0 → D∗∓h±, where h is a light hadron
(π, ρ, a1), have been proposed for use in measurements of sin(2β + γ) [64], where
β = arg (−VcdV

∗
cb/VtdV

∗
tb). Indeed, the decay B0 → D(∗)∓π± can proceed either via the

doubly-Cabibbo-suppressed b→ uc̄d (Au) transition, or by B0−B0 mixing followed by
the Cabibbo-favored b̄→ c̄ud̄ (Ac) transition, as shown in Figure 6.1. The interference
of these two amplitudes results in sensitivity to sin(2β + γ), and the size of the
interference effect depends on the ratio of the magnitudes of the two amplitudes
(usually denoted rD(∗)π). Since Au is doubly CKM-suppressed with respect to Ac,
one expects rD(∗)π to be small of order 2%. Although the D(∗)∓π± final states are
abundant, the smallness of rD(∗)π makes the CP violation effect hard to measure and,
since it must be extracted from a large number of events, sensitive to systematic
errors. Furthermore, while there are two observables for each final state, there are
also two hadronic parameters (rD(∗)π and δD(∗)π, the strong phase difference between
the decay amplitudes), and therefore it is difficult to cleanly extract the weak phase
information, although approaches based on, e.g. SU(3) symmetry exist.

W+

B0 D∗−

π+

d
b̄ c̄

d

d̄
u W−

B0 π+

D∗−

d̄

b u

d̄

c̄

d

Figure 6.1: Feynman diagrams for the Cabibbo-favored decay B0 → D∗−π+ (left),
corresponding to the decay amplitude Ac, and the Cabibbo-suppressed decay B0 →
D∗−π+ (right), whose amplitude is Au.

The decays B → D(∗)K(∗) provide the cleanest method to determine γ. The
method employs the interference between b → cūs and b → uc̄s when the final state
is accessible to both D0 and D0 mesons. The theoretical uncertainty is completely
negligible, and effects due to mixing and CP violation in the neutral D sector can
be taken into account. There are important hadronic parameters: the ratio of the
magnitudes of the two amplitudes and the strong phase difference between them
(these are usually denoted rB and δB), that can be extracted from the data. The
B decay modes which have been exploited up to date are B± → DK±, D∗K± and
DK∗±, and in each case the D decay modes to CP eigenstates (principally K+K− for
CP -even and KSπ

0 for CP -odd) [65] (GLW), doubly-Cabibbo-suppressed final states
(K∓π±) [66] (ADS), and multibody final states (K0

S
π+π−) [67] (GGSZ) can be used

to constraint the CKM angle γ. One of the major developments of the B factories
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over the past few years has been the use of the multibody decay D → K0
S
π+π−. The

rich interference pattern across the Dalitz plot results in regions which are highly
sensitive to γ; in addition this mode is reasonably clean experimentally, due to its
large product branching fraction and clean signal. However, in order to perform an
unbinned fit it is necessary to make an assumption about the strong phase variation
across the Dalitz plot which results in model uncertainty, currently estimated to
be ∼ 10◦ on γ. To reduce this, additional studies of the Dalitz plot structure are
necessary, and the results using D mesons coherently produced in ψ(3770) → DD̄ at
charm-tau factories play a particularly crucial role.

6.2 Measurement of sin(2β + γ) with B0 → D∗∓π±

The data sample used in this analysis consists of 211 fb−1 collected on the Υ (4S)
resonance (on-resonance sample), and 21 fb−1 collected at an e+e− center-of-mass
(CM) energy approximately 40 MeV below the resonance peak (off-resonance sample).

6.2.1 B0 → D∗∓π± decays

The time-dependent decay rates for B → D∗±π∓ decays can be written as

P(Btag = B0, D∗−π+) =
e−|∆t|/τ

4τ
× [1 − C cos(∆m∆t) −S+ sin(∆m∆t)

]

,

P(Btag = B0, D∗+π−) =
e−|∆t|/τ

4τ
× [1 + C cos(∆m∆t) −S− sin(∆m∆t)

]

,

P(Btag = B0, D∗−π+) =
e−|∆t|/τ

4τ
× [1 + C cos(∆m∆t) +S+ sin(∆m∆t)

]

,

P(Btag = B0, D∗+π−) =
e−|∆t|/τ

4τ
× [1 − C cos(∆m∆t) +S− sin(∆m∆t)

]

(6.1)

where τ is the B0 lifetime averaged over the two mass eigenstates, ∆m is the B0−B0

mixing frequency, and ∆t is the difference between the time of the B → D∗±π∓ (Brec)
decay and the decay of the other B (Btag) in the event. The parameters C and S±

are given by

C ≡ 1 − r∗2

1 + r∗2
, S± ≡ 2(−1)Lr∗

1 + r∗2
sin(2β + γ ± δ). (6.2)

Here δ is the strong phase difference between Au and Ac
1 and r ≡ |Au/Ac|, L = 1 is

the angular momentum of the D∗π final state [68]. As mentioned above, due to the

1The definition of δ is subject to additional π terms, which are redundant with the discrete
ambiguity 2β + γ → 2β + γ + π, δ → δ + π. For consistency in the PDF definitions between
different BABAR publications, the angular momentum factor (−1)L is neglected. However, if the sign
of cos δ is fixed, for example, through factorization arguments, it becomes important since the sign
of sin(2β + γ) can be determined.
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small value of r ∼ 10−2, large data samples are required for a statistically significant
measurement of S. With this respect, extraction of r∗ from the data by fitting the
cosine term is impossible with the current statistics. The interpretation of the mea-
sured asymmetries in terms of sin(2β+γ) requires an assumption regarding the value
of r∗, discussed in Section 6.2.8.

6.2.2 Partial reconstruction of B0 → D∗∓π± decays

In the partial reconstruction of a B0 → D∗∓π± candidate, only the hard pion track
from the B decay and the soft pion track πs from the decays D∗− → D0π−

s or
D∗+ → D0π+

s are reconstructed. The cosine of the angle between the momenta of the
B0 and the hard pion in the CM frame is then computed (see Equation 5.9):

cos θBh =
M2

D∗−
−M2

B0 −M2
π + ECMEh

2pB0ph

, (6.3)

where Eh and ph are the measured CM energy and momentum of the hard pion.
Events are required to be in the physical region | cos θBh| < 1. Given cos θBh and the
measured momenta of the πh and πs, the B four-momentum can be calculated up
to an unknown azimuthal angle φ around ph. For every value of φ, the expected D
four-momentum PD(φ) is determined from four-momentum conservation, and the cor-

responding φ-dependent invariant mass m(φ) ≡
√

|PD(φ)|2 is calculated. One defines

the missing mass mmiss ≡ 1
2
[mmax +mmin], where mmax and mmin are the maximum

and minimum values that m(φ) may obtain. In signal events, mmiss peaks at the nom-
inal D0 mass MD0 , with a spread of about 3 MeV/c2 (Fig. 6.2). We find this choice
of the azimuthal angle φ to be the most convenient for the further modelization of
the signal (see Section 6.2.5). The distribution for combinatoric background events is
significantly broader, making the missing mass the primary variable for distinguishing
signal from background. With the arbitrary choice φ = 0, one uses four-momentum
conservation to calculate the CM D and B momentum vectors, which are used in the
event selection as described below.

6.2.3 Backgrounds and event selection

In addition to B0 → D∗∓π± events, the above procedure yields a sample containing
the following kinds of events: B → D∗∓ρ±; peaking BB background (other than
B → D∗∓ρ±), defined as pairs of tracks coming from the same B meson, with the
soft pion originating from the decay of a charged D∗, including contributions from
B → D∗∗π as well as non-resonant B → D∗ππ decays; combinatoric B background,
defined as all remaining BB background events; continuum e+e− → qq, where q
represents a u, d, s, or c quark. Using the fact that B mesons are produced almost at
rest, the BB events are spherical while the continuum events have a jet-like shape.
This background can be significantly reduced.
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Figure 6.2: The mmiss distributions for on-resonance lepton-tagged (top) and kaon-
tagged (bottom) data. The curves show, from bottom to top, the cumulative con-
tributions of the continuum, peaking BB, combinatoric BB, B → D∗∓ρ±, and
B0 → D∗∓π± PDF components.

To suppress the continuum background, the ratio of the second to the zeroth Fox-
Wolfram moment [48], computed using all charged particles and EMC clusters not
matched to tracks, is required to be smaller than 0.40. To further discriminate against
continuum events, fifteen event shape variables are combined into a Fisher discrimi-
nant F [69]. Rather than applying requirements to the variable F , it is included in
the fits described below. This allows maximizing the reconstruction efficiency of the
signal. Hard pion candidates are required to be reconstructed with at least twelve
DCH hits. Kaons and leptons are rejected based on information from the IFR, DIRC,
energy loss in the SVT and DCH, or the ratio of the candidate’s EMC energy deposi-
tion to its momentum (E/p). Let us define the D∗ helicity angle θD∗ to be the angle
between the flight directions of the D and the B in the D∗ rest frame, calculated with
φ = 0. Taking advantage of the longitudinal polarization in signal events, to suppress
the background yield, it is required | cos θD∗| to be larger than 0.4. All candidates are
required to be in the range 1.81 < mmiss < 1.88 GeV/c2. When multiple candidates
are found in the same event, only the one with the mmiss value closest to MD0 is used.
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6.2.4 Decay time measurement and flavor tagging

Let us define zrec to be the decay position along the beam axis of the partially re-
constructed B candidate. To find zrec, we fit the hard pion track with a beam spot
constraint in the plane perpendicular to the beams, the (x, y) plane. The actual ver-
tical beam spot size is approximately 5 µm, but the constraint is taken to be 30 µm
in the fit in order to account for the B flight distance in the (x, y) plane. The soft
pion is not used in the fit, since it undergoes significant multiple scattering.

The decay position ztag of the other B in the event (the tag B) along the beam
axis is obtained from all other tracks in the event, excluding all tracks whose CM
momentum is within 1 rad of the D CM momentum. The remaining tracks are fit
with a beamspot constraint in the (x, y) plane. The track with the largest contribution
to the χ2 of the vertex, if greater than 6, is removed from the vertex, and the fit is
carried out again, until no track fails this requirement.

Then the decay distance and the decay-time difference are computed as ∆z =
zrec − ztag and ∆t = ∆z/(γβc), respectively. The machine boost parameter γβ is
calculated from the beam energies, and its average value over the run period is 0.55.
The vertex fits used to determine zrec and ztag also yield the ∆z error σ∆z which is
used to compute the event-by-event ∆t error σ∆t.

The flavor of the tag B is determined from lepton and kaon candidates. The
lepton CM momentum is required to be greater than 1.1 GeV/c in order to suppress
“cascade” leptons originating in charm decays. Electron candidates are identified
using E/p, and the Cherenkov angle and number of photons detected in the DIRC.
Muons are identified by the depth of penetration in the IFR. Kaons are identified using
the ionization measured in the SVT and DCH, and the Cherenkov angle and number
of photons detected in the DIRC. In either the lepton or kaon tagging category, if
several tagging tracks are present, the track used for tagging is the one with the
largest value of θtag, the CM-frame angle between the track momentum and the D
momentum. This is done in order to minimize the impact of tracks originating from
the unreconstructed D. If there are both identified leptons and kaons in the event,
the event is tagged using the lepton tracks only.

The following criteria are applied in order to obtain good ∆t resolution: the χ2

probability of the zrec vertex fit must be greater than 0.001; at least two tracks must
be used for the tag B vertex fit; σ∆t is required to be less than 2 ps; and |∆t| is
required to be less than 15 ps. To minimize the impact of tracks coming from the
unreconstructed D, only tagging leptons (kaons) satisfying cos θtag < 0.75 (cos θtag <
0.50) are retained.

6.2.5 Probability density function

The analysis is carried out with a series of unbinned maximum likelihood fits per-
formed independently for the lepton-tagged and kaon-tagged events. The probability
density function (PDF) depends on the variables mmiss, ∆t, σ∆t, F , st, and sm, where
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st = 1 (−1) when the Btag is identified as a B0 (B0), and sm = 1 (−1) for “unmixed”
(“mixed”) events. An event is labeled unmixed if the πh is a π−(π+) and the Btag is
a B0(B0), and mixed otherwise. The PDF for on-resonance data is a sum over the
PDFs of the different event types:

P =
∑

i

fi Pi, (6.4)

where the index i = {D∗π,D∗ρ, peak, comb, qq} indicates one of the event types
described above, fi is the relative fraction of events of type i in the data sample, and
Pi is the PDF for these events. The PDF for off-resonance data is Pqq. Each of the
PDFs Pi is a product of the form,

Pi = Mi(mmiss)Fi(F ) T ′
i (∆t, σ∆t, st, sm), (6.5)

where the functions appearing in the equation above, are motivated by MC studies
and described below.

The mmiss PDF for each event type i is the sum of a bifurcated Gaussian plus
an ARGUS function [47]. The proportionality constants are such that each of these
functions is normalized to unit area. The Fisher discriminant PDF Fi for each event
type is a bifurcated Gaussian. The parameter values of FD∗π, FD∗ρ, Fpeak, and Fcomb

are identical.
The ∆t PDF T ′

D∗π(∆t, σ∆t, st, sm) for signal events corresponds to Equation 6.1
with O(r∗2) terms neglected, but has to be modified to account for several experi-
mental effects. The first effect has to do with the origin of the tagging track. In some
of the events, the tagging track originates from the decay of the missing D. These
events are labeled “missing-D tags” and do not provide any information regarding the
flavor of the Btag. In lepton-tagged events, we further distinguish between “direct”
tags, in which the tagging lepton originates directly from the decay of the Btag, and
“cascade” tags, where the tagging lepton is a daughter of a charmed particle produced
in the Btag decay. The second experimental effect is the finite detector resolution in
the measurement of ∆t. To address this effect, the distribution of the true decay time
difference ∆ttr is convoluted with a detector resolution function. Putting these two
effects together, the ∆t PDF of signal events is

T ′
D∗π(∆t, σ∆t, st, sm) = (1 + st ∆εD∗π)

∑

j

f j
D∗π ×

∫

d∆ttr T j
D∗π(∆ttr, st, sm)Rj

D∗π(∆t− ∆ttr, σ∆t), (6.6)

where ∆εD∗π is half the relative difference between the detection efficiencies of positive
and negative leptons or kaons, the index j = {dir, cas, miss} indicates direct, cascade,
and missing-D tags, and f j

D∗π is the fraction of signal events of tag-type j in the
sample. One sets fdir

D∗π = 1 − f cas
D∗π − fmiss

D∗π for lepton tags, with the value f cas
D∗π =

0.12 ± 0.02 obtained from the MC simulation. For kaon tags f dir
D∗π = 0. The function
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T j
D∗π(∆ttr, st, sm) is the ∆ttr distribution of tag-type j events, and Rj

D∗π(∆t−∆ttr, σ∆t)
is their resolution function, which parameterizes both the finite detector resolution
and systematic offsets in the measurement of ∆z, such as those due to the origin of
the tagging particle.

The TD∗π(∆ttr, st, sm) function for signal events in Equation 6.6 has additional
parameters to account for imperfect flavor tagging. Let us define ωB0 (ωB0) to be the
mistag probability of signal events whose tag B was tagged as a B0 (B0), when the
tagging track is a daughter of the tag B. Then ω = (ωB0 + ωB0)/2 is the average
mistag rate, and ∆ω = ωB0 − ωB0 is the mistag rate difference. One further defines
ρ to be the probability that the tagging lepton or kaon from the unreconstructed
D produced in the B0 → D∗∓π± decay, results in a mixed flavor tag. With these
definitions, the signal PDF is written as

T j
D∗π(∆ttr, st, sm) =

e−|∆ttr|/τ

4τ
×

{

(1 − fmiss
D∗π )[1 − st ∆ωj

D∗π

+sm (1 − 2ωj
D∗π) cos(∆mD∗π∆ttr)

−Sj
D∗π sin(∆mD∗π∆ttr)] + fmiss

D∗π (1 + sm (1 − 2ρ))
}

, (6.7)

where j = {dir, cas}. The last term accounts for the tags due to daughters of the
unreconstructed D. The factor Sj

D∗π describes the effect of interference between b→
uc̄d and b → cūd amplitudes in both the Brec and the Btag decays:

Sj
D∗π = (1 − 2ωj

D∗π) (staD∗π + smcD∗π) + stsmbD∗π(1 − st∆ω
j
D∗π), (6.8)

where aD∗π, bD∗π, and cD∗π are related to the physical parameters through

aD∗π ≡ 2r∗ sin(2β + γ) cos δ∗,

bD∗π ≡ 2r′ sin(2β + γ) cos δ′,

cD∗π ≡ 2 cos(2β + γ)(r∗ sin δ∗ − r′ sin δ′), (6.9)

and r′ (δ′) is the effective magnitude of the ratio (effective strong phase difference)
between the b→ ucd and b → cud amplitudes in the Btag decay. This parameterization
neglects terms of order r∗2 and r′2. Only aD∗π and bD∗π are related to CP violation,
while cD∗π can be non-zero even in the absence of CP violation when 2β+γ = 0. The
inclusion of r′ and δ′ in the formalism accounts for cases where the Btag undergoes
a b → uc̄d decay, and the kaon produced in the subsequent charm decay is used for
tagging [70]. It is expected that r′ ∼ 0.02. In lepton-tagged events r′ = 0 (and hence
bD∗π = 0) because most of the tagging leptons come from B semileptonic decays to
which no suppressed amplitude with a different weak phase can contribute.

The ∆t PDF of B → D∗∓ρ± has the same functional form and parameter values
as the signal PDF, except that the weak phase parameters aD∗ρ, bD∗ρ, and cD∗ρ are
set to 0 and are later varied to evaluate systematic uncertainties. The ∆ttr PDF for
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the combinatoric and the peaking BB background have the same functional form as
Equation 6.7 and the subsequent expressions, Equations 6.8, 6.9, but with indepen-
dent values for the parameters. The parameterization of the ∆ttr PDF for the peaking
BB background accounts separately for charged and neutral B decays. The ∆ttr PDF
for the continuum background is the sum of two components, one with a finite lifetime
and one wit zero lifetime. To account for the finite detector resolution and systematic
offsets in the measurement of ∆z, all background PDFs are also convoluted with the
resolution function.

The resolution function for events of type i and optional secondary type j (j =
{dir, cas, miss} for lepton-tagged signal events and j = {+, 0} for the peaking and
combinatoric BB background types) is parameterized as the sum of three Gaussians:

Rj
i (tr, σ∆t) = fnj

i Gnj
i (tr, σ∆t) + (1 − fnj

i − f oj
i )Gwj

i (tr, σ∆t)

+ f oj
i Goj

i (tr), (6.10)

where tr = ∆t − ∆ttr is the residual of the ∆t measurement, and Gnj
i , Gwj

i , and Goj
i

are the “narrow”, “wide”, and “outlier” Gaussians. The narrow and wide Gaussians
incorporate information from the ∆t uncertainty σ∆t, and account for systematic off-
sets in the estimation of σ∆t and the ∆t measurement. The outlier Gaussian accounts
for a small fraction of events with badly measured ∆t.

6.2.6 Analysis procedure

The analysis takes place in four steps, each involving maximum likelihood fits, carried
out simultaneously on the on- and off-resonance data samples:

1. Kinematic-variable fit: The data are fitted with the PDF in Equation 6.4, but
with Equation 6.5 replaced by

Pi(mmiss, F ) = Mi(mmiss)Fi(F ). (6.11)

The parameters determined in this fit are fD∗ρ +fD∗π, fpeak, and fcomb in Equa-
tion 6.4, the parameters of Mqq(mmiss), and those of Fi(F ) for both continuum
and BB events.

2. fmiss
D∗π and ρ fit: The kinematic-variable fit is repeated to determine the number of

signal events above and below the cut on cos θtag (see section 6.2.4). These values
are then used to compute the values of fmiss

D∗π and ρ in the ∆t PDF (Equation 6.7).
This is done using values for the efficiencies of the cut on cos θtag determined
from the Monte Carlo simulation. We calculate fmiss

D∗π = 0.011± 0.001 for lepton
tagged events and fmiss

D∗π = 0.055 ± 0.001 for kaon-tagged events.

3. Sideband fit: To obtain the parameters of the combinatoric BB PDF T ′
comb, the

fit of the mmiss sideband 1.81 < mmiss < 1.84 GeV/c2 is performed. The PDF in
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Equation 6.4 is used in this fit, with fD∗ρ +fD∗π +fpeak = 0 and fcomb +fqq = 1,
to account for the fact that the sideband is populated only by continuum and
combinatoric BB events. The value of fcomb and the parameters of T ′

comb, as
well as those of T ′

qq in the sideband are also floated in this fit.

4. Signal-region fit: Using the parameter values obtained in the previous steps, the
fit of the data in the signal region 1.845 < mmiss < 1.880 GeV/c2 is performed.
This fit determines all the floating parameters of the signal PDF T ′

D∗π, and the
parameters of the continuum PDF T ′

qq.

In steps 3 and 4 a possible difference between the B0 and B0 tagging efficiencies which
may be different for each event type, is also fitted. In order to minimize the possibility
of experimenter bias, step 4 of the analysis is carried out in a “blind” manner, such
that the values of aD∗π, bD∗π and cD∗π are hidden from the analysts until all the
systematic errors have been evaluated.

Several validity tests of the analysis procedure have been performed using the MC
simulation. The entire analysis procedure is carried out on a MC sample containing
four times the number of events observed in the data. The values of the most impor-
tantly parameters obtained in these MC fits are consistent with the input parameters
to within the statistical uncertainties.

6.2.7 Results

Summarizing the values and uncertainties of the weak phase parameters, one obtains
the following results from the lepton-tagged sample:

a`
D∗π = −0.042 ± 0.019 ± 0.010,

c`D∗π = −0.019 ± 0.022 ± 0.013. (6.12)

The results from the kaon-tagged sample fits are

aK
D∗π = −0.025 ± 0.020 ± 0.013,

bKD∗π = −0.004 ± 0.010 ± 0.010,

cKD∗π = −0.003 ± 0.020 ± 0.015. (6.13)

Combining the results for lepton and kaon tags gives the amplitude of the time-
dependent CP asymmetry,

aD∗π = 2r∗ sin(2β + γ) cos δ∗

= −0.034 ± 0.014 ± 0.009, (6.14)

where the first error is statistical and the second is systematic. The systematic error
takes into account correlations between the results of the lepton- and kaon-tagged
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samples coming from the systematic uncertainties related to detector effects, to in-
terference between b → uc̄d and b → cūd amplitudes in the backgrounds and from
B(B → D∗∓ρ±). The dominant systematic error arises from the uncertainty in the
weak phase parameters of the B → D∗∓ρ±, peaking and combinatoric BB back-
ground. This value of aD∗π deviates from zero by 2.0 standard deviations. Although
it is the most precise CP violation measurement in the decays of B mesons at this
time, the statistical error is still dominant.
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Figure 6.3: Raw asymmetry for (a) lepton-tagged and (b) kaon-tagged events. The
curves represent the projections of the PDF for the raw asymmetry.

6.2.8 Constraint on sin(2β + γ)

Two methods for interpreting these results in terms of constraints on | sin(2β + γ)|
are used. Both methods involve minimizing a χ2 function that is symmetric under
the exchange sin(2β + γ) → − sin(2β + γ),

Due to the fact that the minimum value of the χ2 may occur at the boundary of
the physical region (| sin(2β+γ)| = 1), the errors naively obtained from the variation
of the χ2 functions are not relevant. In order to give a probabilistic interpretation to
the results, we apply the Feldman-Cousins method [71] to set limits on | sin(2β+ γ)|.

In the first method, no assumption regarding the value of r∗ is made. The re-
sulting 95% lower limit for the mode B0 → D∗∓π± is shown as a function of r∗ in
Figure 6.4. The χ2 function is invariant under the transformation 2β + γ → π/2 + δ∗

and δ∗ → π/2 − 2β + γ. The limit shown in this figure is always the weaker of these
two possibilities.

The second approach, originally proposed in Ref. [64], assumes SU(3) flavor sym-
metry to estimate r∗ from the Cabibbo angle, the ratio of branching fractions B(B0 →
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D∗+
s π

−)/B(B0 → D∗−π+) [72], and the ratio of decay constants fD∗/fD∗

s
[73],

r∗ = tan θC

√

√

√

√

B(B0 → D∗+
s π

−)

B(B0 → D∗−π+)

fD∗

fD∗

s

(6.15)

Using our measurement of B(D+
s → φπ+) [54] (see also Section 5.4), one finds

r∗meas = 0.015+0.004
−0.006 (6.16)

The approximation above takes into account the main (factorisable) SU(3) breaking
effects by including the ratio of the decay constants fD∗/fD∗

s
. However, to compute

the confidence level, additional 30% relative error is attributed to the theoretical
assumption in extraction of the value of r∗ from Equation 6.16. Figure 6.5 shows
the result of the frequentistic computation of the confidence level as a function of
| sin(2β + γ)|. This method yields the lower limits | sin(2β + γ)|>0.62 (0.35) at 68%
(90%) C.L. It is important to note that non factorisable SU(3) breaking corrections
such as W -exchange contributions to the B0 → D∗−π+ decay amplitude are expected
to be small. Indeed, they were estimated to be of the order of 15% for r∗ [74].

6.3 Status and perspectives

Study of the neutral B meson decay modes B0 → D(∗)∓h±, where h is a light hadron
(π, ρ), are being actively pursued experimentally by BABAR [61, 75] and BELLE [76]
experiments. Both experiments have used partial reconstruction techniques to increase
the signal yields in the D∗∓π± channel. In addition to D∓π± and D∗∓π± decays,
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BABAR has also investigated D∓ρ± with a full reconstruction technique. Figure 6.6
shows the present experimental results obtained by BABAR and BELLE experiments
for the CP violating parameter a. Although rather different techniques have been
employed, most notably to deal with the troublesome possibility of CP violation
effects on the flavor tagging side of the Υ (4S) → BB̄ event, the results are consistent
at the current level of precision. The combined result for CP violation in the most
precisely measured decay channel D∗∓π± is

aD∗π = 2r∗ sin(2β + γ) cos δ = −0.037 ± 0.011 (6.17)

This measurement performed at the level of one per cent, deviates from zero by 3.4
standard deviations. Future updates are therefore of a great interest.

Figure 6.7 shows the constraint for the UT angle γ obtained from the different
analysis measurements, described in Section 6.1. One can see, the sin(2β + γ) mea-
surement provides remarkable contribution to the combined fit. As GGSZ method,
it also allows excluding of the multiple solution γ → π − γ relevant to the ADS and
GLW methods.
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tained by BABAR and BELLE experi-
ments from the measurement of time-
dependent CP asymmetries in B0 →
D(∗)∓π±(ρ∓).

Figure 6.7: Confidence level of the UT
angle γ from the various measurements.
The prediction from the standard CKM
fit is also shown [74].

Some related modes may also provide a measurement of 2β + γ. B0 → D∗∓ρ±

has a vector-vector final state, and the interfering amplitudes result in an increased
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number of observables, so that all parameters can, in principle, be extracted from
the data. However, this mode is experimentally challenging, e.g. the polarization
measurement is sensitive to systematic effects, and recent results for the branching
fraction measurements of the SU(3) partners suggest that the CP violation effect may
be even smaller than expected.

Larger effects are expected to be found in modes mediated by the b → cūs &
b→ uc̄s transitions, such as B0 → DK(∗) [77]. Due to relatively large rB ≡ |A(B0 →
D̄(∗)0K̄0)|/|B0 → D(∗)0K̄0)| ' 0.4, these decay channels look very attractive for such
a measurement. Since the parameter rB can be measured with sufficient data sam-
ple by fitting the C coefficient in time distributions, the measured asymmetry can
be interpreted in terms of sin(2β + γ) without additional assumptions. However, the
branching fractions of such decays are relatively small (∼ 5 ·10−5). The BABAR exper-
iment has measured the branching fractions of B0 → D(∗)0K̄(∗)0 [78] and estimated
the upper limit for rB < 0.40 at the 90% C.L. Thus, the present signal yields suggest
that a substantially larger data sample is needed for a competitive time-dependent
measurement of sin(2β + γ) with these decay channels.

Recently it was proposed to consider the B0 → D(∗)∓a±0(2) decays for measurement
of sin(2β+γ) [79]. The decay amplitudes of B mesons to light scalar or tensor mesons
such as a+

0 or a+
2 are significantly suppressed due to the small decay constants fa0(2)

.
Thus, the absolute value of the CKM-suppressed and favored amplitudes become
comparable. As a result, the CP asymmetry in such decays is expected to be large.
However, the theoretical predictions of the branching fractions for B0 → D(∗)∓a±0(2) is

expected of the order of (1 ÷ 4) · 10−6 [80]. The measured upper limits for the SU(3)
partners B0 → D(∗)+

s a−0(2) [81] suggest that the branching ratios of B0 → D(∗)+a−0(2)
are too small for CP -asymmetry measurements given the present statistics of the B-
factories. The measurement of sin(2β + γ) in B0 → D(∗)+a−0(2) decays could be an
interesting program for the future experiments such as SuperB-factories.

Another interesting mode is Bs → D(∗)±
s K∓. In this case the Bs mixing phase φs

replaces 2β, so the time-dependence probes φs + γ. Since r
D

(∗)
s K

is expected to be
reasonably large, there will be sufficient observables to extract all parameters from
the data and resolve the problem of multiple solutions [68]. This approach looks very
promising for the LHCb experiment.
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Conclusion

The BABAR experiment has been running very successfully since 1999. In 2001, CP
violation in the system of neutral B mesons has been discovered. The measurement of
the time-dependent CP asymmetry in theB0 → J/ψK0

S
decays allowed us to constrain

the CKM parameter sin 2β and, therefore, claim the large CP violation in the system
of B mesons predicted by the Standard Model. After this great success, further precise
tests of the Standard Model through the measurements of the angles and the sides
of the Unitarity Triangle have been performed. No significant discrepancy between
experiment and theoretical expectations is observed up to now.

A powerful particle identification system over a large range of solid angle and
momentum, in the development of which I have contributed, is an essential ingredient
to meet the requirements of CP violation measurements. Indeed, the tagging of the
B flavor and a high reconstruction efficiency for charmless B → hh, (h = π,K)
decays require identification of kaons in the momentum range up to about 4 GeV/c.
The achieved performances of the DIRC system provide an excellent possibility to
perform the physics program of the BABAR experiment. Determination of the CKM
angle α that exploits the charmless decays, observation of the direct CP violation in
the B0 → K+π− decays and discovery of the D0-D0 mixing, are some examples of the
highlights that would not occur without a dedicated particle identification system.

I have been involved in the design of the BABAR magnet system that plays a central
role in the detector design. The BABAR magnet has been successfully commissioned
without compromising the high luminosity of the accelerator. Operation disturbance
of the PEP-II beam elements by the BABAR magnet was observed to be minimal.
I have also contributed in the precision measurement of the magnetic field in the
central tracking volume. The results of this work have been applied in the global
reconstruction algorithm of the charged particles in the detector.

Two main methods of B meson reconstruction, full and partial reconstruction, are
employed in BABAR. Being one of the conveners of the group which exploits the partial
reconstruction technique, I have been deeply involved in the development of this
reconstruction method. Due to high selection efficiency enhanced by non reconstructed
meson, precise measurements of B0 → D(∗)+

s D∗− and D+
s → φπ+ branching fractions

have been performed. It is important to note that the most precise measurements of
such fundamental quantities as the B0 lifetime (τB0

d
) and the B0−B0 mixing frequency

(∆md) have also exploited the method of partial reconstruction.
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The key point of this report and of my research in BABAR is a precise CP violation
measurement in the decays of B0 mesons into D∗∓π± final state. Due to low ratio of
Cabibbo-favored over Cabibbo-suppressed amplitudes (about 2%) the expected CP
asymmetry in this mode is very small. Thanks to the partial reconstruction technique,
the CP asymmetry in this decay mode has been measured with a precision as good as
about 1.5%. This allowed us to obtain a significant constraint on the CKM parameter
sin(2β + γ). Together with the other measurements of the CKM angle γ that involve
the B → D(∗)K(∗) decays, this provides a significant contribution to the test of the
Standard Model.

Finally, I would like to characterize my scientific work in BABAR by two words:
complementary and coherent. Complementary, because my commitment in the design
and construction of the particle identification system allowed me to exploit its high
performances in the study of the B0 → D(∗)+

s D∗− decays and the kaon tagging of the
B flavor in the time-dependent CP asymmetry measurements; my research experience
in the magnetic field calculations and measurements of the fringe fields for the DIRC
photomultipliers has subsequently been used for the field mapping in the volume
of the central tracker and BABAR magnet simulations. Coherent, because, my deep
involvement in the development of the method of a partial reconstruction technique
is connected with the challenges of the B0 → D∗∓π± decay reconstruction using this
method and subsequently the measurement of CP asymmetry with it; the improved
measurement of the D+

s → φπ+ branching fraction provides a straightforward input
in the sin(2β + γ) constraint using SU(3) flavor symmetry.

In summer 2005, I have joined the CMS collaboration to work on this LHC experi-
ment. I am involved in the commissioning of the electromagnetic calorimeter (ECAL),
where the CMS-Saclay group has the responsibility to build the laser-monitoring
system that allows corrections for PbWO4 crystal transparency changes due to ir-
radiation. I have also performed a study of the feasibility to measure Triple Gauge
Couplings with the pp → Z0Z0 → 4l reaction at CMS. The result of this study has
been included in the “Physics Technical Design Report” of CMS [82] in 2006 and
published in Ref. [83]. I am looking forward to the LHC era, where my main scientific
activity is related to the commissioning and the various physics searches in the CMS
experiment.
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Appendix A

Field Measurement of the BABAR

Solenoid

The Mermaid computing code has been successfully used to calculate the magnet
system of the particle detector for a High Energy Physics experiment for the first
time. The results of this work, in which I have participated, are described in BABAR

Note#344 “Magnetic Field Calculations in the BABAR Detector”.
This appendix summarizes the results of measurements and modeling of magnetic

field of the BABAR solenoid in the central tracking region. They were obtained in
collaboration with SLAC magnet group and described in BABAR Note#514 “Field
Measurement of the BABAR Solenoid”.

The BABAR experience of magnetic field calculations and field mapping in the
central tracking volume has been shared with the other collaborations such as ATLAS
and T2K. I have been invited to present the BABAR field map experience on the
ATLAS magnetic field workshops held at CERN, March and November 2005 and
meeting of the T2K tracker group. Due to a complex design of the magnetic system
of the ATLAS detector cross checks of calculations are required. The experience of
Mermaid calculations for BABAR has been successfully used to verify the TOSCA
computations of the magnetic field in the toroid.
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Field Measurements of the BABAR Solenoid

Abstract

The magnetic field within the BABAR super conducting solenoid (3.8 m long by 3 m
diameter, at a field of 1.5 T ) has been measured with a set of hall probes placed
on a mechanical arm that rotated about, and moved along, the axis of the coil. The
measurements were fit to a functional model which contains polynomial terms to order
40 for the Bz and Br field components, a few trigonometric-Bessel terms having one-,
two-, and six-fold φ symmetry, and 24 dipole terms positioned on the end plates to
describe the non-uniform iron distribution of these plates. The measurements and the
model agree to 1.7 G (rms) within the drift chamber tracking volume, and to 5 G in
the fully mapped volume (−1.8 < z < 1.8 m, r < 1.3 m).

A.1 Overview

The BABAR detector contains tracking and particle identifying devices that measure
properties of tracks produced in the interaction region of the e+e− beams at PEP-II.
Two subsystems in the detector, the drift chamber and the silicon vertex chamber,
provide the positions and angles of the charged particles. These chambers are also
immersed in a 1.5 T magnetic field so that the momentum of charged particles can
be measured. The magnetic field is generated by a super conducting solenoid, 3.8 m
long and 3.0 mm in diameter. The coil is surrounded by an iron return path that
has a hexagonal cross section, and by end plates (doors) that provide the pole faces
for the field. A schematic side view of the detector magnet is shown in Figure A.1.
The doors can be moved out of the way for access to the chambers inside. The doors
and the hexagonal sides are called the instrumented flux return (IFR) because they
are constructed from multiple parallel plates of iron separated by spacers to provide
gaps for tracking detectors that measure the trajectory and range of particles passing
through the iron.

The magnetic field within the tracking volume (shaded region in Figure A.1) of
the drift chamber (r < 0.8 m, |z| < 1.4 m, and particle production angles between 17
to 255◦) must be known to high precision. The field outside of the tracking volume
need not be known that precisely since the particle trajectories in this region are
smeared by multiple scattering in the DIRC and calorimeter systems.

This document deals with the magnetic field produced by the solenoid in the
absence of any PEP-II beam line components, namely the B1 and Q1 permanent
magnets located on the axis within the solenoid. These permanent magnets produce
fringe fields of approximately 100-200 G at the inner layers of the drift chamber [1].
Note that the z-coordinate system used in this document is zero at the center of the
magnet. The interaction point is at -370 mm in this coordinate system.
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Figure A.1: A schematic view of the BABAR magnet system. Shaded region shows the
tracking fiducial volume. The grid points (plus signs) show the fully mapped region.

The question arises as to how well the magnetic field must be known through
out the tracking volume. The momentum resolution of the 40-layer drift chamber
is at best approximately 0.3% if the field is known perfectly. This implies that the
random errors in the field determination need not be better than about a tenth of
a percent (15 G). However, systematic errors in the field determination can lead to
momentum errors larger than the statistical error. Simulation studies [2] show that
systematic field errors of only 1÷ 2 G can produce visible changes in the parameters
of reconstructed tracks, indicating that the field should be measured to better than
2 G within the tracking volume.

Another source of error in the field comes from the non-uniform distribution of
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iron in the end plates. Each end plate has a centrally located hole for placement of
the PEP-II beam line components. The rear end plate also has through holes for
signal cables from the drift chamber and vertex chamber, holes for the plug removal
assembly (rails and screw leads), and slotted holes for the DIRC bar boxes. Iron has
also been removed in the top portion of the rear end plate to provide a channel for
cryogenic services to the super conducting coil. All these holes reduce the longitudinal
field and increase the transverse fields in the vicinity of the holes. Finally, the IFR
spacers add iron, thereby increasing the longitudinal field near the vicinity of these
spacers.

A.2 The measuring apparatus

The magnetic field was measured by means of a transport mechanism that could move
a set of Hall probes throughout the inside volume of the solenoid. Five probes were
oriented in the z direction, five in the radial (r) direction, and two in the φ direction
to measure the Bz, Br, and Bφ field components respectively. These probes were
equally spaced along a radial direction, each having the same φ. In addition, there
was one NMR probe at a fixed r and a phi value 180◦ from that of the other probes
that measured the total field near the central axis of the magnet.

The transport mechanism consisted of a long spindle with a rotating inner shaft
held inside a pipe, with one end of the pipe rigidly attached to a cart on wheels. The
cart moved on precision rails along the spindle axis such that the spindle could travel
through the central hole of the front end plate. This allowed the tip of the spindle to
be positioned anywhere along the axis inside the solenoid with the end plate doors
closed. A narrow plate (propeller) mounted at right angles to the rotating shaft at
the tip end provided a platform for the probes. The probes were mounted rigidly on
a separate plate, and this probe plate was in turn mounted on the propeller plate. In
this way, the z coordinate of the probes was controlled by the cart position on the
rails, the φ coordinate by the rotation of the spindle shaft, and the r coordinate by
the placement of the probe plate along the propeller arm. The z and φ placement
was done under computer control. The probe plate could be manually installed to one
of three radial positions. The radial placement of the probe plate and the nominal
coordinates of each probe on the plate are shown in Figure A.2.

Each pair of high accuracy Bz and Br probes [3] were encapsulated together in
one unit, while the less accurate Bφ probe was an individual unit. The units had
the shape of a square bar with a 14 × 14 mm cross section, and the field sensitive
point was at the cross section center, 9 mm from one end of the bar. Signal cables
came through the other end of the bar. These cables and the NMR signal cable were
threaded through the spindle tube all the way to the cart and then to the digitizing
electronics.

Predictions of the fields in the BABAR magnet were made using the Mermaid com-
puter program. Comparisons of the measurements with the predictions gave comfort-
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Figure A.2: The nominal radial coordinates of the Bz, Br and Bφ Hall probes at each
of three positions of the probe plate.

ing assurance that there were no gross errors in the measurements.

A.3 Data sets

At each plate position, the shaft and probe arm were moved in a sequence of steps
to provide measurements over a grid of points in z and in φ. The z grid ranged from
-1.8 m to +1.8 m in steps of 0.1 m, while φ ranged from 0◦ to 345◦ in steps of 15◦.
A data set consists of a full range over the z grid points, and a full range of the 24
φ-grid points at each z setting. At each z − φ grid point, the field readings from the
13 probes (5 − Bz, 5 − Br, 2 − Bφ, and 1−NMR) were recorded, together with the
coil current and environmental temperatures. Thus, the full field map used in the fit
model, consists of 46320 points.

The following table shows the data sets that were taken at nominal field settings
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of 1.5 T and 1.0 T . The repeated cases are also shown in this table.

Data Set Plate Position Field

1 1 1.5

2 2 1.5

2a 2 1.5

3 3 1.5

3a 3 1.5

2L 2 1.0

3L 3 1.0

Table A.1: The data sets. Data set names ending with “a” are repeated cases, and
sets ending with an “L” are measurements at the lower magnetic field.

Measurements were made at a standard reference point at z = 0 and φ = 0
between grid movements in z. This provided a quality check for the measurements.
Two probes (BZ3, BZ4) were found to have started drifting during the course of the
measurements. These probes were dropped from the fits in data sets that showed any
drifting

A.4 Corrections to the data

Knowing the placement and the alignment of the probes is crucial for measuring the
magnetic field. For example, a 1 mrad rotation of a Br probe in the (r, z) plane results
in an error of 15 G in that probe from the 15000 G Bz field. Corrections for the probe
locations and the probe orientations were obtained from alignment measurements
where possible, or from fits to the data when measurements were not possible.

A.4.1 Corrections from surveyed measurements

The SLAC alignment group positioned the axis of the mapping hardware on the axis of
the detector. The plane of the propeller was also adjusted to be vertical to compensate
for any droop from horizontal of the long spindle. However, as the spindle was moved
in z, small deviations of the center of rotation of the propeller and of the tilt of the
probe plate were observed. Alignment surveys of the probe plate were made every
time the probe plate was moved. Two tooling balls placed along the radial length
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of the probe plate provided the tilt of the plate in the (r, z) plane (giving mostly
a Br probe correction from the Bz field, but also a Bz probe correction where the
Br field was large). Two other tooling balls placed across the width of the plate
measured the rotation of the plate in the plane perpendicular to r (giving mostly
a Bφ probe correction from the Bz field). These alignment corrections were applied
both to the probe coordinates as well as the probe field measurements. The latter
required the knowledge of the three field components at a grid point. If one of the
field components was not available at that grid point (due to a bad probe, or the
φ probes being interspersed between the z- and r-probes), then interpolation from
other grid points was made. Later, as the fitting model improved, the missing field
components were obtained from the fitting equations in an iterative fashion.

The following alignment measurements were made:

1. the x and y coordinates of the center of rotation of the spindle tip were surveyed
as a function of z.

2. the deviations of the propeller’s rotational axis (angles) from the detector axis
in the horizontal and vertical planes were measured as a function of z.

3. the probe plate angles were measured at phi steps of 45◦between 0◦ to 315◦, and
the plate angles at each of the φ grid point were found by interpolation from
these.

4. the radial placement of the plate on the arm, and the relative z and r locations
of the probes on the probe plate were measured.

All of the above measurements, and a few parameters from the fit (see next sec-
tion), were used to correct and transform the probe coordinates, the probe angles,
and the probe fields to the exact grid points.

A.4.2 Corrections by fitting

The orientation of the field sensitive volume in the Hall probes must be known to
better than 0.1 mrad if the fields are to be measured to ≤2 G. Errors in the orientation
come from the placement of the field sensitive volume within the probe, the positioning
of the probe in its fixture, the fixture location on the plate, and the plate geometry
(flexure). During the initial installation of the probes on the probe plate, the plate
was put into a large dipole test magnet and the probe orientations were adjusted to
null the Br and Bφ signals. Even so, the correction angle of each Br and Bφ probe
was put as a parameter into the fit, with a set of such parameters for each data set
(since the plate was moved between data sets). There is a steady progression of the
angle from -1.0 mrad to 0.5 mrad with the probe number, i.e. r, for most data sets,
implying that the plate is curved along the r direction.
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Probe # 1 2 3 4 5

Bz(factor) -0.00015 0.00048 0.00026 0.00015 0.00018

Br(factor) 0.0071 0.0053 0.0041 0.0044 0.0044

Bφ(G) 2.35 -1.86

Table A.2: Calibration correction factors from the fit for the Bz and Br probes, and
offset corrections for the Bφ probes.

The absolute probe calibration is unknown at the 0.01% level. The manufacturer
states that 0.1% precision is assured but that 0.01% precision requires yearly cali-
bration. Since the magnetic measurements lasted several weeks, it is not clear what
precision to expect. Thus, a calibration parameter for each Hall probe was put into
the fit. Note that since the NMR provides a very accurate absolute field measurement
at the 0.1 G level, fitting for Hall probe calibrations cannot shift the overall field
scale very much. For the Bφ probes, the field is small, and the offset was found to
be more important than the calibration. Table A.2 shows the calibration correction
factors and offsets found by the fit.

The z origin of the spindle and the φ origin of the propeller could change slightly
during the process of moving the probe plate between data sets. These errors were
found by fitting for four ∆z and four ∆φ parameters, one pair for each data set relative
to data set 2. The fitted values are ∆z=(0.3, 0., 0.2, 0.9, 0.3) mm and ∆φ=(8.1, 0.0,
-13.1, 33.1, -13.8) mrad for data sets (1, 2, 3, 2a, 3a), respectively.

Finally, the measured Br and Bφ fields showed an irregular pattern versus φ at
many z and r points, as illustrated in Figure A.3 by the dotted data points. This
irregularity was most evident near the center (z = 0), and could not be explained by
irregularities in the iron structure. It is most likely due to flexing of the propeller as it
rotates about the spindle, changing the probe orientation at each φ setting. The mag-
nitude of the irregularity, seen in the residuals from the fit, increases approximately
linearly with the r coordinate. Corrections were made to the data for this flexure by
adding parameters at each φ grid point for the change in orientation of the probes.
This required 26 parameters for the r orientations (24 φ parameters and 2 parameters
for the linear r dependence) and 26 similar parameters for the φ orientations. The
corrected data points are considerably smoother after the flex corrections are applied,
as shown in Figure A.3. The solid curves show the fits to the corrected data.

All of the above corrections were done in an iterative manner. Values of the cor-
rection parameters were used to correct the data before the next fit iteration, and the
fit in turn produced new correction parameters.
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Figure A.3: Distortions in the Br and Bφ components due to flexure in the probe arm
as a function of phi. The distortion increases approximately linearly with the radial
location of the radial probe. The dots with dashed line show the data without any
corrections for the arm flexure, while the plus signs show the corrected data points.
The solid curve is the fit to the corrected data points.

A.5 Magnetic field model

The equations for the magnetic field inside of the solenoid must satisfy Maxwell’s
equations. Since there are no magnetic sources within this volume, Maxwell’s equa-
tions can be represented by a scalar potential satisfying the Laplace equation. The
Laplace solutions are given in the next section for a cylindrical coordinate system
based at the center of the solenoid. However, features such as holes in the BABAR

iron end plates produce magnetic perturbations local to the end plate. It would re-
quire many terms to describe these perturbations by the centrally oriented Laplace
solutions. These perturbations are better treated by functional terms located at each
feature. These local functions (e.g. dipoles) are described in later sections.

A.5.1 The scalar magnetic potential

The magnetic field in a source-free region can be described by a scalar magnetic
potential ψ satisfying the Laplace equation

52ψ = 0 (A.1)

When expressed in cylindrical coordinates, the solution ψ(z, r, φ) applicable to the
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inner volume of a solenoid is a linear combination of the following terms containing
trigonometric, hyperbolic, and Bessel (In or Jn) functions,

(s1 sin(nφ) + c1 cos(nφ)) sin(kz) In(kr)

(s2 sin(nφ) + c2 cos(nφ)) cos(kz) In(kr)

(s3 sin(nφ) + c3 cos(nφ)) sinh(kz) Jn(kr)

(s4 sin(nφ) + c4 cos(nφ)) cosh(kz) Jn(kr) (A.2)

In these equations, n is an integer constant (0, 1, 2, ..), and s1..4, c1..4, k are
arbitrary constants. Any field can be described by a sum of terms, each having its
own set (s, c, n, k) constants.

The BABAR end plates have large holes along the axis for beam line components.
These holes allow fields to extend in z outside of the end plates, with the fields
decreasing at large z values. Field components with sin(kz) and cos(kz) terms are
best suited to fit the decreasing field at large z, while terms with sinh(kz) and cosh(kz)
that grow rapidly with z are not.

The Laplace potential function suitable for BABAR is then

ψ(z, r, φ) =
∑

n,i

cos(nφ− φn)(sni sin(kniz) + cni cos(kniz))I0(knir) (A.3)

If the field is symmetric in φ, then n and φn can be set to zero in the above
equations. This is mostly the case for the BABAR magnet. However, it is found that a
few terms with n values of 1, 2, and 6 are also required for the best fits to the data.
The φ-symmetric Laplace potential function suitable for BABAR is

ψ(z, r, φ) =
∑

i

(si sin(kiz) + ci cos(kiz))I0(kir) (A.4)

A.5.2 Laplace field functions.

The magnetic fields are given by the gradients of the magnetic scalar potential,
~B = −5 ψ. In cylindrical coordinates, these are

Bz(z, r, φ) = −dψ
dz
, Br((z, r, φ) = −dψ

dr
, Bz(z, r, φ) = − dψ

rdφ
. (A.5)

The φ-symmetric field functions derived from the φ-symmetric Laplace potential
function are

Bz(z, r) =
∑

i

(si cos(kiz) − ci sin(kiz))I0(kir)
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Br(z, r) =
∑

i

(si sin(kiz) + ci cos(kiz))I1(kir)

Bφ(z, r) = 0 (A.6)

These equations can be used to fit measured Bz, Br, Bφ field values by choosing
appropriate values for the k variables and fitting for the c coefficients. However,
since the k values are arbitrary, it is difficult to pick an appropriate set that would
minimize the number of terms required to fit the data. One attempt used the values
ki = (i + 1)/k0, with k0 ≈ 0.5 to match the approximate 2 meter detector size. It
appeared that many terms were required to fit the data, and the computer time would
be excessive.

An alternate method uses a set of polynomials to fit the data. Polynomials may
be derived from the above set of equations by expanding each trigonometric or Bessel
term into a series, collecting terms of equal rank, and replacing the resulting factors
∑

sik
n
i and

∑

cik
n
i by new fitting parameters Pn. It is then simple to fit these param-

eters for as many terms as needed to describe the data to a certain level of accuracy.
These derived polynomial field functions are shown in the following section.

A.5.3 Polynomial field functions.

The series expansion of the φ-symmetric Laplace field functions in the previous section
gives the following polynomial field functions, shown for terms up to order n

Bz(z, r) =
n

∑

i=0

Pi(i!)(−1)
i+1
2

i
∑

k=0(2)

(−1)k/2zi−krk

(i− k)!2k((k/2)!)2

Br(z, r) =
n

∑

i=1

Pi(i!)(−1)
i+1
2

i
∑

k=1(2)

(−1)k/2zi−krk

(i− k)!2k((k/2)!)((k + 1)/2)!

Bφ(z, r) = 0 (A.7)

The (i + 1)/2, k/2, and (k + 1)/2 terms must be truncated to whole integers in
the above expressions, and the k-summation is stepped by 2. Note that the same Pi

fitting parameters appear in Bz and Br in order to satisfy Maxwell’s equations, since
both equations are derived from the same magnetic potential.

The first few terms of each series are

Bz(z, r) = P0 − P1z − P2

(

z2

2
− r2

4

)

+ P3 · 3
(

z3

3
− zr2

2

)

+ ...

Br(z, r) = P1

(

r

2

)

− P2(zr) + P3 · 3
(

z2r

2
− r3

8

)

+ ...

Bφ(z, r) = 0 (A.8)

It was found that the fit was improved by using terms up to P40.
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A.5.4 φ-dependent fields.

Due to non φ symmetry of the BABAR magnet iron, the φ dependent field terms have
to be added to the fitting model. These φ asymmetric features in the doors and barrel
iron are:

1. The iron at the bottom region of the backward end plate has through holes for
cable access and for the rails and lead screws of the plug removal mechanism.

2. The backward end plate has a vertically running channel at the top portion for
services to the liquid helium cryostat.

3. Both front and back end plates are not solid iron but consist of many parallel
plates of iron spaced apart for the RPC detectors. Iron spacers along the door
boundaries and interior parts keep the plates separated, but these spacers also
cause localized magnetic field concentrations on the end plate faces.

4. The front doors have vertically running channels at the top half where iron has
been removed at the closing surfaces.

5. One of the front doors became warped during manufacture and was straightened
by removing iron from the warped face.

6. The barrel iron has a hexagonal shape, which gives rise to distortion with six-
fold symmetry at large radii.

7. Each hexagonal side in the barrel iron has access slots for cables, which distorts
the field at large r and large z.

In order to fit the φ-dependent fields, other functional terms were added to the
field model:

• A magnetic dipole term oriented along the Z-axis at each hole on the end plate
gives an approximate representation of the field from the missing magnetized
iron.

• For extended objects such as the linear RPC spacers, a rectangular shaped pole
was used instead. A rectangular pole is achieved by placing a rectangular loop
of current in the plane of the end plate that circumvents the object, giving a
pole pointing along the z-axis over the length of the rectangle.

• The asymmetry due to the warped doors can be modeled in part by an annular
dipole of varying width along its circumference. An annular dipole consists of
two current loops in the plane of the end plate having opposite currents and
origins slightly displaced from each other.
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• The barrel iron surrounding the solenoid coil is in the shape of a hexagon, so a
field component with six-fold symmetry in φ would be expected at large radii.
This six-fold asymmetry can be modeled with a few trigonometric-Bessel terms
(with n = 6) added to the fitting model. It was also found necessary to include
trigonometric-Bessel terms with n = 2 and n = 1. The source for these fields
is not precisely known, but a slightly flattened hexagonal barrel would give an
n = 2 component, while a slightly off-centered component (coil or iron) could
give an n = 1 component.

A.6 Fitting procedure

A non-linear least squares fitting program [4] was used to fit the model to the measured
data. The fit varied parameters pertaining to the model as well as parameters that
were corrections to the measured data. Some derivatives were computed analytically
to reduce the computation time. The data from all good probes in all data sets (46320
total points) were used in the fit.

An assumed error of measurement of the probes for data points within the drift
chamber tracking volume was as follows:

Probe Precision

NMR 0.1 G

Bz Hall 1.0 G

Br Hall 1.0 G

Bφ Hall 3.0 G

Because of the difficulty in modeling the field near the non-uniform iron, the assigned
errors were increased (doubled) for points outside the tracking volume, and doubled
again for the outer-most grid points in z and r.

A.6.1 Choice of fitting functions and parameters

The functional elements described above were included the fit. The number and place-
ment of some of the elemental components such as the point dipoles for the holes and
rectangular dipoles for the IFR spacer was straightforward. However, some of the el-
emental parameters like the number of polynomial terms or the placement of annular
dipoles at the front door had to be determined by trial and error for best results (i.e.
a decrease in χ2 and improvement in residuals in the region of interest).

Fits were done with a varying number of polynomial terms to establish the min-
imum number that need be used. The χ2 per degree of freedom decreases with the
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Polynomial terms χ2/nDof

15 53.5

20 26.8

25 6.93

30 3.97

35 3.16

40 2.89

50 2.87

Table A.3: The χ2 per degree of freedom as a function of the number of polynomial
terms used in the fit.

number of polynomial terms below 40 terms, with little improvement beyond that as
shown in Table A.3. Forty terms were used in the final fits.

Establishing the number of other functional elements and their parameters (e.g.
coordinates and strengths of dipoles, coordinates, strengths, and area of rectangular
poles, number of Bessel elements, etc.) required numerous fits to be done, adding a
few components at a time. The final configuration included 80 fitting parameters, as
follows:

4 Magnetic axis terms (X0, Y0, θXZ , θY Z)

40 Polynomial strength

1 Bessel (n=1)

2 Bessel (n=2)

3 Bessel (n=6)

9 Dipole, (22 total)

14 Rectangular pole, (20 total)

7 Annular pole

The locations of all the poles on the front and rear end plates are shown graphically
in Figures A.4, A.5, respectively.
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Figure A.4: The locations of rectangular
and annular poles on the front end plate.

Figure A.5: The locations of all poles on
the rear end plate.

A.7 Results

A resulting χ2 per degree of freedom of 2.89 is found in the final fit. This implies
that the model is not yet complete, or that the assumed measuring errors (e.g. 1.0 G
for Bz probes) enumerated previously are too small, or some combination of the two.
Increasing all the measuring errors by a factor of 1.7 is well within the estimate of the
probe precision, and doing so would give the ideal fit with a χ2 per degree of freedom
of 1.0. The root mean square of the residuals is 1.7 G for points within the tracking
fiducial volume and 4.8 G for all the measured points. Examples of the corrected
measurements superimposed with the fitted curves for the Bz and Br fields versus z
at φ=0 are shown in Figure A.6.

A.8 Conclusions

The magnetic mapping data for the BABAR solenoid magnet has been fitted with a
model containing polynomial terms for the coil field, and Bessel/trigonometric terms,
dipoles, and other loops of currents that provide local field perturbations from the
non-uniform distribution of iron on the end plates. The data and the model agree to
1.7 G (r.m.s.) for grid points within the tracking volume of the drift chamber, and
to 4.8 G for the full measured volume (|z| < 1.8 m, r < 1.3 m). The above source
files have also been combined with the model for the fringe fields from the beam line
components [1].

Acknowledgments. We acknowledge the valuable help from Stepen Mikhailov in calculating
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Figure A.6: The Bz (Br) field as a function of z at three values of r with φ = 0. The
plus signs show the corrected data points while the solid lines come from the fitted
model. The vertical lines at z = −1.4 m and z = 1.4 m show the drift chamber bounds
along the z coordinate. The top plot shows the field at r = 0.73 m (between super layer
9 and 10), the middle plot is at r = 0.28 m (middle of super layer 1), and the bottom
plot is at r = 0 along the axis of the chamber.

the field predictions for BABAR using the Mermaid computer program.
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Appendix B

Particle identification with ATC

This appendix presents a syntheses of my activity in period 1995-1997 being a mem-
ber of BABAR Novosibirsk group. It was devoted to the research and development
of the forward particle identification system based on Aerogel Threshold Counters
(ATC) for BABAR. I summarize the results obtained with the prototypes of the 4-
layer design developed by Novosibirsk group. These prototypes were tested with the
pion and proton beams at CERN in 1995. The results of these tests are described
in BABAR Note#290 “Prototype performance of a 4-layer aerogel Cherenkov detec-
tor”. We developed a method to measure the optical parameters of aerogel samples
in laboratory [1], which is also summarized in this appendix. One notes, that I am
the author of a set of publications devoted to the research and development of the
aerogel Cherenkov counters for the particle identification [2, 3, 4, 5, 6].
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Prototype performance of a 4-layer aerogel
Cherenkov detector

B.1 Project of 4-layer ATC system for BABAR

In the BABAR Technical Design Report [7], the particle identification system is com-
pleted in the forward region with an aerogel detector. Figure B.1 shows the proposed
design for the 4-layer option of the ATC system of BABAR. A 4-layer design consists of
2 super-layers, where each one has two counters with low (n=1.008) and high (n=1.05)
aerogel refractive indices. It allows us to perform the π/K identification between 0.4
and 4.3 GeV/c. The second super-layer is shifted (by a half of the counter size) with
respect to the first one, in order to prevent a loss of signal when a particle crosses the
photo-tube window in one of the layer. The aerogel blocks are placed inside a boxes
wrapped with multiple layers of high reflectivity white PTFE film. Each high (low)
index counter is read out by two (three) 2” (19 stages) Hamamatsu fine-mesh photo-
multipliers with UV glass window. The photomultipliers are parallel to the particle
direction and has 20◦ with respect to the magnetic field vector. The 4-layer design of
ATC system counts 280 photomultipliers in total.

In order to test the performances of such a detector, two prototypes: one with
low and another with high aerogel indices were constructed. The dimensions of such
prototypes were chosen to be close to the mechanical design of 4-layer system.

B.2 The prototype of 4-layer counters

Figures B.2, B.3 show the 4-layer prototypes with low and high aerogel indices, re-
spectively.

Two sets of aerogel blocks with 69 mm thick were tested with low refractive in-
dex prototype: one set with n=1.012 produced by the Boreskov Catalysis Institute
in Novosibrsk (SAN), and a second one with n=1.008 produced by the Jet Propul-
sion Laboratory (JPL). The counter is read out by three 2” Hamamatsu fine-mesh
photomultipliers. The prototype with high aerogel index was filled with 21 mm thick
aerogel produced in Boreskov Catalysis Institute in Novosibrsk (SAN-95) with the
refractive index of 1.05. The high index aerogel counter is read out by two 2” Hama-
matsu fine-mesh photomultipliers declined at 20◦ with respect to the counter surface.
The walls of both counters were wrapped with three layers of 250µm PTFE film on
top of aluminized mylar.

In order to remove water from the aerogel, all the blocks were baked before ex-
posing them to the beam. A three stage annealing procedure has been applied for the
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Figure B.1: The BABAR ATC detector in the 4-layer option and fine mesh reading.

aerogel placed in the special oven: slow increase by 1.6◦ C/min from room tempera-
ture up to 500◦ C with consequent 3 hours keeping of 500◦ C and slow return to room
temperature with maximum decrease slope of 1.6◦ C/min.

B.3 Beam line

The prototypes of 4-layer design of ATC system has been tested at the CERN PS
T10 test beam together with two other prototypes of 2-layer design: one with hybrid
photodiode (HPD) readout [4] and a second one with fine-mesh readout [5].

The T10 beam line can provide positive and negative particle beams with momenta
between 1 and 5 GeV/c. The beam composition were mainly pions and protons, with
a small kaon and electron contamination. The beam line shown in Figure B.4, was
equipped with two CO2 Cherenkov counters, C1 and C2, filled to a pressure of 4.3
bar. The beam was defined by coincidence of three scintillator counters, its extension
being limited by the third counter S3 (1×1 cm2). Another thick (1 cm) veto scintillator
counter was read out in a CAMAC scaler, in order to count the number of particles
crossing our setup in a 1µ s gate. Three prototypes were placed on a horizontally and
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Figure B.2: The prototype counter for
low index aerogel

Figure B.3: The prototype counter for
high index aerogel

Figure B.4: The T10 beam line with the apparatus

vertically moving table.
Three kind of triggers were assembled:

• Beam. A beam event was the the coincidence of the 3 counters S1, S2, and S3.
Two Cherenkov counters C1 and C2 were included in anti-coincidence for runs
with protons;
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• Pedestal. We recorded pedestal events inside and outside burst;

• Calibration. The photo-detectors were calibrated using a light emitting diode
(LED).

B.4 Aerogel and reflector

Method described in [1] allows us to perform a measurement of absorption length in
aerogel and quantity of the reflector.

A special code allows us to describe the processes of the light absorption and
propagation in the aerogel counter. It assumes Rayleigh scattering phenomenon with
an associated λ4-dependent interaction length; this latter is 4.0 cm at 436 nm, and
the diffusive emission according to the Lambert’s low. The light monochromator is
used to measure the light collection as a function of wavelength. Such a result is
introduced in the code that solves the inverse problem. The light collection measured
in the empty counter allows us to compute the absorption in the reflector. Figure B.5
shows the obtained reflection coefficient (R) as a function of wavelength. We also
measure the light collection in the counter box filled with aerogel and introduce this
result in the code. Using the previous result for the reflector, we compute the light
absorption length in aerogel. Figure B.6 shows the results of such a measurement.
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Figure B.5: The absorption coefficient
(1-R) of PTFE film as a function of
wavelength. Curves present the different
thickness of the wall coverage.

Figure B.6: The absorption length of
aerogel with n=1.05 (SAN-95) used in
the prototypes.
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B.5 Photo-detectors

A study of particle identification performances of the threshold Cherenkov counters
requires a knowledge of the single photoelectron and the noise frequency spectra of
photomultiplier at small amplitude. We have measured these spectra for one of the
fine-mesh photomultipliers used in the prototypes. It has a typical gain of 107 with
absence of a magnetic field. Figure B.7 shows the results of such a measurement. We
assumed 100% detection efficiency at the minimal possible threshold, while 1 photo-
electron is defined at 50% efficiency level. Such a definition differs from the standard
calibration described below about of 10%. One observes, a minimal applied threshold
is about 100 times smaller then a single photoelectron amplitude. We estimate the
contribution of 8 kHz noise at this threshold to the detection efficiency of particles
with momentum below a Cherenkov threshold to be about 0.2%.

Figure B.7: Detection efficiency of the
single photoelectron and frequency of
the noise as a function of threshold for
Hamamatsu fine-mesh phototube.

Figure B.8: A LED run for 2” photo
tubes. The peak at zero corresponds to
a “0” photoelectron.

A fine mesh photomultiplier calibration is a delicate procedure since this photo-
tube does not permit to resolve the single photo-electron (p.e.) peak. We injected in
the counter box the light pulses of a LED turned such that about 95% of the “calibra-
tion” trigger result “0” p.e. detected (pedestal). Figure B.8 shows a typical spectrum.
The probability of 1 p.e. appearance is determined by Poisson distribution with an
expected value:

µ = − ln
n0

N

where n0 is the number of events contained in the pedestal and N the total number
of events. We propagate the shape of the distribution in the pedestal region with a



B.6. Results 123

liner function. The calibration constant is computed by the mean value of such an
extrapolated distribution between zero ADC channels and infinity. Contribution from
more then 1 p.e. is determined by Poisson distribution. The calibration constant can
be corrected by multiplying it by:

ξ =
1 − e−µ

µ
=

n0

N
− 1

ln n0

N

We estimate the total (statistics and systematic) error of the calibration to be
about 4%.

B.6 Results

Aerogel counters were exposed to a 5 GeV/c negative pion beam (β ' 1). The events
were selected by requiring a clean signal in both gas Cherenkov counters, and by asking
only 1 count within 1µ s in the veto counter to reduce pile up events. The observed
number of photoelectrons in the prototypes are summarized in Table B.1. In order
to investigate a non uniformity of the light collection in the counter, prototypes were
exposed in four different points, shown in Figures B.2, B.3. We also present in this
table a distribution of a total number of photoelectrons in each photomultiplier that
readout the counter. The aerogel blocks produced by the Boreskov Catalysis Institute
in Novosibrsk (SAN-95) were placed into high refractive index counter (n=1.050). Two
sets of aerogel blocks were tested with low refractive index prototype: one set with
n=1.012 produced by the Boreskov Catalysis Institute in Novosibrsk (SAN), and a
second one with n=1.008 produced by the Jet Propulsion Laboratory (JPL).

A comparison of the light yield normalized on the same refractive index shows
that the SAN aerogel has better optical parameters then the JPL one. Indeed, about
33% difference in intensities of Cherenkov light causes about 43% in the light yield.
One has to note, a measured uniformity of the light collection in the counters for
4-layer ATC design is about 10%.

A signal induced by particles with momentum below the Cherenkov threshold con-
tributes to the particle identification efficiency of the ATC counter as a background.
We have studied such a signal with low aerogel index prototype by selecting a 5 GeV/c
proton beam. Absence of signal in both gas Cherenkov counters was required to trig-
ger such events. In order to diminish a kaon contamination, we eliminated the events
that produce a signal in the low index (1.008) prototype readout by HPD and located
in front of our counter.

The background is due to δ-rays, Cherenkov light in the PTFE wrapping, and
scintillation in either aerogel or wrapping. From a Monte Carlo simulation of the
beam line, we find that at 5 GeV/c, about 2% of the protons produce δ-rays above
the Cherenkov threshold in the aerogel. To eliminate the contribution of the δ-rays
produced in aerogel, a dedicated run with a 1 GeV/c proton beam has also been per-
formed. We have used an amplitude information from S1 and S2 scintillator counters.
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Point n PMT1 PMT2 PMT3 SUM

1 1.050 (SAN-95) 8.6 2.5 - 11.1

2 1.050 (SAN-95) 8.1 3.7 - 11.8

3 1.050 (SAN-95) 4.5 8.0 - 12.5

4 1.050 (SAN-95) 3.2 9.3 - 12.5

1 1.012 (SAN) 1.9 3.6 5.0 10.5

2 1.012 (SAN) 2.1 4.7 3.3 10.1

3 1.012 (SAN) 2.8 5.0 2.6 10.4

4 1.012 (SAN) 3.5 4.0 2.0 9.5

1 1.008 (JPL) 1.0 2.0 2.7 5.7

2 1.008 (JPL) 1.2 2.6 1.8 5.6

3 1.008 (JPL) 1.6 3.1 1.3 6.0

4 1.008 (JPL) 2.2 2.5 1.1 5.8

Table B.1: Detected number of photoelectrons in the different exposing points of
the prototypes. The impact points correspond to the positions indicated in Fig-
ures B.2, B.3. The aerogel blocks produced by the Boreskov Catalysis Institute (SAN)
and by the Jet Propulsion Laboratory (JPL) were tested in the prototypes.

A different energy loss for these spices (dE/dx) allowed us to suppress a non-proton
contributions.

Figures B.9, B.10 show the proton contamination: P(p → π) and the pion ineffi-
ciency: P(π → p) as a function of the cut we apply to decide if an event corresponds to
a pion or a proton. For convenience, the cross point of equal probabilities is considered
as a merit of our detector and permits us to compare different configurations.

B.7 Conclusion

A test of aerogel Cherenkov counters based on 4-layer design of the ATC system of the
BABAR detector has been performed. Two prototypes equipped with aerogel blocks
of low (1.008) and a high (1.050) refractive indices have been exposed by pion and
proton beams. The observed average number of photoelectrons for β = 1 particles is
greater then 10 p.e. for the high aerogel index, about 8 p.e. for the low index. The
walls of the counters were wrapped with three layers of 250µm PTFE film on top of
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Figure B.9: P(π → p) and P(p→ π) as
a function of the threshold in photoelec-
trons for the high index prototype.

Figure B.10: P(π → p) and P(p → π)
as a function of the threshold in pho-
toelectrons for the low index prototype.
The different curves correspond to con-
figuration with different average number
of photoelectrons for β = 1 particles.

aluminized mylar. A complete Monte Carlo simulation of the counter based on the
measured optical parameters of aerogel and reflector shows a good agreement with
the data.

The study of background induced by particles with momentum below the Cherenkov
threshold has also been performed. The prototype with low aerogel index allows us
to reach a pion efficiency of 96% for a proton misidentification as low as 4%.

We conclude that silica aerogel readout by fine mesh photomultipliers can be used
to construct a powerful and compact particle identification device in the momentum
range of 0.6-4.3 GeV/c.
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Appendix C

Simulation and Measurement of
the Fringe Field

This appendix includes the complete report of “Simulation and Measurement of the
Fringe Field of the 1.5 Tesla BABAR Solenoid” published in Nuclear Instruments
and Methods (E.Antokhin et.al., Nucl. Instr. Methods Phys. Res., Sect. A 432, 24
(1999)). Simulation and measurement of the fringe field of the BABAR solenoid have
been performed in collaboration with G. London, E. Antokhin, and S. Singatulin in
1996-1998.
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Simulation and Measurement of the Fringe Field
of the 1.5 Tesla BABAR Solenoid

Abstract

In the context of the SLAC PEP-II asymmetric e+e− collider and the BABAR detec-
tor with its 1.5 Tesla solenoid, we have calculated and measured the fringe field at
the nearby beam elements and at the position of the photomultipliers external to the
return iron but within a specially designed iron shield. The comparisons of these mea-
surements with the simulations based on finite element analysis are remarkably good,
within about 5 G at the most critical beam element. The field at the photomultipli-
ers is less than 1 Gauss, in agreement with the simulation. With a simple method of
demagnetization of the shield, a maximum field of 0.6 G is obtained.

C.1 Introduction

C.1.1 CP violation: PEP-II and BABAR

The study of B0 decays and the resulting CP -violating asymmetries will test our un-
derstanding of the Standard Model. The SLAC PEP-II asymmetric e+e− collider [1]
(9 GeV electrons interacting with 3.1 GeV positrons), now in construction, will pro-
duce the Υ (4S) state with a βγ=0.56. The boost of the decaying B0 in the laboratory
enables the measurement of the time order of the B0-B0 pairs, crucial to detect CP
violation.

The BABAR detector [2] will surround the interaction point, IP, in an asymmetric
way to allow more flight path for the particles in the electron direction. In order to
maximize the luminosity, the machine elements must be very close to this interaction
point; therefore BABAR and the last elements are very close to each other.

The detector, which is in construction, consists of a 1.5 Tesla solenoid with an iron
flux return in the form of a barrel closed by two end caps, consisting of two doors each,
in addition to a number of sub-detector elements, namely from the IP radially out,
the Silicon Vertex Tracker, Drift Chamber, DIRC (Detector of Internally Reflected
Čerenkov light), CsI Calorimeter and Instrumented Flux Return for Muon Detection.
It is shown in Figure C.1 with the nearby machine elements, and schematically in
reffig:side which emphasizes the magnetic elements. Since the elements are symmetric
about the interaction point, their relationship to the detector is quite different in the
two directions; for example, notice the position of Q2 with respect to the flux return.

Notice also that since the detector and machine elements are in close proximity, the
final elements are in a very strong fringe field. This field could degrade the performance
of the quadrupoles, reducing the luminosity significantly and the possibility to detect
CP violation.
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Figure C.1: Side view of BABAR. The magnet right-handed coordinate system is given
by the e− = +Z direction and the vertical direction = +Y with the origin at the center
of the magnet.

C.1.2 DIRC

The DIRC [3] is the principle particle identification system of BABAR. It consists of
quartz bars inside the detector and of a large pure water tank (the StandOff Box,
or SOB) supporting photomultipliers outside the detector. The quartz bars and the
SOB are supported by a complex mechanical structure which is attached to the
outside of the barrel iron via an external support structure (ESS) composed of a
structural element in the form of a “horsecollar” and a gusset plate.

Charged particles, produced at the interaction point inside the detector, traverse
the quartz bars in which Čerenkov radiation is produced. The angle of this radiation
with respect to the incident particles is a measure of the speed of these particles.
The Čerenkov photons are propagated along the length of the rectilinear bars by
total internal reflection, preserving the angular information and exiting outside the
detector into the SOB. This water tank is composed of a cylinder, cone and 12 sectors
which are cylindrical sections. The photomultipliers are mounted on the sectors placed
at about 1.17 meters from the exit point to permit a precise measurement of the angle
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Figure C.2: Schematic side view of the active and passive magnetic elements of the
BABAR detector and nearby PEP-II machine elements, with a zoom on the shield
concept. The quartz is included to indicate the reason for the big gap in the magnetic
circuit. IP denotes the interaction point.

for each photon. The tubes are arranged in a closely packed array to maximize the
the number of detected photons, and light catchers are added to increase the effective
solid angle for photon detection. The Čerenkov process is a weak source of photons
which will be detected in the single photon counting mode.

The Q2 quadrupoles and the 10752 photomultipliers reside outside the main iron
flux return but in the considerable fringe field of the 1.5 T solenoid magnet. In con-
junction with a bucking coil in the backward direction, which is necessary to reduce
the BZ field at Q2 to less than about 100 G, a magnetic shield surrounding the
SOB has been studied which reduces the fringe field at the photomultipliers to an
acceptable level, less than 1 G. The field in the shield iron should be less than 0.1 T
everywhere, though it might attain 0.8T in some places in case of malfunctioning of
the bucking coil or solenoid; a de-magnetization scheme must be envisioned.

C.1.3 Scope of article

In this article, we shall only consider the fringe field in the backward direction as it
affects the quadrupoles, namely Q2, and the DIRC photomultipliers.

We shall define the fringe field requirements (2), describe the simulation of the
field (3), present the design and construction of the shield (4) and define the bucking
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coil (5). The mappers of the DIRC (6) and quadrupole (7) regions are then described.
After presenting the results of the measurements (8), we conclude (9).

C.2 PMT and Q2 requirements from measurements

Measurements were made to determine the performance of the PMTs and the quadrupoles
in a magnetic field, resulting in target limits.

C.2.1 PMT performance in a magnetic field

The PMT used in the DIRC is the Thorn-EMI 9125. It has a 28.2 mm diameter
and a bialkali photocathode with a high blue response. It is well-suited for our single
photon counting requirement. The dynodes are rectangular and thus the effects of a
transverse magnetic field will depend on the orientation.

It has been tested with a pulsed blue light at a wavelength of 450 nm in magnetic
fields up to 20 G, measured with an accuracy of 0.2 G [4]. The orientations of the
field relative to the tube were longitudinal and transverse, with the latter in the
direction: across the dynode (“favorable”) and along the dynode (‘unfavorable”).
The PMT was operated at a high voltage such that the single photon peak was
at 20 mV, i.e. as we shall run in BABAR. For a 95% efficiency, i.e. we lose 1/20 of
the photoelectrons, the acceptable transverse field is about ±3(1) G in the favorable
(unfavorable) direction, with about a 0.5 G asymmetry. The principal reason for the
inefficiency is due to the perturbation of the electron multiplication,i.e. gain reduction,
in the unfavorable orientation, and the decrease in the efficiency of photoelectron
collection in the favorable orientation. The acceptable longitudinal field giving 95%
efficiency is about 3 G, also asymmetric about 0, with the eciency falling more slowly
than in the transverse direction.

From these measurements, we concluded that we would orient the PMTs trans-
versely so that the anticipated lower field component, azimuthal with respect to the
solenoid axis, is in the unfavorable transverse direction.

C.2.2 Quadrupole performance in a magnetic field

The major effect of the approximately axial solenoid fringe field on the quadrupoles is
to induce higher order multipoles, in particular a skew octupole, due to flux concentra-
tion on the poles of the quadrupole. Beam studies have indicated that the multipole
requirement is ≤ 10−4 for n=3 to 15 [5].

We will concentrate on the Q2 quadrupole since it is most acted by the solenoid
fringe field. This water-cooled laminated iron quadrupole must accommodate both
the high energy HER and low energy rings LER, as seen in Figure C.3. It is slightly
offset, and therefore has a dipole component as well. The LER part has inner bore
radius of 47.8 mm, and a length of 610 mm. In order to reduce the induced octupole,
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it has a mirror plate on the IP side, connected magnetically to the quadrupole iron.
The opening in the mirror plate is 96.6 mm square with rounded corners. The solenoid
field induces a skew octupole in the mirror plate of opposite sign to that induced in the
quadrupole body providing cancellation. The plate is 9.5 mm thick and is placed at
38 mm from the main quadrupole iron, connected at the outer radius. The maximum
design current is 1100A on 8 turns, with a current density of 57 A/mm2. There are
trim windings to cancel or reduce the n=3 term in the main quadrupole field, to buck
the solenoid-induced dipole and skew octupole.

Figure C.3: Schematic cross section for Q2. The LER is off-set as it goes through
the quadrupole on the left, while the HER is in a “field-free” region, as shown on the
right. The “beam-stay-clear” (BSC) regions are indicated. Only one half of the Mirror
Plate is shown.

An analytical calculation gives for the induced octupole:
∫ ∞
Z0
a4(Z)dZ = a

4
B̄ZRi

where Z0 the offset from the pole face (= Ri/4), α the linkage coefficient =0.4-0.8
depending on the chamfer, B̄Z is the average axial field integrated over the same
limits, and Ri is the inner bore radius.

Harmonic measurements were made with a thin air-core solenoid placed at 170 mm
from the core-edge of a Q2 model, which had the possibility to include mirror plates
of varying shapes. The field was 360 G at the center of the solenoid, 216 G at the
mirror plate and 71 Gauss at the core-edge. The skew octupole was measured between
±100 mm with respect to the Q2 core-edge. The results without a mirror plate are
shown in Figure C.4, as well as those for two different shapes: annular and box
opening. Without a mirror plate, the value was always negative, with a peak at the
core-edge. With mirror plate, the value changed sign at the core-edge, with the integral
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closest to 0 for the box variation. The latter was adopted for the definitive design.
(Annular mirror plates are used at both ends for Q4.)

Figure C.4: Skew-octupole vs. Z for different mirror plate configurations.

C.3 Simulation with BABAR model

C.3.1 BABAR magnetic circuit

The BABAR magnetic circuit consists of 2 active elements: a thin 1.5 T cryogenic
solenoid and a bucking coil in the backward direction. The mean radius of the solenoid
is 1532 mm while its length is 3456 mm. The bucking coil is a warm magnet which
can operate at ±1.5 times the expected operating current (see Section C.5).

Its passive elements consist of a barrel, forward and backward endcaps and plugs,
part of the DIRC support structure (the Strong Support Tube, or SST radially be-
tween the backward door and the plug, and the ESS connection to the barrel iron) and
the DIRC shield. The quadrupoles need to be treated as passive elements only. The
ensemble of the elements is extremely complicated from a magnetic point-of-view,
even for the axisymmetric approximation. This is mainly due to the varying thick-
nesses of the thin plates and narrow gaps which make up the instrumented flux return
in the barrel and door regions, see Figure C.5. The other area of complication comes
from the plugs which need careful shaping to obtain the uniform field requirements
inside the drift chamber fiducial volume and to prevent too large of a leakage towards
the quadrupoles especially in the forward direction. In the backward plug region, the
DIRC support structure is part of the magnetic circuit, but the fragile quartz bars
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Figure C.5: The BABAR iron: one of 6 barrel sectors of the instrumented flux return
in construction, and end view design of barrel viewed from back.

and bar boxes require holes in this part of the circuit, increasing the fringe field in the
backward direction in a significant way, see Figure C.6. Note that the horsecollar is
magnetically connected to the door iron; this is an approximation for the part which
is not axi-symmetric.

In addition, there are the inevitable non-axisymmetric passive elements: the drift
chamber cable holes in the backward plug, the upwards chimney passage for the
cryogenics services, the skid plates under the two doors (to allow opening for access),
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Figure C.6: The BABAR iron: schematic details of the backward region, including the
bottom part of door, the plug, SST and horsecollar. The quartz is included to indicate
the reason for the big gap in the magnetic circuit.

the ESS, the quadrupoles and some smaller features.
However, some of these elements have a left-right symmetry, making the analysis

somewhat simpler. In addition, while the hexagonal shape of the barrel and door iron
is not strictly axisymmetric, that approximation turns out to be a good one.

C.3.2 2D with Castem 2000 and Mermaid

In order to satisfy the PMT and Q2 requirements, it was recognized early that a
combination of active (bucking coil) and passive elements (iron) was necessary.

There are external constraints on the shielding arrangement. They include:

• The shield is most strongly determined by the SOB which is shown in Fig-
ure C.7, cantilevered from the horsecollar. Part of the shield must consist of an
inner cylinder at a radius inferior to that of the SOB.

• Beam elements will be contained within the shield cylinder. They are supported
in cantilever, limiting the length of the shield along Z, i.e. ≥ -5000mm. The
radial extent of the beam elements is determined by seismic considerations, and
vary as a function of Z. The shield cylinder is thus sandwiched between these
beam elements and the SOB.

• Access to the drift chamber is made inside the shield cylinder. This access is
quite difficult because the beam elements fill a large fraction of the relatively
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Figure C.7: Side view of the DIRC SOB and shield, with BABAR iron. The SOB
is cantilevered from the horsecollar which is connected to the BABAR iron, while the
shield is supported by the skid plate which also supports the BABAR backward doors.

small radial dimensions. However, only the upper part of the shield cylinder can
be removed without moving the beam elements.

• Access to other parts of the detector requires that the BABAR doors open lat-
erally on the moveable skid plates. The shield should also open laterally for
SOB access. Since the opened BABAR doors are no longer bolted to the barrel
iron, they are quite unstable due to their aspect ratio; therefore counterweights
are required on the skid plates. Given the small radial space between the SOB
and the skid plates, there is little room for a dedicated counterweight. Thus the
magnetic shield and its support, resting on the skid plates, should also provide
a counterweight for the BABAR doors, when opened.

• the shield should provide a stop for the backward plug against movements in
the -Z direction due to a seismic event.

Studies were performed initially using Castem 2000 [6] and subsequently with
Mermaid [7]. The comparison of the results of the two codes using the same geometry
and magnetic properties was very good. The 2D results of Castem 2000 are pre-
sented since the code allows the use of more than three different regions with variable
permeability.

The PMT closest to the beam line is more sensitive to the bucking coil current than
the furthest PMT. In general, at the optimum bucking coil current, the maximum
transverse field at the PMTs occurred at these two extremes, but with opposite sign.
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An iterative series of studies were made minimizing the maximum transverse field at
the photomultipliers at the optimum bucking coil current. The studies concerned:

• the position of the bucking coil: to be most effective in compensating the flux
leakage, the bucking coil was placed at the exit of the hole for the quartz.

• the range of magnetic field for which the iron needed a high permeability: see
Figure C.8 where the maximum field needed for the shield studies is H=100
A/m.

• the thickness of the iron: the influence of the thickness of the iron shield varied
little between 40 and 60 mm and was chosen to be 50 mm.

• the magnetic gap between the shield iron and the plug/SST was found necessary
but not very sensitive beyond a minimum distance.

• the dimensions of the horsecollar were increased to provide a path for the mag-
netic flux which avoided the inside of the shield

• the shape of the shield iron was varied between closely following the SOB and
a cylindrical shape, easier to fabricate; the result was quite insensitive to this
choice.

• the point at which the shield inner cylinder should connect to the remaining
part of the shield was the closest to the null point at which the field changes
sign. This latter point is quite delicate in that it is quite close to the PMTs
closest to the beam line.

These studies resulted in a concept (see Figure C.2) with an inner cylindrical shell
and an outer structure split in halves. The two halves consist of an outer cylindri-
cal shell, two annular end-plates (“near” and “far”), an annular cover plate, support
structures, and braces to the back door. The inner cylindrical shell is divided longi-
tudinally into a fixed part (about 1/3) and a moveable part (about 2/3). The fixed
part is connected to a standoff shell in cantilever from the backward plug.

For the shield design parameters, the simulation showed that, at the optimum
bucking coil current for the PMTs, about 30.7 kA-turns, the transverse magnetic
field at the PMTs is about 0.2 G as seen in Figure C.9. The optimum bucking coil
current for Q2 is higher by about 15%, requiring a compromise. Since the optimization
was done in 2D, the value of the current is only approximate; however the relative
optima for the PMTs and Q2 should be verified.

The flux lines near the DIRC shield are shown in the same figure. Notice the
influence of the horsecollar and the mirror plate of Q2, as well as the magnetic opening
for the quartz and the cover plates. The reversal of the flux direction in the annular
far plate is related to the zero in B⊥ observed in the upper curve.
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Figure C.8: Magnetic properties assumed for different materials in the simulation.
The left figure is for barrel, door, plug and SST iron, while the right figure is for the
shield iron. Note the different scales, in particular the abscissa.
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Figure C.9: Results of the 2D modelization of BABAR using the measured permeability
(see Section C.4). The figure on the left gives the B⊥ along PMT face from probe 2
to probe 0 see 6 while the figure on the right gives the flux lines in the DIRC shield
region.
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C.3.3 3D with Mermaid

Three-dimensional studies were made to study the effects of the different non-axisymmetric
aspects of the BABAR iron [9]. In addition, they permitted an evaluation of the gaps
between the two shield halves, necessary at the top for cable access, and at the bottom
for water pipe access. The Mermaid 3D computer code was used for this purpose. This
code allows us to have a mesh for calculations with up to 2×106 nodes at Pentium
computer with 128 Mb memory core.

Simple axisymmetric version of BABAR

Before starting 3D calculations, we compared the results using the Mermaid 2D code
with those obtained by Mermaid 3D for exactly the same axisymmetrical geometry.
The comparison was performed in two regions of interest: inside the shield at the
PMTs location and near Q2. The difference does not exceed 0.2 G for the PMT region
and 5 G for the Q2 region. This accuracy could be improved by a finer meshing.

Due to the complexity of the BABAR magnetic circuit, it was not possible to make
a 360◦ model within the memory limitations. Therefore, we considered two models
with either left-right or top-bottom symmetry.

Left-right and top-bottom symmetric models of BABAR

In Figure C.10, one sees the BABAR model with left-right symmetry. It was used to
study the effects of the top-bottom asymmetries, in particular

• the chimney for the cryogenics at the top

• the cable holes in the bottom of the plug

• non-symmetrical 5 mm split between the removeable and fixed parts of the
backward plug

• the skid plate on the bottom

By using extreme values for the parameters, we have determined that the major
effect is due to the ESS and the chimney cutout, i.e. the angular distribution reflects
the angular variation of the magnetic reluctance between the near annular plate of
the shield and the horsecollar. On the other hand, the angular variations due to the
cable holes, split between removeable and fixed parts of the plug, and skid plates are
very small. The B⊥ for this model varies between 0.3 and 0.7 G as seen in Figure C.11

A BABAR model with top-bottom symmetry was used to study the effects of the
left-right asymmetries, in particular Q2. Another left-right asymmetry was introduced
to reflect an error in the mounting of the BABARdoors which produced an additional
x-displacement of 7 mm. The model shows that the angular variations due to the Q2
asymmetry and the shift of one door are negligible [9].
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Figure C.10: Cross-section of left-right
symmetry model of BABAR. Note the
shape of the horsecollar. The up-down
asymmetric elements are in black.

Figure C.11: B⊥ vs. azimuthal angle cal-
culated in the left-right symmetry model
of BABAR. The coordinate system has
the downward direction at 0◦.

Therefore, the results of the 3D simulations show that the expected B⊥ inside
the DIRC shield is less than 1 G with angular variations of about 0.2 G. Since a
possible residual field (see next section) was not included in the model, the measured
azimuthal dependence can be different in detail from the prediction.

C.3.4 Necessity of demagnetization

The calculations by Castem 2000 and Mermaid show that in the case of the crash of
the main solenoid or bucking coil, the field in the shield iron can reach 7 kG instead
of 0.5 kG when both coils are on. The resulting coercive force is about 1 Oe for the
very pure iron used in the shield construction. Therefore, the residual field of the iron
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will give an additional contribution to the fringe field in the PMTs region.
We estimated the residual field distribution inside the shield, simulating the mag-

netization of the iron by a coil applied to the shield iron from both inner and outer
sides all along the contour of the shield. This coil inducing the magnetization field
inside the iron should have a linear current density along the contour equal to the
coercive force taken in A/cm. We assumed j = 0.8 A/cm corresponding to the value
of the coercive force Hc = 1 Oe. The polarity of the current in the coil corresponded
to the direction of the residual flux in the shield iron. This direction was taken from
the calculation of the field at zero bucking coil current.

The value of the maximum perpendicular component at the PMTs, practically
equal to the module of the field, reaches about 3 G on the upper PMTs and about
2 G on the lower PMTs. In this model, the residual field due to the coercive force
exceeded the expected fringe field inside the shield. This led to a special effort to
produce a shield with as small a coercive forces as possible, and to the consideration
of the use of the bucking coil to demagnetize the shield. In this method, the amplitude
of AC component of the bucking coil current should gradually decrease, for example
(Figure C.12):

IBC = IBC
0 + IBC

A Sin(
2π

T1

t)e
− t

T2 , T1 << T2

t, min

I B
C

, A

-150

-100

-50

0

50

100

150

200

0 5 10 15 20 25 30 35 40

Figure C.12: Possible degaussing proce-
dure for the shield

Figure C.13: Measurements of the dete-
rioration of the permeability at low fields
due to bending. The region which is rel-
evant for our studies is H ≤ 100 A/m.
The inner cylinder corresponds approx-
imately to the 2% curve. Scaling by the
radii, the outer cylinder corresponds ap-
proximately to 0.5%.
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Two different cases of the shield magnetization, due to main solenoid or bucking
coil crashes, lead to two types of procedures. In the case when the main field cut, the
demagnetization procedure has to have IBC

0 = 0, while IBC
0 = IBC

opt for the other case.
To estimate T1, we have to take into account that the skin depth has to be at least

half of the shield thickness:

T1 =
πµδ2

ρ
≈ 20sec,

for ρ = 0.11µHom/m and average µ=1000.
About ten cycles of bucking coil current would be enough to decrease the residual

fields in a reasonable time.

C.4 Design and construction of the shield

The design of the shield was based on the following considerations:

• the outer part of the shield is cylindrical to minimize the number of elements
to be connected.

• all connections are welded including the support structure, except for the cover
plate to allow the opening of the shield doors and access to the Drift Chamber,
and the flange on the fixed part of the inner cylinder to allow the opening of
the SOB.

• since the necessary bending strongly affects the permeability, especially at low
H (see Figure C.13 for measurement on a similar type of iron, [8]), the entire
structure must be annealed after construction. The manufacturer studied two
cases: annealing at 550◦ for 2 hours and at 850◦ for 4 hours. The latter gave
better results.

• the shield structure is welded to the skid plate at the bottom, and is welded to
the BABAR door at the top via braces to prevent movement during a seismic
event.

The construction of the shield with its special low carbon steel was the responsi-
bility of Kawasaki Heavy Industries (KHI). The material was EFE material, manu-
factured at Kawasaki Steel Corporation (KSC). The permeability and coercive force
were measured at the manufacturer: see Figures C.14 and C.15. These values were
better than specifications in general. In particular, the measured permeabilities were
better than that used in the original simulation (the right part of Figure C.8) leading
to a reduction of 1.5 in the maximum B⊥ expected. The measured coercive forces
were about one half that assumed in the calculation of Section C.3.3; therefore the
expected residual field should not exceed about 1.5 G.

The design of the Saclay laboratory is shown in Figure C.16. The cover plate is
made in 4 pieces to facilitate the opening of the shield. The turn buckles take up the
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Figure C.14: Relative permeability vs.
field for the shield material as measured
at KSC

Figure C.15: Coercive force vs. field for
the shield material as measured at KSC

construction tolerances and are made rigid to provide a “stop” for the upper part of
the plug. A rail structure, not shown, enables us to remove the upper parts of the
plug and inner shield cylinder to provided access to the drift chamber electronics.

The machining, bending, welding and annealing was done at KHI. Some construc-
tion processes are shown in Figures C.17-C.18, the latter also shows the shield as it
is being aligned, and mounted and aligned, with half of the cover plate remaining to
be mounted.

C.5 The bucking coil and its power supply

The bucking coil is constrained in the space between the moveable backward end
doors and the horsecollar, and at a radius beyond the support of the quartz bars. The
aim of the design is to allow for as many ampere-turns as possible in this restricted
region, approximately 100 mm in Z, and 220 mm in radius, starting at a radius of
about 945 mm.

The bucking coil, designed and built at SLAC, is a conventional magnet, water-
cooled, with 140 turns of square hollow core copper, 0.375 inches on a side, insulated
with polyester glass fiber. The bucking coil power supply consists of two off-the-shelf
15 KW switcher power supplies connected in parallel, a thyristor reversing switch, a
zero-flux current measuring transductor, and a controller-regulator connected to the
PEP-II Bit-Bus power supply control network. It has a combined maximum rating of
±300 A.
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Figure C.16: Exploded isometric view of the design of the DIRC shield design

C.6 Design and construction of the DIRC mapper

The aim of the DIRC mapper is to measure the field components inside the shield at
positions corresponding to the faces of the PMTs [10]. It was designed and built at the
Budker Institute. It consists of a rigid support structure, mounted on the horsecollar,
which can rotate about the beam axis. Three-dimensional probes are placed at three
positions along the PMT rows, at the two extremes and in the middle. We will now
describe the mechanics and the probes in some detail.

C.6.1 Mechanics

The mechanical design of the magnetic measurement system is shown in Figures C.19
and C.20.

A rigid frame is attached to the platform moving around the circular rail mounted
on the Horsecollar. All elements, such as frame, removeable platform and circular rail
are fabricated from aluminum alloy. The movement of the platform along the rail is
provided by three rollers. Three 3D probes are fixed on the arc of the frame.

The step motor mounted on the platform provides the motion of the frame. The
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(a) Rolling of outer cylinder (b) Rolling of inner cylinder

(c) Outer structure in two halves (d) Oven used to anneal each half

Figure C.17: Construction of the DIRC shield: I

motor has no permanent magnet inside. A worm gear is used to transfer the rotation
momentum of the rotor.

The potentiometric method with the use of nichrome wire resistor of 0.8 mm
diameter is used to measure the azimuthal angle φ. This wire is located in the groove
on the rail. An electric contact attached to the platform moves along the rail together
with the platform. The wire resistor is supplied by 100 mA current. The accuracy of
the azimuthal angle measurement is about 0.2◦.

C.6.2 Probes

Both ferro-probes (Magnetically Modulated Permalloy Probes or MMPP) and Hall
probes are used. Each set of 3D probes consists of one 3D ferro-probe and one 3D
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(a) Lower, or fixed, part of inner cylinder (b) Upper, or moveable, part of inner

before short-blasting in factory cylinder in machining

(c) Shield in process of being adjusted (d) Shield fully mounted at BABAR, except

at BABAR for the top of cover plate

Figure C.18: Construction of the DIRC shield: II

Hall probe located next to each other. The sensitive volume of a set is a cube of
20 × 20 × 20 mm3. The locations of the 3D probes on the rigid frame correspond to
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Figure C.19: Side view of the mecha-
nism. The location of probes is at the
PMT faces with #0 the closest to the
beam and #2 the furthest.

Figure C.20: Front view of the mech-
anism. The mechanism rotates az-
imuthally about the beam direction.

the faces of the PMTs as shown in Figure C.19, with the definitions:

• #2 probe - furthest PMT from beam line

• #1 probe - intermediary PMT

• #0 probe - closest PMT to beam line

The measurement coordinate system has 0◦ as the downward direction, rotating in
the clockwise direction as viewed from the rear of BABAR.

Ferro-probes

Ferro-probes are used to measure relatively low fields up to about 10 G. The ferro-
probe is supplied with a measuring electronic unit which transforms magnetic field
into voltage with coefficient of about 0.5 V/Gauss. Each 3D ferro-probe is arranged
inside a cube of 10 × 10 × 10 mm3.

The design of one coordinate ferro-probe is shown in Figure C.21. It consists of
permalloy core of 20 µm diameter and 7 mm long located in the quartz tube. This core
was annealed in advance and has very small coercive force. The common excitation
and compensation coils are wound along the quartz tube. The signal coil is wound at
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the middle of the tube. Rectangular 16 kHz impulses from generator are applied to
the excitation circuit. The signal in the signal coil is proportional to the B derivative
in the core. The amplitude of the second harmonic (2f=32 kHz) of this signal is
proportional to the measured Bext. An integrating ADC with a multiplexer is used
to read out the probes with 14-20 bit resolution for two scales: 8V and 0.5V. The
long-term zero drift is less than 0.02 G within a 20-30◦C temperature range.

Figure C.21: Design of ferro-probe or MMPP (one coordinate)

Hall probes

Hall probes are used to measure relatively high fields exceeding 5 Gauss, thus over-
lapping the ferro-probe sensitive region. One 3D set of Hall probes consists of three
probes glued on the sides of an aluminum cube, 3×3×3 mm3. This unit is assembled
in a box 9 × 15× 62 mm3. The stabilized DC current source which is used to supply
the Hall probes has a stability of 10−5.

Probe calibration

A special calibration system is used to measure zero offset and sensitivities of the
probes. The calibration is performed with the help of Helmholtz coils located inside
a zero field box (less then 0.01 G) manufactured from annealed permalloy. It can
produce magnetic fields up to 50 G. We used a Hall probe calibrated by NMR probe
to measure the coefficient between the current and magnetic field of this coils. The
estimated error is 0.1%.

C.6.3 On-line for mapper

On-line code written on C++ runs under Linux operation system on IBM PC. We used
a standard CAMAC interface PPI-2 and Crate Controller developed at the Budker
Institute. This code allows one to drive the mechanics, calibrate the probes, measure
the magnetic map and display the resulting curves during measurements.
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OFF

Radius Zh Zh-80 Zh-160 Zh-290

(cm) Bmod (Gauss) Bmod (Gauss) Bmod (Gauss) Bmod (Gauss)

0 220 50 20 7

70 175 25 15 7

105 30 20 9

ON

Radius Zh Zh-80 Zh-160 Zh-290

(cm) BZ (Gauss) BZ (Gauss) BZ (Gauss) BZ (Gauss)

0 -2.8 -0.2 -2.9 -2.6

70 - -2.2 -3.1 -2.6

105 -7.6 -3.5 -3.6 -2.8

Table C.1: Gaussmeter results for Bmod(BZ) with bucking coil OFF ON in the shield
region. Zh is the Z at the exit of the horsecollar. Solenoid current at 1.05 nomi-
nal=4830 A (nominal=4600 A)

C.7 Field mapper at backward quadrupoles

A single Hall probe was used, which could be oriented to measure any component. It
was placed in an aluminum channel, which had a 3 m scale graduated in mm. The
channel was oriented on a line approximating either the LER or HER beam trajectory,
or parallel to the beam axis at a radius=25 cm.

C.8 Results of measurements

C.8.1 Gaussmeter measurements with no shield

The solenoid was commissioned before the mounting of the DIRC shield. Measure-
ments were taken at that time with a hand-held gaussmeter to obtain an order of
magnitude of the fringe field with and without the bucking coil turned on. The repro-
ducibility of the method was about ±10%. There was no coordination of the powering
of two coils.
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Figure C.22: Gaussmeter results for BZ in the Q2 region with the bucking coil off.
The 2D Mermaid predictions are also shown. Note that Z refers to the distance from
the interaction point.

With the bucking coil off or on, the results for the shield region are given in
Table C.1. They are valid for one azimuth and are difficult to compare to a 2D
simulation. Note that the PMT closest furthest to the beam line is at R=83.7(186) cm
and Z = Zh-126(68) cm.

The results for the Q2 region as a function of Z on a straight-line approximation to
the LER orbit are given in Figure C.22 and compared to the 2D Mermaid predictions.
The results are quite accurate at the exit of the backward endcap as well as at
the quadrupoles, while differing by about 20 Gauss at the mid-point between the
quadrupoles. Note the large field at Q2 which the bucking coil must compensate.

C.8.2 Mapper measurements with “no” magnetization of shield

No field and minimal shield

Figure C.23 shows the measurements reflecting the remnant field in the BABAR doors,
horsecollar and skid plates. The remnant field in the BABAR doors, horsecollar and
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skid plates was measured. The maximum Bmod was about 0.90 G, and was observed
for probe 2 about the horizontal direction (90◦ and 270◦). For this probe, it was a
minimum in the vertical direction, about 0.55 G. The maximum and minimum values
are approximately left-right and up-down symmetric.
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Figure C.23: Bmod vs azimuthal angle
with magnetized BABAR iron, only un-
magnetized inner cylinder mounted and
both coils turned off

Figure C.24: Bmod vs. azimuthal an-
gle with magnetized BABAR iron, com-
pleted unmagnetized shield and both coils
turned off

No field and full shield

The mounting of the shield greatly reduced the influence of the remnant field of
BABAR doors at the PMT positions. More important, the very low measured fields
less than 0.2 G shown in Figure C.24 demonstrate that the iron used in the shield
construction had a very low residual field.

Ramp to full field

The solenoid and bucking coils were ramped together in 5 steps to the nominal oper-
ating currents. Measurements were made at each step.

Inside the shield, the maximum B⊥ was observed for probe 0 at around 60◦. At
the nominal currents, the maximum perpendicular component of the field at the
PMTs is 0.8 G, quite reasonable for PMT operation. The fringe field is not linear
(see Figure C.25) in that the BABAR iron is not saturated at low currents; at these
currents, the bucking coil over-compensates the solenoid; It should also be noted that
in simulations, a linear relationship between the ramping of the two coils leads to
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fields in the shield iron of about 1 kGauss at about mid-ramp, while an optimum
relationship gives a maximum field of about 0.5 kGauss at the final, or nominal
current. Therefore, a linear ramping function will lead to some extra magnetization
of the iron.

Figure C.26 shows the measurements along the LER trajectory in the vicinity of
Q2. Note the same effect of over-compensation due to the bucking coil before the iron
becomes saturated.

Figure C.25: Maximum B⊥ vs. fraction
of nominal operation current for both
coils, ramped together

Figure C.26: Results at Q2 as the
solenoid and bucking coils were ramped
together. Note that Z refers to the dis-
tance from the interaction point.

Optimization of bucking coil current

The bucking coil current was varied to determine the optimum currents for PMT and
quadrupole operation. It was increased to 230A in 10A steps and then was reduced
to 200 A. The current was then reduced to 170 A in 10 A steps.

Figure C.27 shows the measurements along the LER trajectory in the vicinity of
Q2. It is clear that the optimum is near 200 A. Note that this current is about 10%
lower than the prediction (Section C.3.2). For the optimal current, a fine Z scan was
performed along the LER direction from the exit of the backward end cap to beyond
Q4; see Figure C.28 for the measurements. The 2D Mermaid results are also shown;
they differ by less than about 5 G at and between the quadrupoles, and track quite
well near the doors where BZ rises rapidly.

For the PMTs, the value of B⊥, measured at ≈ 60◦(the maximum point), differed
in the two 200 A measurements due to hysteresis effects; it was reduced from 0.8 G
to 0.6 G. At the 170 A, the three probes had the same maximum value, 0.5 G which
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Figure C.27: Results at Q2 as the bucking coil current was varied, while the solenoid
was at nominal field. Note that Z refers to the distance from the interaction point.

is the optimum for the PMTs. This value is about 15 lower than at 200A, the value
that was determined as optimum for Q2, in good agreement with the calculation
(Section C.3.2). The bucking coil current was cycled back to 200A as follows: 170A
→ 230A → 180A → 220A → 190A → 210A → 200A at which point we observed
a reduction in the hysteresis. See Figure C.29 for the scan at the last current. The
maximum B⊥ is about 0.8 G and a left-right asymmetry is observed, probably due
to residual shield magnetization. (No effects of shield magnetization were observed at
Q2.)

C.8.3 Mapper measurements with magnetization of shield

A magnetization of the shield was induced by ramping down the bucking coil to 0,
while the solenoid remained at its nominal value. The maximum B⊥ was now over
5 G demonstrating the necessity of the bucking coil. See Figure C.30. This maximum
point was at an angle ≈ 300◦ and another local maximum was observed at ≈ 60◦; it
is notable that these angles correspond to the horizontal gaps in the cover plates.
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Figure C.28: Fine scan in Z at Q2 at the optimum bucking coil current with two scales.
The 2D Mermaid prediction with Ib=220 A is also shown. Note that Z refers to the
distance from the interaction point.

This coil was now ramped back up to 200A, and the maximum B⊥ was reduced
to about 2.1 G, as can be seen in Figure C.31. This maximum value corresponds to
the limit set for the PMTs, see Section C.2.1, but leaves little margin. Since we want
a more robust solution, we have investigated different demagnetization schemes.

C.8.4 Demagnetization

A typical demagnetization cycle is shown in Figure C.12, requiring a current reversal,
e.g. when the solenoid is off, but it is also possible to use a demagnetization cycle
about a finite current, e.g. when the solenoid is on.

A first incomplete demagnetization was performed by varying the bucking coil
current around 200A with the following cycle: 200A → 250A → 155A → 240A →
165A → 230A → 175A → 220A 185A → 210A → 195A → 200A, each step performed
in 2 minutes. While the shape was unchanged, the 2.1 G peak see in Figure C.31 was
reduced to 1.15 G (to be compared to 0.8 G for the unmagnetized case). This already
demonstrated that demagnetization using the bucking coil was feasible.

Solenoid “crash”

When the solenoid was discharged rapidly from full current (38 second time constant),
the bucking coil power supply could not track, and the shield was re-magnetized.
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Figure C.29: B⊥ vs. azimuthal angle
with the solenoid at its nominal current
and the bucking coil at the optimum cur-
rent for Q2.

Figure C.30: B⊥ vs. azimuthal angle
with the solenoid at its nominal current
and the bucking coil turned off to induce
a magnetization in the shield iron.
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Figure C.31: B⊥ vs. azimuthal angle
with the solenoid at its nominal current
and the bucking coil at 200 A after the
magnetization of the shield iron.

Figure C.32: Comparison of B⊥ vs. az-
imuthal angle after a solenoid “crash”
and after a demagnetization cycle of the
bucking coil around 0 A. Both coils are
off

A demagnetization cycle of the bucking coil current around 0 A was attempted as
follows: 0A → -200A → 190A → -180A → 170A → -160A → 150A → -140A 130A →
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-120A → 110A → -100A → 90A → -80A 70A → -60A → 50A → -40A → 30A → -20A
→ OA, each step performed in 2 minutes, and the result is shown in Figure C.32.
The maximum B⊥ is 0.22 G which is close to the one before the shield was put in a
magnetic field (Figure C.24); we plan to use this scheme for demagnetization when
the solenoid is off.

Bucking coil “crash”

While ramping up both power supplies, a problem caused the solenoid to be discharged
rapidly again, and the shield was re-magnetized. The two power supplies were ramped
up once again, and with the solenoid at full current, demagnetization was attempted
with a cycle around 200A as follows: 200A → 300A → 105A → 290A → 115A → 280A
→ 125A → 270A 135A → 260A → 145A → 250A → 155A → 240A → 165A 230A →
175A → 220A → 185A → 210A → 195A → 200A, each step performed in 2 minutes.
The result is shown in Figure C.33, and should be compared to Figure C.29. The
maximum value is now 0.9 G, quite comparable to the 0.8 G previously attained.
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Figure C.33: Comparison of B⊥ vs. azimuthal angle after a bucking coil “crash” and
after a demagnetization cycle of the bucking coil around 200 A with solenoid at full
current. Both coils are on.

While this scheme is satisfactory, it could possibly reduce the “on-time” of the
experiment. Therefore, for a bucking coil “crash”, another method of demagnetization
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was developed. We compensated for the magnetization by raising the bucking coil to
a current above 200 A, called the overshoot current, and then lowering the current to
the nominal 200 A current. We found that this was not only possible, but optimum
in that the apparent BABAR left-right asymmetry could be compensated.

In Table C.2, we show the results of the optimization. Each Iover was obtained
starting at a null bucking coil current.

Iover max Bperp, left side max Bperp, right side

200 1.9 1.2

250 0.68 0.56

260 0.61 0.61

275 0.58 0.72

300 0.54 0.88

Table C.2: Optimization of the overshoot current, Iover

In Figure C.34 we see the left-right compensation around the optimum value
of Iover=260 A. This result is in relatively good agreement with the calculation
(Figure C.11) though some residual field probably still influences the probe 0 result.
Nonetheless the results for probes 0 and 2 have about the same maximum value. In
the experiment, we shall use this demagnetization scheme when the solenoid is at its
nominal current.

Starting with a maximum B⊥ of about 2 G when one of the two coils is inop-
erative and then is ramped up, the measurements with the simple demagnetization
scheme show that a maximum B⊥=0.6 G can be attained, in good agreement with
the predictions, see Section C.3.4. This maximum field is quite robust for good PMT
operation.

C.8.5 Conclusions

We have obtained low fringe fields in the backward part of the BABAR detector by
using a bucking coil in conjunction with a very pure iron shield.

For the PMT region, within the shield, the measurements are in the sub-Gauss
region, and a precise quantitative comparison with the simulation is masked somewhat
by the magnetization of the shield which is difficult to avoid. As we have seen, this
magnetization has a complicated azimuthal dependence.

For the quadrupole region, a more quantitative comparison can be made between
the measurements and the 2D axisymmetric Mermaid model as shown on Figure C.28.
The results are quite accurate at the exit of the backward endcap where the steep
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fall-off is very well-reproduced, even in the blown-up scale. Differences of the order of
less than 5 G are seen at and between the quadrupoles.

The field in the PMT region is less than 1 G, in good agreement with the cal-
culation. A simple method of demagnetization has been found, with a maximum
B⊥ = 0.6 G in the PMT region. Demagnetization procedures have been investigated
successfully and have become semi-automatic.
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Appendix D

Study of B0 → D
(∗)+
s D∗− decays

This appendix includes the complete report of “Measurement of B0 → D(∗)+
s D∗−

Branching Fractions and B0 → D∗+
s D∗− Polarization with a Partial Reconstruction

Technique” published in Physical Revew D (BABAR Collaboration, B. Aubert et al.
Phys. Rev. D 67 092003 (2003))
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Measurement of B0 → D(∗)+
s D∗− Branching

Fractions and B0 → D∗+
s D∗− Polarization with a

Partial Reconstruction Technique

BABAR Collaboratrion

Abstract

We present a study of the decays B0 → D(∗)+
s D∗−, using 20.8 fb−1 of e+e− annihila-

tion data recorded with the BABAR detector. The analysis is conducted with a partial
reconstruction technique, in which only the D(∗)+

s and the soft pion from the D∗− decay
are reconstructed. We measure the branching fractions B(B0 → D+

s D
∗−) = (1.03 ±

0.14±0.13±0.26)% and B(B0 → D∗+
s D∗−) = (1.97±0.15±0.30±0.49)%, where the

first error is statistical, the second is systematic, and the third is the error due to the
D+

s → φπ+ branching fraction uncertainty. From the B0 → D∗+
s D∗− angular distribu-

tions, we measure the fraction of longitudinal polarization ΓL/Γ = (51.9±5.0±2.8)%,
which is consistent with theoretical predictions based on factorization.

D.1 Introduction

Precise knowledge of the branching fractions of exclusive B decay modes provides a
test of the factorization approach [1]. Factorization neglects final state interactions
between the quarks of the two final state mesons. The pattern of branching fractions
for two-body B decays to modes such as D(∗)π, D(∗)ρ [2] can be successfully accom-
modated in such a model. However, it is possible that the factorization assumption is
not applicable to the decays B → D(∗)X, where the meson X contains a heavy quark.
The current experimental uncertainties for B → D(∗)+

s D∗ branching fractions [3] do
not allow us to perform a precise test of the factorization approach in this case.

Further tests of factorization are provided by measuring the polarization in decays
of B mesons to vector-vector final states. Within experimental errors, polarization
measurements are consistent with factorization predictions for the final states D∗ρ [4],
D∗ρ(1450) [5], and D∗

sD
∗ [6].

In this paper we present measurements of the branching fractions1 B(B0 →
D(∗)+

s D∗−). We also report a measurement of the D∗+
s polarization in the decay

B0 → D∗+
s D∗−, obtained from an angular analysis. These results provide tests of

factorization with increased precision.

1Reference to a specific decay channel or state also implies the charge conjugate decay or state.

The notation D
(∗)+
s refers to either D+

s
or D∗+

s
.
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D.2 The BABAR Detector and Data Set

The data used in this analysis were collected with the BABAR detector at the PEP-II
storage ring. An integrated luminosity of 20.8 fb−1 was recorded in 1999 and 2000 at
the Υ (4S) resonance, corresponding to about 22.7 million produced BB pairs.

A detailed description of the BABAR detector is presented in Ref. [7]. Only the
components of the detector most relevant to this analysis are briefly described here.
Charged particles are reconstructed with a five-layer, double-sided silicon vertex
tracker (SVT) and a 40-layer drift chamber (DCH) with a helium-based gas mix-
ture, placed in a 1.5 T solenoidal field produced by a superconducting magnet. The
charged particle resolution is approximately (δpT/pT )2 = (0.0013 pT )2 + (0.0045)2,
where pT is the transverse momentum given in GeV/c. The SVT, with a typical single-
hit resolution of 10µm, provides measurement of the impact parameters of charged
particle tracks in both the plane transverse to the beam direction and along the
beam. Charged particle types are identified from the ionization energy loss (dE/dx)
measured in the DCH and SVT, and the Cherenkov radiation detected in a ring imag-
ing Cherenkov device (DIRC). Photons are identified by a CsI(Tl) electromagnetic
calorimeter (EMC) with an energy resolution σ(E)/E = 0.023 · (E/GeV)−1/4⊕0.019.

D.3 Method of Partial Reconstruction

In selecting candidates for the decays B0 → D(∗)+
s D∗− with D∗− → D0π−, no attempt

is made to reconstruct the D0 decays. Only the D(∗)+
s and the soft π− from the D∗−

decay are detected. In this way, the candidate selection efficiency is higher by almost
an order of magnitude than that obtained with full reconstruction of the final state.
Given the four-momenta of the D(∗)+

s and π−, and assuming they originate from a
B0 → D(∗)+

s D∗− decay, the four-momentum of the B0 can be calculated up to an
unknown azimuthal angle φ around the D(∗)+

s flight direction. This calculation uses
the constraint of the known center-of-mass (CM) energy and the masses of the B0

and D∗− mesons. Energy and momentum conservation then allows a determination
of the four-momentum of the D0, whose square yields the φ-dependent missing mass

mmiss =
√

(PB − P
D

(∗)+
s

− Pπ)2 , (D.1)

where PB, P
D

(∗)+
s

and Pπ are the four-momenta of the B0, D(∗)+
s and the soft pion,

respectively. In this analysis the missing mass is defined with an arbitrary choice for
the angle φ, such that the B0 momentum pB makes the smallest possible angle with
pπ and p

D
(∗)+
s

in the CM frame.
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D.4 Event Selection

For each event, we calculate the ratio of the second to the zeroth order Fox-Wolfram
moments, using all observed charged tracks and neutral clusters. This ratio is required
to be less than 0.35 in order to suppress continuum e+e− → qq events, where q =
u, d, s, c.

We reconstruct D+
s mesons in the decay modes D+

s → φπ+, D+
s → K∗0K+ and

D+
s → K0

S
K+, with subsequent decays φ→ K+K−, K∗0 → K−π+ and K0

S
→ π+π−.

These modes are selected since they offer the best combination of large branching frac-
tion, good detection efficiency, and high signal-to-background ratio. Charged tracks
from the D+

s are required to originate from within ±10 cm along the beam direction
and ±1.5 cm in the transverse plane, and leave at least 12 hits in the DCH.

Kaons are identified using dE/dxinformation from the SVT and DCH, as well as
the Cherenkov angle and the number of photons measured with the DIRC. For each
detector component d = {SVT, DCH, DIRC}, a likelihood LK

d (Lπ
d) is calculated

given the kaon (pion) mass hypothesis. A charged particle is classified as a “loose”
kaon if it satisfies LK

d /L
π
d > 1 for at least one of the detector components. A “tight”

kaon classification is made if the condition
∏

d L
K
d /L

π
d > 1 is satisfied.

Three charged tracks consistent with originating from a common vertex are com-
bined to form a D+

s candidate.
In the case of the decay D+

s → φπ+, two oppositely charged tracks must be
identified as kaons with both satisfying the loose criterion, and at least one, the tight
criterion. No identification requirement is applied to the pion. The reconstructed
invariant mass of the K+K− candidates must be within 8 MeV/c2 of the nominal φ
mass [8]. In the decay D+

s → φπ+, the φ meson is polarized longitudinally, resulting
in the kaons having a cos2 θH distribution, where θH is the angle between the K+ and
D+

s directions in the φ rest frame. We require | cos θH | > 0.3, which retains 97% of
the signal while rejecting about 30% of the background.

In the reconstruction of the D+
s → K∗0K+ mode, the K−π+ invariant mass is

required to be within 65 MeV/c2 of the nominal K∗0 mass [8]. This wider window leads
to a larger fraction of combinatorial background than in the D+

s → φπ+ mode. To
reduce this background, we require | cos θH | > 0.5. In addition, substantial background
arises from the decays D+ → K∗0π+ and D+ → K0π+, which tend to peak around the
nominal D+

s mass if the pion is misidentified as a kaon. This background is suppressed
by requiring that the kaon daughter of the K∗0 satisfy the loose kaon identification
criterion and the other kaon, the tight criterion.

For the decay mode D+
s → K0

S
K+, with K0

S
→ π+π−, the π+π− invariant mass

must be within 15 MeV/c2 of the nominal K0
S

mass [8], and the charged kaon must
satisfy the tight criterion. To improve the purity of the K0

S
sample, we require the

angle α between the K0
S

momentum vector and the K0
S

flight direction to satisfy
cosα > 0.98.

The invariant mass MDs
of D+

s candidates is required to be within three standard
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deviations (σDs
) of the signal distribution peak Mpeak

Ds
seen in the data.

D+
s candidates satisfying these selection criteria are combined with photon can-

didates to form D∗+
s → D+

s γ candidates. Candidate photons are required to sat-
isfy Eγ > 50 MeV, where Eγ is the photon energy in the laboratory frame, and
E∗

γ > 110 MeV, where E∗
γ is the photon energy in the CM frame. When the photon

candidate is combined with any other photon candidate in the event, the pair must
not form a good π0 candidate, defined by a total CM energy E∗

γγ > 200 MeV and an
invariant mass 115 < Mγγ < 155 MeV/c2.

The D∗+
s candidates must satisfy |∆M − ∆Mpeak| < 2.5 σ∆M , where ∆Mpeak is

the peak of the signal ∆M = M(D+
s γ) −M(D+

s ) distribution observed in the data.
The CM momentum of the D(∗)+

s candidate is required to be greater than 1.5 GeV/c.
D(∗)+

s candidates are combined with π− candidates to form partially reconstructed
B0 → D(∗)+

s D∗− candidates. Since the transverse momentum of the pion in signal
events is less than 210 MeV/c, these tracks are not required to have DCH hits.

Due to the high combinatorial background in the ∆M distribution, more than one
D∗+

s π− candidate pair is found per event, with about a 20% probability from signal
Monte Carlo simulation. To select the best candidate in the event, the following χ2

is calculated for each D∗+
s candidate

χ2 = [(Mi −Mpeak
i )/σi]

2 + [(MDs
−Mpeak

Ds
)/σDs

]2

+[(∆M − ∆Mpeak)/σ∆M ]2,

(D.2)

where Mi is the measured invariant mass of the intermediate i = φ, K∗0, or K0
S

candidate, depending on the D+
s decay mode, Mpeak

i is the corresponding peak of the
signal Mi distribution, and σi is its width obtained from data. The candidate with
the smallest value of χ2 in the event is retained.

D.5 Results

The missing mass distributions of candidates for partially reconstructed B0 → D(∗)+
s D∗−

decays are shown in Fig. D.1. A clear signal peak is observed in all modes. We perform
a binned maximum likelihood fit to these distributions. The fit function is the sum
of a Gaussian distribution and a background function given by

fB(mmiss) =
C1(M0 −mmiss)

C2

C3 + (M0 −mmiss)C2
, (D.3)

where Ci are parameters determined by the fit, and M0 ≡MD∗ −Mπ = 1.871 GeV/c2

is the kinematic end point. The fits find 3704 ± 232 and 1493 ± 95 events under
the Gaussian peak in the sum of the D+

s π
− and D∗+

s π− distributions, respectively.
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Figure D.1: Missing mass distributions of B candidates in data. (a) D+
s π

− with
D+

s → φπ+, (b) D∗+
s π− with D+

s → φπ+, (c) D+
s π

− with D+
s → K∗0K+, (d) D∗+

s π−

with D+
s → K∗0K+, (e) D+

s π
− with D+

s → K0
S
K+, (f) D∗+

s π− with D+
s → K0

S
K+.

The curves show the result of the fit (see text), indicating the signal and background
contributions.

However, due to the presence of cross feed and self-cross feed, discussed below, further
analysis is needed in order to extract the signal yields and the branching fractions.

We use a Monte Carlo simulation, which includes both BB and qq̄ continuum
events, to study the missing mass distributions of the different background sources.
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Table D.1: Efficiencies for B0 → D(∗)+
s D∗− decay modes to contribute to the D+

s π
−

and D∗+
s π− missing mass distributions in the signal region mmiss > 1.86 GeV/c2. Two

different B0 → D∗+
s D∗− Monte Carlo samples have been used, one with longitudinal

(long.) and the other with transverse (transv.) polarization.

Reconstructed mode

Generated mode D+
s π

− D∗+
s π−

B0 → D+
s D

∗− (23.6 ± 1.0)% (1.7 ± 0.3)%

B0 → D∗+
s D∗− (long.) (9.0 ± 0.3)% (7.4 ± 0.3)%

Self-Cross Feed (1.6 ± 0.1)%

B0 → D∗+
s D∗− (transv.) (10.4 ± 0.3)% (6.9 ± 0.3)%

Self-Cross Feed (1.4 ± 0.1)%

We consider two kinds of backgrounds: a peaking component that contributes pre-
dominantly at the end of the missing mass distribution in the signal region and a
non-peaking component that is more uniform. The non-peaking component is well
modeled by the background function (D.3). The peaking component receives contri-
butions from related channels due to

• Cross Feed (CF): if the soft photon from a D∗+
s → D+

s γ decay is not recon-
structed, B0 → D∗+

s D∗− decays may lead to an enhancement under the signal
peak of the D+

s π
− missing mass spectrum. Similarly, B0 → D+

s D
∗− decays

may lead to a peaking enhancement in the D∗+
s π− mmiss spectrum, due to the

combination of a D+
s with a random photon.

• Self-Cross Feed (SCF): this is due to true B0 → D∗+
s D∗− decays in which the

D+
s is correctly reconstructed, but combined with a random photon to produce

the wrong D∗+
s candidate, resulting in a peaking enhancement in the D∗+

s π−

spectrum.

Table D.1 presents the reconstruction efficiency of correctly reconstructed signal B0 →
D(∗)+

s D∗− decays, as well as cross feed and self-cross feed, found for simulated events
in the signal region mmiss > 1.86 GeV/c2.

In addition to these background sources, we also considered a possible contribution
from the charged and neutral B decays B → D(∗)+

s D∗∗. These potential background
sources were simulated with four D∗∗ states: the observed D1(2420) and D∗

2(2460)
mesons, and the D∗

0(j = 1/2) and D1(j = 1/2) mesons predicted by HQET [9]. Their
contribution was determined to be negligible, mainly due to the D(∗)+

s CM momentum
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Figure D.2: Missing mass distribution for (a) D+
s π

− and (b) D∗+
s π− combinations for

data (points with error bars) and Monte Carlo (histogram). The contributions from
the BB̄, cc and qq̄ with q = u, d, s (labeled uds in the figure) are shown separately.
The cross feed and self-cross feed backgrounds are included in the total histogram, but
not in the hatched BB histogram.

cut. Multi-body decays B → D(∗)+
s X are found not to contribute due to the same

cut.
Figure D.2 shows a comparison of the missing mass distributions in data and

Monte Carlo simulation. We assume 1.05% and 1.59% branching fractions for the
B0 → D+

s D
∗− and B0 → D∗+

s D∗− decays, respectively, in the Monte Carlo simulation.
The number of events in the peaks in the D+

s π
− and D∗+

s π− mmiss distributions is
obtained from the fits described above. The branching fractions are computed from
these yields correcting for cross feed and self-cross feed background. This is done by
inverting the 2× 2 efficiency matrix, whose diagonal elements correspond to the sum
of signal and self-cross feed efficiencies presented in Table D.1, and whose off-diagonal
terms are the cross-feed efficiencies. The efficiencies corresponding to transverse and
longitudinal polarization of B0 → D∗+

s D∗− have been weighted according to the
measured polarization discussed below. With this procedure, the B0 → D(∗)+

s D∗−

branching fractions are determined to be

B(B0 → D+
s D

∗−) = (1.03 ± 0.14 ± 0.13 ± 0.26)%, (D.4)

B(B0 → D∗+
s D∗−) = (1.97 ± 0.15 ± 0.30 ± 0.49)%, (D.5)

and their sum is

B(B0 → D(∗)+
s D∗−) = (3.00 ± 0.19 ± 0.39 ± 0.75)%, (D.6)

where the first error is statistical, the second is the systematic error from all sources
other than the uncertainty in the D+

s → φπ+ branching fraction, and the third error,
which is dominant, is due the uncertainty in the D+

s → φπ+ branching fraction
B(D+

s → φπ+) = (3.6 ± 0.9)% [8]. Correlations in the systematic errors between
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Eqs. (D.4) and (D.5) are taken into account in Eq. (D.6). The sources of the systematic
error are discussed in Sec. D.6.

The measurement of the fraction of the longitudinal polarization ΓL/Γ in the
B0 → D∗+

s D∗− decay mode is performed for candidates having missing mass in the
signal region (Mmiss > 1.86 GeV/c2). To minimize the systematic error due to large
backgrounds, the polarization measurement involves only the D+

s → φπ+ channel,
which has the best signal to background ratio. Two angles are used: the helicity angle
θγ between the D∗− and the soft photon direction in the D∗+

s rest frame, and the
helicity angle θπ between the D∗+

s and the soft pion direction in the D∗− rest frame.
Since the B meson is not fully reconstructed, we compute θγ and θπ by constraining
mmiss to the nominal D0 mass [8] to obtain a unique solution for the azimuth φ.

The two-dimensional distribution (cos θγ , cos θπ) is divided into five ranges in each
dimension, resulting in 25 bins. The combinatorial background, as well as the cross
feed and the self-cross feed obtained from Monte Carlo simulation, are subtracted from
this two-dimensional data distribution. The resulting signal distribution is corrected
bin-by-bin for detection efficiency, which is obtained from the simulation separately
for each bin. A two-dimensional binned minimum-χ2 fit is then performed to the
efficiency-corrected signal distribution with the fit function

d2Γ

d cos θπ d cos θγ
∝ ΓL

Γ
cos2 θπ sin2 θγ +

(1 − ΓL

Γ
) sin2 θπ

1 + cos2 θγ

4
. (D.7)

The resulting fit has a χ2 of 23.1 for 25 bins with two floating parameters (ΓL/Γ and
total normalization). Figure D.3 shows the data and the result of the fit projected on
the cos θγ and cos θπ axes.

From the fit, the fraction of longitudinal polarization is determined to be

ΓL/Γ = (51.9 ± 5.0 ± 2.8)%, (D.8)

where the first error is statistical and the second is systematic.

D.6 Systematic Uncertainties

The various contributions to the systematic errors on the branching fraction and po-
larization measurements are summarized in Table D.2. The dominant systematic error
for the branching fractions is the uncertainty on the three D+

s branching fractions.
To evaluate the uncertainty due to the background subtraction, the signal yield is
determined using an alternative method in which the number of events is extracted
directly from the histogram after subtraction of the background, which is estimated
with the Monte Carlo simulation. The difference of the signal yields obtained in this
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Figure D.3: Projections of the number of background-subtracted data events on the
cos θπ and cos θγ axes. The result of the two-dimensional fit is overlaid.

way from the results of the fit was taken as a systematic error. This also accounts for
the systematic error due to a possible deviation of the signal shape from a Gaussian.

The Monte Carlo statistical errors in the determination of the signal and the cross
feed efficiencies are included as a systematic error. The uncertainty in the calculation
of the B0 → D∗+

s D∗− polarization is propagated to the branching fraction systematic
error. The systematic error due to the uncertainty on the efficiency for the reconstruc-
tion of charged particles is 1.2% times the number of charged particles in the decay.
An additional error of 1.6% is added in quadrature to account for the uncertainty
in the reconstruction efficiency of the soft pion. The systematic error due to the π0

veto requirement was studied by measuring the relative D∗+
s yields in data and Monte

Carlo with and without the π0 veto.
In the polarization measurement, the level of the various backgrounds depends on

the charged track, neutral cluster, and particle identification efficiencies. The fit was
repeated varying the background according to the errors in these efficiencies, and the
resulting variations in ΓL/Γ were taken as the associated systematic error.

To check that the simulation accurately reproduces the background mmiss dis-
tributions in the data, a thorough data-Monte Carlo comparison is made in con-
trol samples containing no signal events. These samples are events with 1.78 <
mmiss < 1.85 GeV/c2; events in the D+

s sideband 1.89 < MDs
< 1.95 GeV/c2 or

1.985 < MDs
< 2.05 GeV/c2; events in the D∗+

s sideband 170 < ∆M < 300 MeV/c2;
wrong sign D(∗)+

s π+ combinations in either the MDs
and ∆M sidebands or signal

regions determined above; and candidates in which mmiss was calculated with the
inverse of the D(∗)+

s center-of-mass momentum p∗
D

(∗)+
s

. The comparison between data
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Table D.2: Sources of systematic uncertainties (%) for the B0 → D(∗)+
s D∗− branching

fractions and B0 → D∗+
s D∗− polarization measurements.

Source D+
s D

∗− D∗+
s D∗− σ(ΓL/Γ)

Background subtraction

or modeling 2.7 5.9 0.5

Monte Carlo statistics 4.2 6.0 2.7

Polarization uncertainty 0.8 0.5 -

Cross feed 3.2 2.4 -

Number of B pairs 1.6 1.6 -

B(φ→ K+K−) 1.6 1.6 -

Particle identification 1.0 1.0 0.1

Tracking efficiency 3.6 3.6 0.5

Soft pion efficiency 2.0 2.0 0.2

Relative branching fractions 10.2 10.2 -

B(D∗+
s → D+

s γ) - 2.7 -

Photon efficiency - 1.3 0.1

π0 veto - 2.7 0.3

Total systematic error 13.1 15.1 2.8

and Monte Carlo simulation for these control samples is shown in Table D.3. The
average level of discrepancy is used to estimate the uncertainty in the modeling of
the background.



172 Appendix D. Study of B0 → D(∗)+
s D∗− decays

Table D.3: The fractional difference 〈(ND − NMC)/NMC〉, averaged over all mmiss

bins, where ND (NMC) is the number of data (Monte Carlo) candidates in a given
bin of the mmiss distribution of the given control sample. SB (SR) refers to the MDs

or ∆M sideband (signal region) control sample. WS indicates wrong sign D(∗)+
s π+

combinations, and −p∗
D

(∗)+
s

indicates that mmiss was calculated from the negative of

the D(∗)+
s CM momentum. The missing mass range 1.78 < mmiss < 1.87 GeV/c2 is

used for the control sample, except for the first line.

Sample type D+
s π

− D∗+
s π−

1.78 < mmiss < 1.85 GeV/c2 −0.009 ± 0.007 0.075 ± 0.014

SB −0.075 ± 0.006 0.007 ± 0.022

SR, WS 0.006 ± 0.008 0.044 ± 0.015

SB, WS −0.060 ± 0.007 −0.008 ± 0.024

SR, −p∗
D

(∗)+
s

0.015 ± 0.009 0.075 ± 0.016

SB, −p∗
D

(∗)+
s

−0.062 ± 0.007 −0.123 ± 0.022

Average −0.038 ± 0.003 0.032 ± 0.007

D.7 Summary

In summary, based on a partial reconstruction technique, we have measured the
branching fractions

B(B0 → D+
s D

∗−) = (1.03 ± 0.14 ± 0.13 ± 0.26)% ,

B(B0 → D∗+
s D∗−) = (1.97 ± 0.15 ± 0.30 ± 0.49)% ,

B(B0 → D(∗)+
s D∗−) = (3.00 ± 0.19 ± 0.39 ± 0.75)% .

The fraction of the longitudinal D∗+
s polarization in B0 → D∗+

s D∗− decays is deter-
mined to be

ΓL/Γ = (51.9 ± 5.0 ± 2.8)%.

This measurement is consistent with theoretical predictions assuming factorization,
which range from 50 to 55% [10, 11]. Our results are also in good agreement with
previous experimental results [3, 6].
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Appendix E

CP violation in B0 → D∗∓π± decays

This appendix contains the report of CP violation measurement with B0 → D∗∓π±

decays and constraint on the sin(2β+γ) angle. It consists of three following sections:

• “First measurement of CP asymmetries in B0 → D∗∓π± decays” published in
Physical Review Letter (BABAR Collaboration, B. Aubert et al. “Measurement
of Time-Dependent CP Asymmetries and Constraints on sin(2β+γ) with Partial
Reconstruction of B0 → D∗∓π± Decays” Phys. Rev. Lett. 92 251802 (2004));

• “Precise measurement of CP asymmetries in B0 → D∗∓π± decays” published
in Physical Review D (BABAR Collaboration, B. Aubert et al. “Measurement of
Time-Dependent CP Asymmetries and Constraints on sin(2β + γ) with Partial
Reconstruction of B0 → D∗∓π± Decays” Phys. Rev. D 71 112003 (2005));

• “Status and prospects for CP asymmetry measurements: sin(2β+γ)”, proceed-
ings of the CKM 2006 workshop in Nagoya University, December 2006, Nagoya,
Japan (S. Ganzhur, “BABAR Status and prospects for CP asymmetry measure-
ments: sin(2β + γ)”, hep-ph/0703229 (2007)).

The first section presents the results of the first measurement of CP violation
in B0 → D∗∓π± decays with about 82 million BB events recorded by the BABAR

experiment. The second section reports the updated result of CP violation in this
decay mode and constraint on sin(2β + γ) with about 232 million BB events. The
measured CP asymmetry is

2r sin(2β + γ) cos δ = −0.034 ± 0.014 ± 0.009,

where the first error is statistical and the second is systematic. This result indi-
cates 2.0 standard deviations from zero and presents the most precise CP viola-
tion measurement in the decays of B mesons. It allows us to constraint the angles
of the unitarity triangle using SU(3) symmetry assumption. This yields the limit
| sin(2β + γ)| > 0.62(0.35) at 68% (90%) CL.

The last section describes the experimental status and future perspectives of
sin(2β + γ) measurements with different decay channels and analysis techniques.
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E.1 First measurement of CP asymmetries

in B0 → D∗∓π± decays

Measurement of Time-Dependent CP
Asymmetries and Constraints on sin(2β + γ) with

Partial Reconstruction of B0 → D∗∓π± Decays

BABAR Collaboration

Abstract

We present a measurement of time-dependent CP -violating asymmetries in decays
of neutral B mesons to the final states D∗∓π±, using approximately 82 million BB
events recorded by the BABAR experiment at the PEP-II e+e− storage ring. Events
containing these decays are selected with a partial reconstruction technique, in which
only the high-momentum π± from the B decay and the low-momentum π∓ from the
D∗∓ decay are used. We measure the amplitude of the asymmetry to be −0.063 ±
0.024 (stat.) ± 0.014 (syst.) and compute bounds on | sin(2β + γ)|.

The Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1] gives an ex-
planation of CP violation and is under experimental investigation aimed at con-
straining its parameters. A crucial part of this program is the measurement of the
angle γ = arg (−VudV

∗
ub/VcdV

∗
cb) of the unitarity triangle related to the CKM ma-

trix. The decay modes B0 → D∗∓π± have been proposed for use in measurements of
sin(2β + γ) [2], where β = arg (−VcdV

∗
cb/VtdV

∗
tb) is well measured [3]. In the Standard

Model the decays B0 → D∗+π− and B0 → D∗+π− proceed through the b→ ucd and
b→ cūd amplitudes Au and Ac. The relative weak phase between the two amplitudes
in the usual Wolfenstein convention [4] is γ. When combined with B0B0 mixing, this
yields a weak phase difference of 2β + γ between the interfering amplitudes.

The decay rate distribution for B → D∗±π∓ is

P±
η (∆t) =

e−|∆t|/τ

4τ
×

[

1 ∓ Sζ sin(∆m∆t)

∓ηC cos(∆m∆t)] , (E.1)

where τ is the B0 lifetime averaged over the two mass eigenstates, ∆m is the B0−B0

mixing frequency, and ∆t is the difference between the time of the B → D∗±π∓ (Brec)
decay and the decay of the other B (Btag) in the event. The upper (lower) sign in
Eq. E.1 indicates the flavor of the Btag as a B0 (B0), while η = +1 (−1) and ζ = +
(−) for the Brec final state D∗−π+ (D∗+π−). The parameters C and S± are

C ≡ 1 − r∗2

1 + r∗2
, S± ≡ 2r∗

1 + r∗2
sin(2β + γ ± δ∗). (E.2)
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Here δ∗ is the strong phase difference between Au and Ac and r∗ = |Au/Ac|. Since Au

is doubly CKM-suppressed with respect to Ac, one expects r∗ ∼ 2%.
In this Letter we report a study of CP -violating asymmetries in B0 → D∗∓π±

decays using the technique of partial reconstruction, which allows us to analyze a
large sample of signal events. Additional information about the techniques used in
this analysis appears in Refs. [5, 6].

The data used in this analysis were recorded with the BABAR detector at the
PEP-II storage ring, and consist of 76.4 fb−1 collected on the Υ (4S) resonance (on-
resonance sample), and 7.6 fb−1 collected at an e+e− center-of-mass (CM) energy
approximately 40 MeV below the resonance peak (off-resonance sample). Samples of
simulated Monte Carlo (MC) events with an equivalent luminosity 3 to 4 times larger
than the data are analyzed through the same analysis chain. The BABAR detector is
described in detail in Ref. [7].

In the partial reconstruction of a B0 → D∗∓π± candidate (Brec), only the hard
(high-momentum) pion track πh from the B decay and the soft (low-momentum)
pion track πs from the decay D∗− → D0π−

s are used. Applying kinematic constraints
consistent with the signal decay mode, we calculate the four-momentum of the D,
obtaining its flight direction to within a few degrees and its invariant mass mmiss [6].
Signal events peak in the mmiss distribution at the nominal D0 mass M0

D with an
r.m.s. of 3 MeV/c2.

In addition to B0 → D∗∓π± events, the selected event sample contains the follow-
ing kinds of events: B → D∗∓ρ±; BB background peaking in mmiss, composed of pairs
of tracks coming from the same B meson, with the πs originating from a charged D∗

decay, excluding B → D∗∓ρ± decays; combinatoric BB background, defined as all
remaining BB background events; and continuum e+e− → qq, where q represents a
u, d, s, or c quark. We suppress the combinatoric background with selection criteria
based on the event shape and the D∗ helicity-angle. We reject πh candidates that are
identified as leptons or kaons. All candidates must satisfy 1.81 < mmiss < 1.88 GeV/c2.
Multiple candidates are found in 5% of the events. In these instances, only the can-
didate with the mmiss value closest to MD0 is used.

To perform this analysis, ∆t and the flavor of the Btag must be determined. We
measure ∆t using ∆t = (zrec − ztag)/(γβc), where zrec (ztag) is the decay position of
the Brec (Btag) along the beam axis (z) in the laboratory frame, and the e+e− boost
parameter γβ is continuously calculated from the beam energies. To find zrec we fit
the πh track with a beam spot constraint in the plane perpendicular to the beams. We
obtain ztag from a beam-spot-constrained vertex fit of all other tracks in the event,
excluding all tracks within 1 rad of the D momentum in the CM frame. The ∆t error
σ∆t is calculated from the results of the zrec and ztag vertex fits.

We tag the flavor of the Btag using lepton or kaon candidates. The lepton CM
momentum is required to be greater than 1.1 GeV/c to suppress “cascade” leptons
that originate from charm decays. If several flavor-tagging tracks are present in either
the lepton or kaon tagging category, the only track of that category used for tagging
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is the one with the largest value of θT , the CM angle between the track momentum
and the D momentum. The tagging track must satisfy cos θT < CT , where CT = 0.75
(CT = 0.50) for leptons (kaons), to minimize the impact of tracks originating from
the D decay. If both a lepton and a kaon satisfy this requirement, the event is tagged
with the lepton only.

The analysis is carried out with a series of unbinned maximum-likelihood fits, per-
formed simultaneously on the on- and off-resonance data samples and independently
for the lepton-tagged and kaon-tagged events. The probability density function (PDF)
depends on the variables mmiss, ∆t, σ∆t, F , st, and sm, where F is a Fisher discrim-
inant formed from fifteen event-shape variables that provide discrimination against
continuum events [6], st = 1 (−1) when the Btag is identified as a B0 (B0), and
sm = 1 (−1) for “unmixed” (“mixed”) events. An event is labeled unmixed if the πh

is a π−(π+) and the Btag is a B0(B0), and mixed otherwise.
The PDF for on-resonance data is a sum over the PDFs of the different event

types, P =
∑

i fi Pi, where the index i = {D∗π,D∗ρ, peak, comb, qq} indicates one of
the event types described above, fi is the relative fraction of events of type i in the
data sample, and Pi is the PDF for these events. The PDF for off-resonance data is
Pqq. The parameter values for Pi are different for each event type, unless indicated
otherwise. Each Pi is a product of the PDFs Mi(mmiss), Fi(F ), and T ′

i (∆t, σ∆t, st, sm),
defined below.

The mmiss PDF Mi for each event type i is the sum of a bifurcated Gaussian

B(x) ∝ exp− (x−µ)2

2σ2
x

, where σx = σL(σR) for x ≤ µ (x > µ), and an ARGUS func-

tion [6]. The Fisher PDF Fi is a bifurcated Gaussian. The parameter values for FD∗π,
FD∗ρ, Fpeak, and Fcomb are identical.

The ∆t PDF, T ′
i =

∫

d∆ttr Ti(∆ttr, st, sm)Ri(∆t − ∆ttr, σ∆t), is a convolution,
where Ti is the distribution of the true decay-time difference ∆ttr and Ri is a three-
Gaussian resolution function that accounts for detector resolution and effects such as
systematic offsets in the measured positions of vertices [6].

The PDF TD∗π(∆ttr, st, sm) for signal events corresponds to Eq. E.1 with O(r∗2)
terms neglected, and with additional parameters that account for imperfect flavor
tagging:

TD∗π =
e−|∆ttr|/τ

4τ
{α(1 + smκ) + (1 − α) [(1 − st ∆ω)

+sm (1 − 2ω) cos(∆m∆ttr)

−S sin(∆m∆ttr) ] } , (E.3)

where the mistag rate ω is the probability to misidentify the flavor of the Btag aver-
aged over B0 and B0, ∆ω is the B0 mistag rate minus the B0 mistag rate, α is the
probability that the tagging track is a daughter of the signal D meson, κ = 1 − 2ρ,
where ρ is the probability that the daughter of the D results in a mixed flavor event,
and S = st (1 − 2ω)Sζ.
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The Btag may undergo a b→ uc̄d decay, and the kaon produced in the subsequent
charm decay might be used for tagging. This effect is not described by Eq. E.3. To
account for it, we use a different parameterization [8] for kaon tags, in which the coef-
ficient of the sin(∆m∆ttr) term S = [(1 − 2ω) (sta+ smc) + stsmb(1 − st∆ω)], where
a ≡ 2r∗ sin(2β + γ) cos δ∗, b ≡ 2r′ sin(2β + γ) cos δ′, and c ≡ 2 cos(2β + γ)(r∗ sin δ∗ −
r′ sin δ′). Here r′ (δ′) is the effective magnitude ratio (strong phase difference) between
the b → ucd and b → cud amplitudes in the tag-side decays. This parameterization
is good to first order in r∗ and r′.

The CP parameters (S±, a, b, and c) of TD∗ρ, Tpeak, and Tcomb are set to 0 and
are later varied to evaluate systematic uncertainties. Otherwise, the PDF T ′

D∗ρ for

B → D∗∓ρ± events is taken to be identical to T ′
D∗π. The BB background PDFs Tcomb

and Tpeak have the same functional form as Eq. E.3, with independent parameter
values. The parameters of T ′

peak are determined from a fit to the MC simulation
sample. The PDF Tqq for the continuum background is the sum of two components,
one with a finite lifetime and one with zero lifetime.

The analysis proceeds in three steps:
1. The parameters of Mi and the value of fD∗π/(fD∗π + fD∗ρ) are obtained from

the MC simulation with the branching fractions B(B0 → D∗−π+) and B(B0 →
D∗−ρ+) from Ref. [9]. Using these parameter values, we fit the data with Pi =
Mi(mmiss)Fi(F ), to determine fqq, fcomb, fD∗ρ + fD∗π, the parameters of Mqq, and
the parameters of Fi for both continuum and BB events. This fit yields 6400 ± 130
(25160 ± 320) signal events for the lepton- (kaon-) tagged sample. The fit results for
the Mi(mmiss) PDFs are shown in Fig. E.1. The fit is repeated to determine the sig-
nal yields requiring first cos θT < CT and then cos θT > CT , in order to measure the
values of α and ρ. We find α = (1.0± 0.1)% ((5.6± 0.2)%) for lepton- (kaon-) tagged
events.

2. We fit the events in the sideband 1.81 < mmiss < 1.84 GeV/c2 to obtain the
parameters of T ′

comb.
3. Using the parameter values obtained in the previous steps, we fit the data in

the signal region 1.845 < mmiss < 1.880 GeV/c2, determining the parameters of T ′
D∗π

and T ′
qq.

We use the MC samples to verify the entire analysis procedure, as well as the
validity of using the same non-CP parameters in T ′

D∗ρ and T ′
D∗π and of using the

T ′
comb parameters obtained from the sideband in the signal region. For lepton-tagged

events, we find a bias of ∓0.012 in S±, due to the assumption that events tagged with
direct and cascade leptons are described by the same resolution function. The results
presented below are corrected for this bias.

The CP parameters S± for lepton tags and (a, b, c) for kaon tags are determined in
step 3 to be S+ = −0.078±0.052±0.021, S− = −0.070±0.052±0.019, a = −0.054±
0.032± 0.017, b = −0.009± 0.019± 0.013, c = +0.005± 0.031± 0.017, where the first
error is statistical and the second is systematic. The time-dependent, CP -violating
asymmetry ACP = (NB0

tag
−NB0

tag
)/(NB0

tag
+NB0

tag
) is shown in Fig. E.2. In the absence
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Figure E.1: The mmiss distributions for (a) lepton-tagged and (b) kaon-tagged events.
The curves show, from bottom to top, the cumulative contributions of continuum,
peaking BB, combinatoric BB, B → D∗+ρ−, and B0 → D∗+π− events.

of background and experimental effects, ACP = 2r∗ sin(2β+γ) cos δ∗ sin(∆m∆t). The
signal-region fit determines also the mistag rate ω = 0.102 ± 0.008 (ω = 0.217 ±
0.006) and the mixing frequency ∆m = 0.521 ± 0.017 (stat.) ps−1 (∆m = 0.478 ±
0.012 (stat.) ps−1), consistent with the world average [9], for lepton (kaon) tagged
events.
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Figure E.2: The asymmetry ACP for (a) lepton- and (b) kaon-tagged events. The
curves show the projection of the PDF from the unbinned fit.

The systematic uncertainties on the CP parameters are summarized in Table E.1.
They include (1) the statistical errors obtained from the fits of steps 1 and 2; (2) un-
certainties due to the unknown values of the CP parameters in the background, the
uncertainty in the ratio of branching fractions B(B0 → D∗−π)/B(B0 → D∗−ρ), the
modeling of T ′

peak, and possible biases introduced by the presence of background;
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(3) the uncertainty in the cascade lepton bias and possible biases due to the τ and
∆m parameters; (4) uncertainties in the measurement of the beam spot position, the
detector z length scale, and detector alignment; and (5) the statistical error in the
parameters determined from the MC sample.

Table E.1: The systematic uncertainties on the CP -violation parameters.

Source Error (×10−3) in

S+ S− a b c

(1) Step 1 & 2 statistics 1.7 0.9 1.0 0.5 0.6

(2) Backgrounds 12.1 10.0 13.7 8.4 14.2

(3) Fit procedure 6.6 5.3 5.2 1.7 0.8

(4) Detector effects 9.4 7.3 3.7 9.1 3.5

(5) MC statistics 12.8 12.8 8.0 4.0 9.0

Total 21 19 17 13 17

Combining a and (S+ + S−)/2, accounting for correlated errors, we obtain

2r∗ sin(2β + γ) cos δ∗ = −0.063 ± 0.024 ± 0.014. (E.4)

This measurement deviates from zero by 2.3 standard deviations. It can be used
to provide bounds on | sin(2β + γ)| [10]. We use two methods for interpreting our
results in terms of constraints on | sin(2β + γ)|. Both methods involve minimizing a
χ2 function that is symmetric under the exchange sin(2β + γ) → − sin(2β + γ), and
applying the method of Ref. [11].

In the first method we make no assumption regarding the value of r∗. For different
values of r∗ we minimize the function χ2 =

∑3
j,k=1 ∆xjV

−1
jk ∆xk, where ∆xj is the

difference between the result of our measurement and the expression of S+, S−, and
a as functions of r∗, δ∗ and sin(2β + γ). The measurement error matrix V is nearly
diagonal, and accounts for correlations between the measurements due to correlated
statistical and systematic uncertainties. The parameters determined by this fit are
sin(2β + γ), which is limited to lie in the range [−1, 1], and δ∗. We then generate
many parameterized MC experiments with the same sensitivity as reported here for
different values of sin(2β + γ) and with δ∗ = 0, which yields the most conservative
lower limits. The fraction of these experiments in which χ2(sin(2β + γ)) − χ2

min is
smaller than in the data is interpreted as the confidence level (CL) of the lower limit
on | sin(2β + γ)|. The resulting 95% CL lower limit is shown as a function of r∗ in
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Fig. E.3. This limit is always the more conservative of the two possibilities implied
by the ambiguity | sin(2β + γ)| ↔ | cos δ∗|.
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Figure E.3: 95% CL lower limit on | sin(2β + γ)| as a function of r∗. The solid curve
corresponds to this analysis; the dashed curve includes the results of Ref. [16] for
B0 → D∗∓π± only.

The second method assumes that r∗ can be estimated from the Cabibbo angle, the
ratio of branching fractions B(B0 → D∗+

s π
−)/B(B0 → D∗−π+) [12, 13], and the ratio

of decay constants fD∗/fD∗

s
[14], yielding r∗0 = 0.017+0.005

−0.007. We attribute an additional
non-Gaussian 30% relative error to the theoretical assumptions involved in obtaining
this value. We minimize χ̃2 = χ2 + ∆2(r∗), where ∆2(r∗) = 0 for |r∗ − r∗0|/r∗0 ≤ 0.3
and is an offset quadratic function outside this range [15], corresponding to a χ2

contribution with the uncertainties on r∗0 given above. The parameters sin(2β + γ),
δ∗, and r∗ are determined in this fit. This method yields the limits | sin(2β + γ)| >
0.87 (0.56) at 68 (95)% CL.

Combining this measurement with the BABAR results for fully reconstructed B0 →
D∗∓π± and B0 → D∓π± [16], taking into account correlations between the measure-
ments, we find, using the second method, | sin(2β+γ)| > 0.87 (0.58) at 68 (95) % CL.
We use the same value of r = |Au/Ac| for B0 → D∓π± decays as Ref. [16] (Eq. 6).
Due to the relatively low value of the asymmetry in B0 → D∓π± (Eq. (5), Ref. [16]),
including this mode in the combination leads to almost no change in the lower limits.
The lower limit on | sin(2β+ γ)| obtained with the first method, including the results
of Ref. [16] for B0 → D∗∓π± only, is shown in Fig. E.3. The results of Ref. [16] for
B0 → D∓π± were not included to avoid any assumption on the value of r.

We have studied time-dependent CP -violating asymmetries in B0 → D∗∓π± using
partial reconstruction. We interpret our results as a limit on | sin(2β + γ)| that can
be used to set a constraint on the unitarity triangle.
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E.2 Precise measurement of CP asymmetries

in B0 → D∗∓π± decays

Measurement of Time-Dependent CP -Violating
Asymmetries and Constraints on sin(2β + γ) with

Partial Reconstruction of B0 → D∗∓π± Decays

BABAR Collaboratrion

Abstract

We present a measurement of the time-dependent CP -violating asymmetries in decays
of neutral B mesons to the final states D∗∓π±, using approximately 232 million BB
events recorded by the BABAR experiment at the PEP-II e+e− storage ring. Events
containing these decays are selected with a partial reconstruction technique, in which
only the high-momentum π± from the B decay and the low-momentum π∓ from the
D∗∓ decay are used. We measure the parameters related to 2β + γ to be aD∗π =
−0.034 ± 0.014 ± 0.009 and c`

D∗π = −0.019 ± 0.022 ± 0.013. With some theoretical
assumptions, we interpret our results in terms of the lower limits | sin(2β + γ)| >
0.62 (0.35) at 68% (90%) confidence level.

E.2.1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1] provides an expla-
nation of CP violation and is under experimental investigation aimed at constrain-
ing its parameters. A crucial part of this program is the measurement of the angle
γ = arg (−VudV

∗
ub/VcdV

∗
cb) of the unitarity triangle related to the CKM matrix. The de-

cay modes B → D∗∓π± have been proposed for use in measurements of sin(2β+γ) [2],
where β = arg (−VcdV

∗
cb/VtdV

∗
tb) is well measured [17]. In the Standard Model the de-

cays B0 → D∗−π+ and B0 → D∗−π+ proceed through the b → cud and b → uc̄d
amplitudes Ac and Au. Fig. E.4 shows the tree diagrams contributing to these decays.
The relative weak phase between Au and Ac in the usual Wolfenstein convention [4]
is γ. When combined with B0B0 mixing, this yields a weak phase difference of 2β+γ
between the interfering amplitudes.

In Υ (4S) → BB decays, the decay rate distribution for B → D∗∓π± is

P±
η (∆t) =

e−|∆t|/τ

4τ
×

[

1 ∓ Sζ sin(∆m∆t) ∓ηC cos(∆m∆t)] , (E.5)

where τ is the B0 lifetime averaged over the two mass eigenstates, ∆m is the B0B0

mixing frequency, and ∆t is the difference between the time of the B → D∗∓π± (Brec)
decay and the decay of the other B (Btag) in the event. The upper (lower) signs in
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Figure E.4: Feynman diagrams for the Cabibbo-favored decay B0 → D∗−π+ (left),
corresponding to the decay amplitude Ac, and the Cabibbo-suppressed decay B0 →
D∗−π+ (right), whose amplitude is Au.

Eq. (E.5) indicate the flavor of the Btag as a B0 (B0), while η = +1 (−1) and ζ = +
(−) for the Brec final state D∗−π+ (D∗+π−). The parameters C and S± are given by

C ≡ 1 − r∗2

1 + r∗2
, S± ≡ 2r∗

1 + r∗2
sin(2β + γ ± δ∗). (E.6)

Here δ∗ is the strong phase difference between Au and Ac, and r∗ = |Au/Ac|. Since

Au is doubly CKM-suppressed with respect to Ac, one expects r∗ ≈
∣

∣

∣

∣

V
ub

V ∗

cd

V ∗

cb
V

ud

∣

∣

∣

∣

= 0.02.

We report a study of the CP -violating asymmetry in B0 → D∗∓π± decays using
the technique of partial reconstruction, which allows us to achieve a high efficiency for
the selection of signal events. We use approximately twice the integrated luminosity
of our previous analysis of this process [18], and employ an improved method to
eliminate a measurement bias, as described in Sec. E.2.3. Many of the tools and
procedures used in this analysis were validated in a previous analysis dedicated to
the measurement of the B0 lifetime [6].

In this analysis, terms of order r∗2, to which we currently have no sensitivity,
have been neglected. The interpretation of the measured asymmetries in terms of
sin(2β + γ) requires an assumption regarding the value of r∗, discussed in Sec. E.2.6.

E.2.2 The BABAR Detector and Dataset

The data used in this analysis were recorded with the BABAR detector at the PEP-
II asymmetric-energy storage rings, and consist of 211 fb−1 collected on the Υ (4S)
resonance (on-resonance sample), and 21 fb−1 collected at an e+e− center-of-mass
(CM) energy approximately 40 MeV below the resonance peak (off-resonance sample).
Samples of Monte Carlo (MC) [19] events with an equivalent luminosity approximately
four times larger than the data sample were analyzed using the same reconstruction
and analysis procedure.

The BABAR detector is described in detail in Ref. [7]. We provide a brief description
of the main components and their use in this analysis. Charged-particle trajectories
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are measured by a combination of a five-layer silicon vertex tracker (SVT) and a
40-layer drift chamber (DCH) in a 1.5-T solenoidal magnetic field. Tracks with low
transverse momentum can be reconstructed in the SVT alone, thus extending the
charged-particle detection down to transverse momenta of about 50 MeV/c. We use
a ring-imaging Cherenkov detector (DIRC) for charged-particle identification and
augment it with energy-loss measurements from the SVT and DCH. Photons and
electrons are detected in a CsI(Tl) electromagnetic calorimeter (EMC), with photon-
energy resolution σE/E = 0.023(E/GeV)−1/4 ⊕ 0.014. The instrumented flux return
(IFR) is equipped with resistive plate chambers to identify muons.

E.2.3 Analysis Method

Partial Reconstruction of B0 → D∗∓π±

In the partial reconstruction of a B0 → D∗∓π± candidate (Brec), only the hard (high-
momentum) pion track πh from the B decay and the soft (low-momentum) pion
track πs from the decay D∗− → D0π−

s are used. The cosine of the angle between the
momenta of the B and the hard pion in the CM frame is then computed:

cos θBh =
M2

D∗−
−M2

B0 −M2
π + ECMEh

2pB|~ph|
, (E.7)

where Mx is the nominal mass of particle x [20], Eh and ~ph are the measured CM
energy and momentum of the hard pion, ECM is the total CM energy of the incoming

e+e− beams, and pB =
√

E2
CM/4 −M2

B0 . Events are required to be in the physical

region | cos θBh| < 1. Given cos θBh and the measured momenta of the πh and πs, the
B four-momentum can be calculated up to an unknown azimuthal angle φ around ~ph.
For every value of φ, the expected D four-momentum pD(φ) is determined from four-
momentum conservation, and the corresponding φ-dependent invariant mass m(φ) ≡
√

|pD(φ)|2 is calculated. We define the missing mass mmiss ≡ 1
2
[mmax +mmin], where

mmax and mmin are the maximum and minimum values of m(φ). In signal events,
mmiss peaks at the nominal D0 mass MD0 , with a gaussian width of about 3 MeV/c2

(Fig. E.6). The mmiss distribution for combinatoric background events is significantly
broader, making the missing mass the primary variable for distinguishing signal from
background. The discrimination between signal and background provided by the mmiss

distribution is independent of the choice of the value of φ. With the arbitrary choice
φ = 0, we use four-momentum conservation to calculate the CM D and B momentum
vectors, which are used as described below. The various momenta and angles in the
CM frame used in the partial reconstruction are illustrated in Fig. E.5.

Backgrounds

In addition to B0 → D∗∓π± events, the selected event sample contains the following
kinds of events:
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Figure E.5: Momenta and angles in the CM frame used in the partial reconstruction.
The orthogonal axes u and v are normal to the momentum ~ph of the fast pion, and u
lies in the plane defined by the momenta of the fast and slow pions, ~ph and ~ps. The
angle φ is measured in the u− v plane.

• B → D∗∓ρ±.

• Peaking BB background, defined as decays other than B → D∗∓ρ±, in which
the πh and πs originate from the same B meson, with the πs originating from a
charged D∗ decay. The mmiss distribution of these events peaks broadly under
the signal peak.

• Combinatoric BB background, defined as all remaining BB background events.

• Continuum e+e− → qq, where q represents a u, d, s, or c quark.

Event Selection

To suppress the continuum background, we select events in which the ratio of the 2nd
to the 0th Fox-Wolfram moment [21], computed using all charged particles and EMC
clusters not matched to tracks, is smaller than 0.40. Hard-pion candidates are required
to be reconstructed with at least twelve DCH hits. Kaons and leptons are rejected
from the πh candidate lists based on information from the IFR and DIRC, energy
loss in the SVT and DCH, or the ratio of the candidate’s EMC energy deposition to
its momentum (E/p).

We define the D∗ helicity angle θD∗ to be the angle between the flight directions
of the D and the B in the D∗ rest frame. Taking advantage of the longitudinal
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polarization in signal events, we suppress background by requiring | cos θD∗ | to be
larger than 0.4.

All candidates are required to satisfy mmiss > 1.81 GeV/c2. Multiple candidates
are found in 5% of the events. In these instances, only the candidate with the mmiss

value closest to MD0 is used.

Fisher Discriminant

To further discriminate against continuum events, we combine fifteen event-shape
variables into a Fisher discriminant [22] F . Discrimination originates from the fact
that qq events tend to be jet-like, whereas BB events have a more spherical energy
distribution. Rather than applying requirements to the variable F , we maximize the
sensitivity by using it in the fits described below. The fifteen variables are calculated
using two sets of particles. Set 1 includes all tracks and EMC clusters, excluding the
hard and soft pion candidates; Set 2 is composed of Set 1, excluding all tracks and
clusters with CM momentum within 1.25 radian of the CM momentum of the D. The
variables, all calculated in the CM frame, are 1) the scalar sum of the momenta of
all Set 1 tracks and EMC clusters in nine 20◦ angular bins centered about the hard
pion direction; 2) the value of the sphericity, computed with Set 1; 3) the angle with
respect to the hard pion of the sphericity axis, computed with Set 2; 4) the direction
of the particle of highest energy in Set 2 with respect to the hard pion; 5) the absolute
value of the vector sum of the momenta of all the particles in Set 2; 6) the momentum
|~ph| of the hard pion and its polar angle.

Decay Time Measurement and Flavor Tagging

To perform this analysis, ∆t and the flavor of the Btag must be determined. We tag
the flavor of the Btag using lepton or kaon candidates. The lepton CM momentum
is required to be greater than 1.1 GeV/c to suppress leptons that originate from
charm decays. If several flavor-tagging tracks are present in either the lepton or kaon
tagging category, the only track of that category used for tagging is the one with the
largest value of θT , the CM angle between the track momentum and the momentum
of the “missing” (unreconstructed) D. The tagging track must satisfy cos θT < CT ,
where CT = 0.75 (CT = 0.50) for leptons (kaons), to minimize the impact of tracks
originating from the decay of the missing D. If both a lepton and a kaon satisfy this
requirement, the event is tagged with the lepton.

We measure ∆t using ∆t = (zrec − ztag)/(γβc), where zrec (ztag) is the decay
position of the Brec (Btag) along the beam axis (z) in the laboratory frame, and the
e+e− boost parameter γβ is calculated from the measured beam energies. To find
zrec, we use the πh track parameters and errors, and the measured beam-spot position
and size in the plane perpendicular to the beams (the x − y plane). We find the
position of the point in space for which the sum of the χ2 contributions from the πh

track and the beam spot is a minimum. The z coordinate of this point determines
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zrec. The beam spot has an r.m.s. size of approximately 120 µm in the horizontal
dimension (x), 5 µm in the vertical dimension (y), and 8.5 mm along the beams (z).
The average B flight in the x − y plane is 30 µm. To account for the B flight in
the beam-spot-constrained vertex fit, 30 µm are added to the effective x and y sizes
for the purpose of conducting this fit. The πs track is not used in this fit, since it
undergoes significant multiple Coulomb scattering and hence does not improve the
zrec measurement resolution.

In lepton-tagged events, the same procedure, with the πh track replaced by the
tagging lepton, is used to determine ztag. Using only the tagging lepton to deter-
mine ztag eliminates a bias due to leptons produced in charm decays, as described in
Sec. E.2.3.

In kaon-tagged events, we obtain ztag from a beam-spot-constrained vertex fit
of all tracks in the event, excluding πh, πs and all tracks within 1 radian of the D
momentum in the CM frame, which are likely to originate from the D decay. If the
contribution of any track to the χ2 of the vertex is more than 6, the track is removed
and the fit is repeated until no track fails the χ2 < 6 requirement.

The ∆t error σ∆t is calculated from the results of the zrec and ztag vertex fits. We
require |∆t| < 15 ps and σ∆t < 2 ps.

Probability Density Function

The probability density function (PDF) depends on the variables mmiss, ∆t, σ∆t, F ,
st, and sm, where st = 1 (−1) when the Btag is identified as a B0 (B0), and sm = 1
(−1) for “unmixed” (“mixed”) events. An event is labeled unmixed if the πh is a
π−(π+) and the Btag is a B0(B0), and mixed otherwise.

The PDF for on-resonance data is a sum over the PDFs of the different event
types:

P =
∑

i

fi Pi, (E.8)

where the index i = {D∗π,D∗ρ, peak, comb, qq} indicates one of the event types
described above, fi is the relative fraction of events of type i in the data sample, and
Pi is the PDF for these events. The PDF for off-resonance data is Pqq. The parameter
values for Pi are different for each event type, unless indicated otherwise. Each Pi is
a product,

Pi = Mi(mmiss)Fi(F ) T ′
i (∆t, σ∆t, st, sm), (E.9)

where the forms of the functions appearing in Eq. (E.9), which are motivated by MC
studies, are described below.
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mmiss and F PDFs

The mmiss PDF for each event type i is the sum of a bifurcated Gaussian plus an
ARGUS function [23]:

Mi(mmiss) = f Ĝ
i Ĝi(mmiss) + (1 − f Ĝ

i )Ai(mmiss), (E.10)

where f Ĝ
i is the fractional area of the bifurcated Gaussian function. The functions Ĝi

and Ai are

Ĝi(m) ∝



















exp [−(m−Mi)
2/2σ2

Li] , m ≤Mi

exp [−(m−Mi)
2/2σ2

Ri] , m > Mi

(E.11)

A(m) ∝ m
√

1 − (m/MA
i )

2 ×

exp
[

εi

(

1 −
(

m/MA
i

)2
)]

θ(MA
i −m), (E.12)

where Mi is the peak of the bifurcated Gaussian, σLi and σRi are its left and right
widths, εi is the ARGUS exponent, MA

i is its end point, and θ is the step function.
The proportionality constants are such that each of these functions is normalized to
unit area within the mmiss range. The mmiss PDF of each event type has different
parameter values.

The Fisher discriminant PDF Fi for each event type is parameterized as the sum
of two Gaussians. The parameter values of FD∗π, FD∗ρ, Fpeak, and Fcomb are identical.

Signal ∆t PDFs

The ∆t PDF T ′
D∗π(∆t, σ∆t, st, sm) for signal events corresponds to Eq. E.5 with O(r∗2)

terms neglected, modified to account for several experimental effects, described below.
The first effect has to do with the origin of the tagging track. In some of the

events, the tagging track originates from the decay of the missing D. These events
are labeled “missing-D tags” and do not provide any information regarding the flavor
of the Btag. In lepton-tagged events, we further distinguish between “direct” tags, in
which the tagging lepton originates directly from the decay of the Btag, and “cascade”
tags, where the tagging lepton is a daughter of a charmed particle produced in the
Btag decay. Due to the different physical origin of the tagging track in cascade and
direct tags, these two event categories have different mistag probabilities, defined as
the probability to deduce the wrong B flavor from the charge of the tagging track.
In addition, the measured value of ztag in cascade-lepton tags is systematically larger
than the true value, due to the finite lifetime of the charmed particle and the boosted
CM frame. This creates a correlation between the tag and vertex measurements that
we address by considering cascade-lepton tags separately in the PDF. In our previous
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analysis [18] we corrected for the bias of the S± parameters caused by this effect and
included a systematic error due to its uncertainty. In kaon tags, ztag is determined
using all available Btag tracks, so the effect of the tagging track on the ztag measure-
ment is small. Therefore, the overall bias induced by cascade-kaon tags is small, and
there is no need to distinguish them in the PDF.

The second experimental effect is the finite detector resolution in the measurement
of ∆t. We address this by convoluting the distribution of the true decay time difference
∆ttr with a detector resolution function. Putting these two effects together, the ∆t
PDF of signal events is

T ′
D∗π(∆t, σ∆t, st, sm) = (1 + st ∆εD∗π)

∑

j

f j
D∗π ×

∫

d∆ttr T j
D∗π(∆ttr, st, sm)Rj

D∗π(∆t− ∆ttr, σ∆t), (E.13)

where ∆εD∗π is half the relative difference between the detection efficiencies of positive
and negative leptons or kaons, the index j = {dir, cas, miss} indicates direct, cascade,
and missing-D tags, and f j

D∗π is the fraction of signal events of tag-type j in the
sample. We set fdir

D∗π = 1 − f cas
D∗π − fmiss

D∗π for lepton tags, with the value f cas
D∗π =

0.12 ± 0.02 obtained from the MC simulation. For kaon tags f dir
D∗π = 0. The function

T j
D∗π(∆ttr, st, sm) is the ∆ttr distribution of tag-type j events, and Rj

D∗π(∆t−∆ttr, σ∆t)
is their resolution function, which parameterizes both the finite detector resolution
and systematic offsets in the measurement of ∆z, such as those due to the origin of
the tagging particle. The parameterization of the resolution function is described in
Sec. E.2.3.

The functional form of the direct and cascade tag ∆ttr PDFs is

T j
D∗π(∆ttr, st, sm) =

e−|∆ttr|/τD∗π

4τD∗π
×

{

1 − st ∆ωj
D∗π

+sm (1 − 2ωj
D∗π) cos(∆mD∗π∆ttr)

−Sj
D∗π sin(∆mD∗π∆ttr)

}

, (E.14)

where j = {dir, cas}, the mistag rate ωj
D∗π is the probability to misidentify the flavor

of the Btag averaged over B0 and B0, and ∆ωj
D∗π is the B0 mistag rate minus the B0

mistag rate. The factor Sj
D∗π describes the effect of interference between b→ uc̄d and

b→ cūd amplitudes in both the Brec and the Btag decays:

Sj
D∗π = (1 − 2ωj

D∗π) (staD∗π + smcD∗π)

+stsmbD∗π(1 − st∆ω
j
D∗π), (E.15)

where aD∗π, bD∗π, and cD∗π are related to the physical parameters through

aD∗π ≡ 2r∗ sin(2β + γ) cos δ∗,
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bD∗π ≡ 2r′ sin(2β + γ) cos δ′,

cD∗π ≡ 2 cos(2β + γ)(r∗ sin δ∗ − r′ sin δ′), (E.16)

and r′ (δ′) is the effective magnitude of the ratio (effective strong phase difference)
between the b→ ucd and b → cud amplitudes in the Btag decay. This parameterization
is good to first order in r∗ and r′. In the following we will refer to the parameters
aD∗π, bD∗π, cD∗π and related parameters for the background PDF as the weak phase
parameters. Only aD∗π and bD∗π are related to CP violation, while cD∗π can be non-
zero even in the absence of CP violation when 2β + γ = 0. The inclusion of r′ and δ′

in the formalism accounts for cases where the Btag undergoes a b → uc̄d decay, and
the kaon produced in the subsequent charm decay is used for tagging [8]. We expect
r′ ∼ 0.02. In lepton-tagged events r′ = 0 (and hence bD∗π = 0) because most of the
tagging leptons come from B semileptonic decays to which no suppressed amplitude
with a different weak phase can contribute.

The ∆ttr PDF for missing-D tags is

T miss
D∗π (∆ttr, st, sm) =

e−|∆ttr|/τmiss
D∗π

8τmiss
D∗π

{

1 + sm (1 − 2ρD∗π)

− 2stsmbD∗π sin(∆mD∗π∆ttr)
}

, (E.17)

where ρD∗π is the probability that the charge of the tagging track is such that it
results in a mixed flavor measurement. In this analysis, we have neglected the term
proportional to sin(∆mD∗π∆ttr) of Eq. E.17. The systematic error on bD∗π due to this
approximation is negligible due to the small value of fmiss

D∗π reported below.

Background ∆t PDFs

The ∆t PDF of B → D∗∓ρ± has the same functional form and parameter values as
the signal PDF, except that the weak phase parameters aD∗ρ, bD∗ρ, and cD∗ρ are set
to 0 and are later varied to evaluate systematic uncertainties. The validity of the use
of the same parameters for T ′

D∗ρ and T ′
D∗π is established using simulated events, and

stems from the fact that the πh momentum spectrum in the B → D∗∓ρ± events that
pass our selection criteria is almost identical to the signal spectrum.

The ∆t PDF of the peaking background accounts separately for charged and
neutral B decays:

T ′
peak(∆t, σ∆t, st, sm) = (1 + st ∆εpeak)

{

T 0′
peak

+
∫

d∆ttr T +
peak(∆ttr, st, sm) ×

R+
peak(∆t− ∆ttr, σ∆t)

}

, (E.18)

where T 0′
peak has the functional form of Eq. (E.13) and the subsequent expressions,

Eqs. (E.17-E.16), but with all D∗π-subscripted parameters replaced with their peak-
subscripted counterparts. The integral in Eq. (E.18) accounts for the contribution of
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charged B decays to the peaking background, with

T +
peak(∆ttr, st) =

e−|∆ttr|/τ+
peak

4τ+
peak

(

1 − st ∆ω+
peak

)

, (E.19)

and R+
peak(∆t−∆ttr, σ∆t) being the three-Gaussian resolution function for these events

described below.
The Combinatoric BB background PDF T ′

comb is similar to the signal PDF, with
one substantial difference. Instead of parameterizing T ′

comb with the four parameters
we use the set of three parameters

ω′
comb = ωdir

comb (1 − fdir
comb) +

fdir
comb

2
,

∆ω′
comb = ∆ωcomb (1 − fdir

comb),

Ωcomb = fdir
comb(1 − 2 ρcomb). (E.20)

With these parameters and f cas
comb = 0, the combinatoric BB background ∆t PDF

becomes

T ′
comb(∆t, σ∆t, st, sm) = (1 + st ∆εcomb) ×

∫

d∆ttr Tcomb(∆ttr, st, sm)Rcomb(∆t− ∆ttr, σ∆t) , (E.21)

where Rcomb(∆t− ∆ttr, σ∆t) is the 3-Gaussian resolution function and

Tcomb(∆ttr, st, sm) =
e−|∆ttr|/τcomb

4τcomb

{

1 − st ∆ω′
comb

+smΩcomb + sm (1 − 2ω′
comb) cos(∆mcomb∆ttr)

−Scomb sin(∆mcomb∆ttr)
}

, (E.22)

with

Scomb = (1 − 2ω′
comb) (stacomb + smccomb)

+ stsmbcomb(1 − st∆ω
′
comb). (E.23)

As in the case of TD∗ρ, the weak phase parameters of the peaking and combinatoric
background (apeak, bpeak, cpeak and acomb, bcomb, ccomb) are set to 0 and are later varied
to evaluate systematic uncertainties. Parameters labeled with superscripts “peak” or
“comb” are empirical and thus do not necessarily correspond to physical parameters.
In general, their values may be different from those of the D∗π-labeled parameters.

The PDF Tqq for the continuum background is the sum of two components, one
with a finite lifetime and one with zero lifetime:

T ′
qq(∆t, σ∆t, st) = (1 + st ∆εqq)

∫

d∆ttr Tqq(∆ttr, st, sm)

× Rqq(∆t− ∆ttr, σ∆t), (E.24)
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with

Tqq(∆ttr, st) = (1 − f δ
qq)
e−|∆ttr|/τqq

4τqq

(1 − st ∆ωqq)

+ f δ
qq δ(∆ttr), (E.25)

where f δ
qq is the fraction of zero-lifetime events.

Resolution Function Parameterization

The resolution function for events of type i and optional secondary type j (j =
{dir, cas, miss} for lepton-tagged signal events and j = {+, 0} for the peaking and
combinatoric BB background types) is parameterized as the sum of three Gaussians:

Rj
i (tr, σ∆t) = fnj

i Gnj
i (tr, σ∆t)

+ (1 − fnj
i − f oj

i )Gwj
i (tr, σ∆t)

+ f oj
i Goj

i (tr), (E.26)

where tr = ∆t − ∆ttr is the residual of the ∆t measurement, and Gnj
i , Gwj

i , and Goj
i

are the “narrow”, “wide”, and “outlier” Gaussians. The narrow and wide Gaussians
incorporate information from the ∆t uncertainty σ∆t, and account for systematic
offsets in the estimation of σ∆t and the ∆t measurement. They have the form

Gkj
i (tr, σ∆t) ≡

1√
2π skj

i σ∆t

× exp





−
(

tr − bkj
iσ∆t

)2

2(skj
i σ∆t)2





 , (E.27)

where the index k takes the values k = n, w for the narrow and wide Gaussians, and
bkj

i and skj
i are parameters determined by fits, as described in Sec. E.2.3. The outlier

Gaussian, which accounts for a small fraction of events with badly measured ∆t, has
the form

Goj
i (tr) ≡

1√
2π soj

i

exp





−
(

tr − boj
i

)2

2(soj
i )

2





 . (E.28)

In all nominal fits the values of boj
i and soj

i are fixed to 0 ps and 8 ps, respectively,
and are later varied to evaluate systematic errors.

Analysis Procedure

The analysis is carried out with a series of unbinned maximum-likelihood fits, per-
formed simultaneously on the on- and off-resonance data samples and independently
for the lepton-tagged and kaon-tagged events. The analysis proceeds in the following
four steps, designed to enable the reliable determination of most parameters from the
data:
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1. In the first step, we determine the parameters fD∗ρ + fD∗π, fpeak, and fcomb

of Eq. (E.8). In order to reduce the reliance on the simulation, we also obtain

in the same fit the parameters f Ĝ
qq of Eq. (E.10), εqq of Eq. (E.12), σL for the

signal mmiss PDF (Eq. (E.11)), and all the parameters of the Fisher discriminant
PDFs. This is done by fitting the data with the PDF

Pi = Mi(mmiss)Fi(F ), (E.29)

instead of Eq. (E.9); i.e. by ignoring the time dependence. The fraction fqq of
continuum events is determined from the off-resonance sample and its integrated
luminosity relative to the on-resonance sample. All other parameters of the Mi

PDFs and the value of fD∗π/(fD∗π + fD∗ρ) = 0.87± 0.03 are obtained from the
MC simulation.

2. In the second step, we repeat the fit of the first step for data events with
cos θT ≥ CT , to obtain the fraction of signal events in that sample. Given this
fraction and the relative efficiencies for direct, cascade, and missing-D signal
events to satisfy the cos θT < CT requirement, we calculate fmiss

D∗π = 0.011±0.001
for lepton-tagged events and fmiss

D∗π = 0.055 ± 0.001 for kaon-tagged events. We
also calculate the value of ρD∗π from the fractions of mixed and unmixed signal
events in the cos θT ≥ CT sample relative to the cos θT < CT sample.

3. In the third step, we fit the data events in the sideband 1.81 < mmiss <
1.84 GeV/c2 with the 3-dimensional PDFs of Eq. (E.9). The parameters of
Mi(mmiss) and Fi(F ), and the fractions fi are fixed to the values obtained in
the first step. From this fit we obtain the parameters of T ′

comb, as well as those
of T ′

qq.

4. In the fourth step, we fix all the parameter values obtained in the previous steps
and fit the events in the signal region mmiss > 1.845 GeV/c2, determining the
parameters of T ′

D∗π and T ′
qq. Simulation studies show that the parameters of

T ′
comb are independent of mmiss, enabling us to obtain them in the sideband fit

(step 3) and then use them in the signal-region fit. The same is not true of the
T ′

qq parameters; hence they are free parameters in the signal-region fit of the
last step. The parameters of T ′

peak are obtained from the MC simulation.

E.2.4 Results

The fit of step 1 finds 18710 ± 270 signal B0 → D∗∓π± events in the lepton-tag
category and 70580±660 in the kaon-tag category. The mmiss and F distributions for
data are shown in Figs. E.6 and E.7, with the PDFs overlaid.

The results of the signal region fit (fourth step) are summarized in Table E.2, and
the plots of the ∆t distributions for the data are shown in Fig. E.8 for the lepton-
tagged and the kaon-tagged events. The goodness of the fit has been verified with the
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Figure E.6: The mmiss distributions for on-resonance lepton-tagged (top) and kaon-
tagged (bottom) data. The curves show, from bottom to top, the cumulative con-
tributions of the continuum, peaking BB, combinatoric BB, B → D∗∓ρ±, and
B0 → D∗∓π± PDF components.

Kolmogorov-Smirnov test and by comparing the likelihood obtained in the fit with
the likelihood distribution of many parameterized MC experiments generated with
the PDF’s obtained in the fit on the data. Fig. E.9 shows the raw, time-dependent
CP asymmetry

A(∆t) =
Nst=1(∆t) −Nst=−1(∆t)

Nst=1(∆t) +Nst=−1(∆t)
. (E.30)

In the absence of background and with high statistics, perfect tagging, and perfect
∆t measurement, A(∆t) would be a sinusoidal oscillation with amplitude aD∗π. For
presentation purposes, the requirements mmiss > 1.855 GeV/c2 and F < 0 were
applied to the data plotted in Figs. E.8 and E.9, in order to reduce the background.
These requirements were not applied to the fit sample, so they do not affect our
results.

The fitted values of ∆m reported in Table E.2 are in good agreement with the
world average (0.502 ± 0.007) ps−1 [20]. The fitted values of the B0 lifetime need
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Figure E.7: The F distributions for on-resonance lepton-tagged (top) and kaon-tagged
(bottom) data. The contributions of the BB (dashed-dotted line) and the continuum
(dashed line) PDF components are overlaid, peaking at approximately −0.6 and −0.1,
respectively. The total PDF is also overlaid.

to be corrected for a bias observed in the simulated samples, ∆τ = τfit − τgen =
(−0.03 ± 0.02) ps for the lepton-tag and ∆τ = (−0.04 ± 0.02) ps for the kaon-tag
events. After this correction, the measured lifetimes, τ(B0) = (1.48± 0.02± 0.02) ps
and τ(B0) = (1.49 ± 0.01 ± 0.04) ps for the lepton-tag and kaon-tag, respectively,
are in reasonable agreement with the world average τ(B0) = (1.536 ± 0.014) ps [20].
The correlation coefficients of a`

D∗π (c`D∗π) with ∆m and τ(B0) are −0.021 and 0.019
(−0.060 and −0.056).

E.2.5 Systematic Studies

The systematic errors are summarized in Table E.3. Each item below corresponds to
the item with the same number in Table E.3.

1. The statistical errors from the fit in Step 1 are propagated to the final fit. This
also includes the systematic errors due to possible differences between the PDF
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Table E.2: Results of the fit to the lepton- and kaon-tagged events in the signal region
1.845 < mmiss < 1.880 GeV/c2. Errors are statistical only. See Sections E.2.3, E.2.3,
and E.2.3 for the definitions of the symbols used in this table.

Lepton tags Kaon tags

Parameter description Parameter Value Parameter Value

Signal a`
D∗π −0.042 ± 0.019 aK

D∗π −0.025 ± 0.020

weak phase par. bK
D∗π −0.004 ± 0.010

c`
D∗π −0.019 ± 0.022 cK

D∗π −0.003 ± 0.020

Signal ∆t PDF ∆mD∗π 0.518 ± 0.010 ps−1 ∆mD∗π 0.4911 ± 0.0076 ps−1

τD∗π 1.450 ± 0.017 ps τD∗π 1.449 ± 0.011 ps

ωdir
D∗π 0.010 ± 0.006 ωD∗π 0.2302 ± 0.0035

∆ωD∗π −0.0181 ± 0.0068

∆εD∗π 0.027 ± 0.010 ∆εD∗π −0.0070 ± 0.0073

Signal resolution bn
D∗π

cas −0.58 ± 0.16

function bw
D∗π

cas 0.23 ± 2.01

bn
D∗π

dir 0. (fixed) bn
D∗π −0.255 ± 0.013

bw
D∗π

dir 0. (fixed) bw
D∗π −2.07 ± 0.48

fn
D∗π

dir 0.978 ± 0.008 fn
D∗π 0.969 ± 0.007

fo
D∗π

dir 0. (fixed) f o
D∗π 0.000 ± 0.001

sn
D∗π

dir 1.080 ± 0.033 sn
D∗π 1.029 ± 0.023

sw
D∗π

dir 5.76 ± 1.44 sw
D∗π 4.35 ± 0.40

Continuum τqq 1.26 ± 0.32 ps τqq 0.707 ± 0.048 ps

∆t PDF ωqq 0.340 ± 0.009 ωτ
qq 0.045 ± 0.022

ωδ
qq 0.311 ± 0.006

f δ
qq 0.815 ± 0.064 f δ

qq 0.820 ± 0.015

Continuum resolution bn
qq 0.026 ± 0.048 bn

qq 0.017 ± 0.005

function bw
qq −0.39± 0.23 bw

qq −0.043 ± 0.043

fn
qq 0.65 ± 0.12 fn

qq 0.858 ± 0.014

fo
qq 0.068 ± 0.014 f o

qq 0.018 ± 0.001

sn
qq 0.929 ± 0.078 sn

qq 1.064 ± 0.008

sw
qq 1.81 ± 0.28 sw

qq 2.267 ± 0.099
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Figure E.8: ∆t distributions for the lepton-tagged (a-d) and kaon-tagged (e-h) events
separated according to the tagged flavor of Btag and whether they were found to be
mixed or unmixed: a,e) B0 unmixed, b,f) B0 unmixed, c,g) B0 mixed, d,h) B0 mixed.
The solid curves show the PDF, calculated with the parameters obtained by the fit.
The PDF for the total background is shown by the dashed curves.
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Figure E.9: Raw asymmetry for (a) lepton-tagged and (b) kaon-tagged events. The
curves represent the projections of the PDF for the raw asymmetry. A nonzero value
of aD∗π would show up as a sinusoidal asymmetry, up to resolution and background
effects. The offset from the horizontal axis is due to the nonzero values of ∆εD∗π and
∆ωD∗π.

line shape and the data points.

2. The statistical errors from the mmiss sideband fit (Step 3) are propagated to the
final fit (Step 4).

3-4. The statistical errors from the Step 2 fits are propagated to the final fit.

5. The statistical errors associated with the parameters obtained from MC are
propagated to the final fit. In addition, the full analysis has been performed on
a simulated sample to check for a possible bias in the weak phase parameters
measured. No statistically significant bias has been found and the statistical
uncertainty of this test has been assigned as a systematical error.

6. The effect of uncertainties in the beam-spot size on the vertex constraint is
estimated by increasing the beam spot size by 50 µm.

7. The effect of the uncertainty in the measured length of the detector in the z
direction is evaluated by applying a 0.6% variation to the measured values of
∆t and σ∆t.

8. To evaluate the effect of possible misalignments in the SVT, signal MC events
are reconstructed with different alignment parameters, and the analysis is re-
peated.

9-11. The weak phase parameters of the B → D∗∓ρ±, peaking, and combinatoric BB
background are fixed to 0 in the fits. To study the effect of possible interference
between b → uc̄d and b → cūd amplitudes in these backgrounds, their weak
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phase parameters are varied in the range ±0.04 and the Step-4 fit is repeated.
We take the largest variation in each weak phase parameter as its systematic
error.

12. In the final fit, we take the values of the parameters of T ′
peak from a fit to simu-

lated peaking BB background events. The uncertainty due to this is evaluated
by fitting the simulated sample, setting the parameters of T ′

peak to be identical
to those of T ′

comb.

13. The uncertainty due to possible differences between the ∆t distributions for the
combinatoric background in the mmiss sideband and signal region is evaluated by
comparing the results of fitting the simulated sample with the T ′

comb parameters
taken from the sideband or the signal region.

14. The ratio fD∗ρ/fD∗π is varied by the uncertainty in the corresponding ratio of
branching fractions, obtained from Ref. [20].

E.2.6 Physics Results

Summarizing the values and uncertainties of the weak phase parameters, we obtain
the following results from the lepton-tagged sample:

a`
D∗π = −0.042 ± 0.019 ± 0.010,

c`D∗π = −0.019 ± 0.022 ± 0.013. (E.31)

The results from the kaon-tagged sample fits are

aK
D∗π = −0.025 ± 0.020 ± 0.013,

bKD∗π = −0.004 ± 0.010 ± 0.010,

cKD∗π = −0.003 ± 0.020 ± 0.015. (E.32)

Combining the results for lepton and kaon tags gives the amplitude of the time-
dependent CP asymmetry,

aD∗π = 2r∗ sin(2β + γ) cos δ∗

= −0.034 ± 0.014 ± 0.009, (E.33)

where the first error is statistical and the second is systematic. The systematic error
takes into account correlations between the results of the lepton- and kaon-tagged
samples coming from the systematic uncertainties related to detector effects, to in-
terference between b → uc̄d and b → cūd amplitudes in the backgrounds and from
B(B → D∗∓ρ±). This value of aD∗π deviates from zero by 2.0 standard deviations.
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Table E.3: Systematic errors in a`
D∗π and c`D∗π for lepton-tagged events and aK

D∗π,
bKD∗π, and cKD∗π for kaon-tagged events.

Source Error (×10−2)

Lepton tags Kaon tags

a`
D∗π c`D∗π aK

D∗π bKD∗π cKD∗π

1. Step 1 fit 0.04 0.04 0.10 0.04 0.04

2. Sideband statistics 0.08 0.08 0.40 0.12 0.44

3. fmiss
D∗π 0.02 0.02 0.02 negl. negl.

4. ρD∗π 0.02 0.02 0.02 negl. negl.

5. MC statistics 0.60 0.82 0.68 0.34 0.70

6. Beam spot size 0.10 0.10 0.07 0.13 0.06

7. Detector z scale 0.03 0.03 0.02 negl. 0.03

8. Detector alignment 0.25 0.55 0.25 0.13 0.41

9. Combinatoric background weak phase par. 0.25 0.22 0.80 0.56 0.72

10. Peaking background weak phase par. 0.36 0.38 0.29 0.17 0.27

11. D∗ρ weak phase par. 0.53 0.52 0.57 0.58 0.58

12. Peaking background 0.21 0.31 0.21 0.41 0.31

13. Signal region/sideband difference negl. negl. 0.04 0.03 0.05

14. B(B → D∗∓ρ±) 0.17 0.33 0.17 0.22 0.33

Total systematic error 1.0 1.3 1.4 1.0 1.5

Statistical uncertainty 1.9 2.2 2.0 1.0 2.0

Previous results of time-dependent CP asymmetries related to 2β + γ appear in
Ref. [18, 24]. This measurement supersedes the results of the partial reconstruction
analysis reported in Ref. [18] and improves the precision on aD∗π and cD∗π with respect
to the average of the published results.

We use a frequentist method, inspired by Ref. [11], to set a constraint on 2β + γ.
To do this, we need a value for the ratio r∗ of the two interfering amplitudes. This is
done with two different approaches.

In the first approach, to avoid any assumptions on the value of r∗, we obtain the
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lower limit on | sin(2β + γ)| as a function of r∗.
We define a χ2 function that depends on r∗, 2β + γ, and δ∗:

χ2(r∗, 2β + γ, δ∗) =
3

∑

j,k=1

∆xjV
−1
jk ∆xk, (E.34)

where ∆xj is the difference between the result of our measurement of aK
D∗π, a`

D∗π,
or c`D∗π (Eqs. (E.32) and (E.31)) and the corresponding theoretical expressions given
by Eq. (E.16). We fix r∗ to a trial value r0. The measurements of bKD∗π and cKD∗π are
not used in the fit, since they depend on the unknown values of r′ and δ′. The mea-
surement error matrix V is nearly diagonal, and accounts for correlations between the
measurements due to correlated statistical and systematic uncertainties. We minimize
χ2 as a function of 2β + γ and δ∗, and obtain χ2

min, the minimum value of χ2.
In order to compute the confidence level for a given value x of 2β+ γ, we perform

the following procedure:

1. We fix the value of 2β + γ to x and minimize χ2 as a function of δ∗. We define
χ′2

min(x) to be the minimum value of the χ2 in this fit, and δ∗toy to be the fitted
value of δ∗. We define ∆χ2(x) ≡ χ′2

min(x) − χ2
min.

2. We generate many parameterized MC experiments with the same sensitivity
as the data sample, taking into account correlations between the observables,
expressed in the error matrix V of Eq. (E.34). To generate the observables
aK

D∗π, a`
D∗π, and c`D∗π, we use the values (2β + γ) = x, r∗ = r0 and δ∗ = δ∗toy.

For each experiment we calculate the value of ∆χ2(x), computed with the same
procedure used for the experimental data.

3. We interpret the fraction of these experiments for which ∆χ2(x) is smaller
than ∆χ2(x) in the data to be the confidence level (CL) of the lower limit on
(2β + γ) = x.

The resulting 90% CL lower limit on | sin(2β + γ)| as a function of r∗ is shown in
Fig. E.10. The χ2 function is invariant under the transformation 2β + γ → π/2 + δ∗

and δ∗ → π/2 − 2β + γ. The limit shown in Fig. E.10 is always the weaker of these
two possibilities.

In the second approach, we estimate r∗ as originally proposed in Ref. [2], and
assume SU(3) flavor symmetry. With this assumption, r∗ can be estimated from
the Cabibbo angle θC , the ratio of branching fractions B(B0 → D∗+

s π
−)/B(B0 →

D∗−π+) = (5.4+3.4
−3.7 ± 0.7) × 10−3 [12], and the ratio of decay constants fD∗

s
/fD∗ =

1.10 ± 0.02 [14],

r∗ =

√

√

√

√

B(B0 → D∗+
s π

−)

B(B0 → D∗−π+)

fD∗

fD∗

s

tan(θC), (E.35)
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Figure E.10: Lower limit on | sin(2β+γ)| at 90% CL as a function of r∗, for r∗ > 0.001.

yielding the measured value

r∗meas = 0.015+0.004
−0.006. (E.36)

This value depends on the value of B(D+
s → φπ+), for which we use our recent

measurement [25].
Equation (E.35) has been obtained with two approximations. In the first approx-

imation, the exchange diagram amplitude E contributing to the decay B0 → D∗+π−

has been neglected and only the tree-diagram amplitude T has been considered. Un-
fortunately, no reliable estimate of the exchange term for these decays exists. The
only decay mediated by an exchange diagram for which the rate has been measured
is the Cabibbo-allowed decay B0 → D−

s K
+. The average of the BABAR and Belle

branching fraction measurements [12, 13] is (3.8 ± 1.0) × 10−5. This yields the ap-
proximate ratio B(B0 → D−

s K
+)/B(B0 → D−π+) ∼ 10−2, which confirms that the

exchange diagrams are strongly suppressed with respect to the tree diagrams. De-
tailed analyses [26] of the B → Dπ and B → D∗π decays in terms of the topological
amplitudes conclude that |E ′/T ′| = 0.12±0.02 for B0 → D−π+ and |Ē/T̄ | < 0.10 for
B0 → D∗−π+ decays, where E ′, Ē and T ′, T̄ are the exchange and tree amplitudes
for these Cabibbo-allowed decays. We assume that a similar suppression holds for the
Cabibbo-suppressed decays considered here.

The second approximation involves the use of the ratio of decay constants fD∗/fD∗

s

to take into account SU(3) breaking effects and assumes factorization. We attribute
a 30% relative error to the theoretical assumptions involved in obtaining the value of
r∗ of Eq. (E.36), and use it as described below.
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Figure E.11: The shaded region denotes the allowed range of | sin(2β + γ)| for each
confidence level. The horizontal lines show, from top to bottom, the 68% and 90% CL.

We add to the χ2 of Eq. (E.34) the term ∆2(r∗) that takes into account both
the Gaussian experimental errors of Eq. (E.36) and the 30% theoretical uncertainty
according to the prescription of Ref. [15]:

where ξr∗ ≡ (r∗ − r∗meas)/r∗meas.
To obtain the confidence level we have repeated the procedure described above

with the following changes. To compute χ2
min we minimize χ2 as a function of 2β+ γ,

r∗ and δ∗. The value χ′2
min(x) is obtained minimizing χ2 as a function of r∗ and δ∗,

having fixed 2β + γ to a given value x. We define δ∗toy and r∗toy to be the fitted
value of δ∗ and r∗ in this fit. To generate the observables aK

D∗π, a`
D∗π, and c`D∗π in

the parameterized MC experiments, we use the values (2β + γ) = x, r∗ = r∗toy and
δ∗ = δ∗toy.

The confidence level as a function of | sin(2β+γ)| is shown in Fig. E.11. We set the
lower limits | sin(2β + γ)| > 0.62 (0.35) at 68% (90%) CL. The implied probability
contours for the apex of the unitarity triangle, parameterized in terms of ρ̄ and η̄
defined in Ref. [4], appear in Fig. E.12.

E.2.7 Summary

We present a measurement of the time-dependent CP asymmetries in a sample of
partially reconstructed B0 → D∗+π− events. In particular, we have measured the
parameters related to 2β + γ to be

aD∗π = 2r∗ sin(2β + γ) cos δ∗ = −0.034 ± 0.014 ± 0.009 (E.37)
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Figure E.12: Contours of constant probability (color-coded in percent) for the position
of the apex of the unitary triangle to be inside the contour, based on the results of
Fig. E.11. The cross represents the value and errors on the position of the apex of the
unitarity triangle from the CKMFitter fit using the “ICHEP04” results excluding this
measurement [27].

and
c`D∗π = 2r∗ cos(2β + γ) sin δ∗ = −0.019 ± 0.022 ± 0.013, (E.38)

where the first error is statistical and the second is systematic. We extract limits
as a function of the ratio r∗ of the b → ucd and b → cud decay amplitudes. With
some theoretical assumptions, we interpret our results in terms of the lower limits
| sin(2β + γ)| > 0.62 (0.35) at 68% (90%) CL.
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E.3 Status and prospects for CP asymmetry mea-

surements: sin(2β + γ)

S. Ganzhur
DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

Abstract

The recent experimental results on CP violation related to the angles of the Cabibbo-
Kobayashi-Maskawa (CKM) unitarity triangle 2β+γ are summarized in these proceed-
ings. These results are obtained with approximately 232 million Υ (4S)→BB events
collected with the BABAR detector at the PEP-II asymmetric-energy B-factory at
SLAC. Using the measurements on time-dependent CP asymmetries in B0→D(∗)∓π±

and B0→D∓ρ± decays and theoretical assumptions, one finds | sin(2β+γ)|>0.64 (0.40)
at 68% (90%) confidence level. The perspectives of sin(2β + γ) measurement with
B0 → D(∗)0K̄(∗)0 and B0 → D(∗)∓a±0(2) decay channels are also discussed.

Introductoin

A crucial part of the CP violation program in B-factories is the measurement of
the angle γ(φ3) = arg (−VudV

∗
ub/VcdV

∗
cb) of the unitary triangle related to the CKM

matrix [1]. Decays of Bd mesons that allows one to constraint the CKM angle 2β+γ,
have either small CP asymmetry (B → D(∗)π) or small branching fractions (B →
D(∗)K(∗)). This makes the CP violation effect hard to measure. Furthermore, due
to presence of two hadronic parameters in the observables (r and δ, the amplitude
ratio and the strong phase difference between two amplitudes) it is difficult to cleanly
extract the weak phase information, although approaches based on SU(3) symmetry
exists.

E.3.1 The BABAR detector and dataset

The data used in the presented analyzes were recorded with the BABAR detector at
the PEP-II asymmetric-energy storage rings, and consist of 211 fb−1 collected on the
Υ (4S) resonance (on-resonance sample), and 21 fb−1 collected at an e+e− center-of-
mass (CM) energy approximately 40 MeV below the resonance peak (off-resonance
sample). This corresponds to approximately 232 million Υ (4S)→BB recorded events.

The BABAR detector is described in detail in Ref. [7].

E.3.2 CP asymmetry in B0 → D(∗)∓π±/ρ± decays

The decay modes B0 → D(∗)∓π± have been proposed to measure sin(2β + γ) [29]. In
the Standard Model the decays B0 → D(∗)+π− and B0 → D(∗)+π− proceed through
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the b → ucd and b → c amplitudes Au and Ac, respectively. The relative weak phase
between these two amplitudes is γ. When combined with B0B0 mixing, this yields a
weak phase difference of 2β + γ between the interfering amplitudes.

The decay rate distribution for B → D(∗)±π∓ is

P±
η (∆t) =

e−|∆t|/τ

4τ
×

[

1 ∓ Sζ sin(∆m∆t)

∓ηC cos(∆m∆t)] , (E.39)

where τ is the B0 lifetime averaged over the two mass eigenstates, ∆m is the B0−B0

mixing frequency, and ∆t is the difference between the time of the B → D(∗)±π∓

(Brec) decay and the decay of the other B (Btag) in the event. The upper (lower) sign
in Eq. E.39 indicates the flavor of the Btag as a B0 (B0), while η = +1 (−1) and
ζ = + (−) for the Brec final state D(∗)−π+ (D(∗)+π−). The parameters C and S± are
given by

C ≡ 1 − r2

1 + r2
, S± ≡ 2r

1 + r2
sin(2β + γ ± δ). (E.40)

Here δ is the strong phase difference between Au and Ac and r ≡ |Au/Ac|. Since Au

is doubly CKM-suppressed with respect to Ac, one expects r to be small of order
2%. Due to the small value of r, large data samples are required for a statistically
significant measurement of S.

Since the expected CP asymmetry in the selected B decays is small, this mea-
surement is sensitive to the interference between the b→u and b→c amplitudes in the
decay of Btag. To account for this “tagside interference”, we use a parametrization
which is described in Ref. [8]. The S± coefficient are replaced with three others

a = 2r sin(2β + γ) cos δ

b = 2r′ sin(2β + γ) cos δ′ (E.41)

c = 2 cos(2β + γ)(r sin δ − r′ sin δ′)

For each tagging category, independent of the decay mode {Dπ,D∗π,Dρ}, the tagside
interference is parametrized in terms of the effective parameters r′ and δ′. One notes,
r′ = 0 for the lepton tagging category.

Two different analysis techniques, full reconstruction [30] and partial reconstruc-
tion [18] were used for the sin(2β + γ) measurement with B0 → D(∗)∓π±.

The full reconstruction technique is used to measure the CP asymmetry in B0 →
D(∗)∓π± and B0 → D∗∓ρ± decays [31]. From a time-dependent maximum likelihood
fit the following parameters related to the CP violation angle 2β+γ are obtained:

aDπ = −0.010 ± 0.023 ± 0.007

cDπ
lep = −0.033 ± 0.042 ± 0.012

aD∗π = −0.040 ± 0.023 ± 0.010 (E.42)



210 Appendix E. CP violation in B0 → D∗∓π± decays

cD
∗π

lep = 0.049 ± 0.042 ± 0.015

aDρ = −0.024 ± 0.031 ± 0.009

cDρ
lep = −0.098 ± 0.055 ± 0.018

where the first error is statistical and the second is systematic. The systematic error
for B0 → D∗∓ρ± includes the maximum bias of asymmetry parameters due to possible
dependence of r on the ππ0 invariant mass. For the measurement of 2r cos(2β+γ) sin δ
parameter only the lepton-tagged events are used due to a presence of tag-side CP
violation effect [8].
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Figure E.13: Raw asymmetry for (a) lepton-tagged and (b) kaon-tagged events of
B0 → D∗∓π± decay mode using the method of the partial reconstruction. The curves
represent the projections of the PDF for the raw asymmetry.

In the partial reconstruction of a B0 → D∗∓π± candidate, only the hard (high-
momentum) pion track πh from the B decay and the soft (low-momentum) pion track
πs from the decay D∗− → D0π−

s are used. Applying kinematic constraints consistent
with the signal decay mode, the four-momentum of the non-reconstructed, “missing”
D is calculated. Signal events are peaked in the mmiss distribution at the nominal
D0 mass. This method eliminates the efficiency loss associated with the neutral D
meson reconstruction. The CP asymmetry independent on the assumption on rD∗π(r∗)
measured with this technique is [32]

aD∗π = −0.034 ± 0.014 ± 0.009

cD
∗π

lep = −0.019 ± 0.022 ± 0.013 (E.43)

where the first error is statistical and the second is systematic. This measurement
deviates from zero by 2.0 standard deviations. Figure E.13 shows the raw, time-
dependent CP asymmetry

A(∆t) =
NB0(∆t) −NB0(∆t)

NB0(∆t) +NB0(∆t)
(E.44)
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In the absence of background and with high statistics, perfect tagging, and perfect
∆t measurement, A(∆t) would be a sinusoidal oscillation with amplitude 2r sin(2β+
γ) cos δ.

Two methods for interpreting these results in terms of constraints on | sin(2β+γ)|
are used. Both methods involve minimizing a χ2 function that is symmetric under the
exchange sin(2β+γ) → − sin(2β+γ), and applying the method of Ref. [11]. In the first
interpretation method, no assumption regarding the value of r∗ is made. The resulting
95% lower limit for the mode B0 → D∗∓π± is shown as a function of r∗ in Figure E.14.
The second interpretation assumes that r(∗) can be estimated from the Cabibbo angle,
the ratio of branching fractions B(B0 → D(∗)+

s π
−)/B(B0 → D(∗)−π+), and the ratio

of decay constants fD∗/fD∗

s
. The confidence level as a function of | sin(2β + γ)| is

shown in Figure E.15. This method yields the lower limits | sin(2β + γ)|>0.64 (0.40)
at 68% (90%) C.L.
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Figure E.14: Lower limit on | sin(2β+γ)|
a t 90% CL as a function of r∗, for r∗ >
0.001.

Figure E.15: The shaded region denotes
the allowed range of | sin(2β + γ)| for
each confidence level. The horizontal
lines show, from top to bottom, the 68%
and 90% CL.

E.3.3 B0 → D(∗)0K̄(∗)0 decays

The decay modes B0 → D(∗)0K̄0 have been proposed for determination of sin(2β+γ)
from measurement of time-dependent CP asymmetries [33]. In the Standard Model
the decays of B0 and B0 mesons into final state D(∗)0K0

S
proceed through the b → c

and b → u amplitudes, respectively. Due to relatively large CP asymmetry (rB ≡
|A(B0 → D̄(∗)0K̄0)|/|B0 → D(∗)0K̄0)| ' 0.4) these decay channels look very attractive
for such a measurement. Since the parameter rB can be measured with sufficient data
sample by fitting the C coefficient in time distributions, the measured asymmetry can
be interpreted in terms of sin(2β + γ) without additional assumptions. However, the
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branching fractions of such decays are relatively small (∼ 5 · 10−5). That is way the
large data sample is still required.

From the measured signal yields [34], we find

B(B0 → D0K0) = (5.3 ± 0.7 ± 0.3) × 10−5

B(B0 → D∗0K0) = (3.6 ± 1.2 ± 0.3) × 10−5 (E.45)

B(B0 → D0K∗0) = (4.0 ± 0.7 ± 0.3) × 10−5

B(B0 → D0K∗0) < 1.1 × 10−5 at 90% C.L.

where the uncertainties are statistical and systematic, respectively. Figure E.16 shows
the ∆E distributions of candidates with |mES − 5280| < 8 MeV/c2 for the sums of
the reconstructed D0 decay modes.
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Figure E.16: Distribution of ∆E for a) B0 → D0K0, b) B0 → D∗0K0, c) B0 →
D0K∗0, and d) B0 → D0K∗0 candidates with |mES − 5280 MeV/c2| < 8 MeV/c2. The
points are the data, the solid curve is the projection of the likelihood fit, and the dashed
curve represents the background component.

The B decay dynamics can modify the expectation for the ratio rB. The magnitude
of this ratio can be probed by measuring the rate for the decays B0 → D(∗)0K̄∗0 and
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B0 → D̄(∗)0K̄∗0 using the self-tagging decay K∗0 → K−π+. The B0 → D0K∗0 and
B0 → D0K∗0 decays are distinguished by the correlation between the charges of the
kaons produced in the decays of the neutral D and the K∗0. This charge correlation
in the final state is diluted by the presence of the doubly-Cabibbo-suppressed decays
D0 → K+π−, K+π−π0, and K+π−π+π−. The ratio rB is related to the experimental
observable R defined for the D0 → K+π− decay as

R =
Γ(B0 → (K+π−)DK

∗0)

Γ(B0 → (K−π+)DK∗0)

= r∗2
B + r2

D + 2r∗BrD cos(γ + δ), (E.46)

where

rD =
|A(D0 → K+π−)|
|A(D0 → K−π+)| , (E.47)

δ = δB + δD, (E.48)

and δB and δD are strong phase differences between the two B and D decay ampli-
tudes, respectively. From the measured B branching fractions (Eq. E.45), values of
rD [20] and Eq. E.46, one obtains r < 0.40 at the 90% C.L. To conclude, the present
signal yields combined with this limit on r suggest that a substantially larger data
sample is needed for a competitive time-dependent measurement of sin(2β + γ) in
B0 → D(∗)0K0 decays.

E.3.4 B0 → D(∗)∓a±0(2) decays

Recently it was proposed to consider the B0 → D(∗)∓a±0(2) decays for measurement of
sin(2β + γ) [35]. The decay amplitudes of B mesons to light scalar or tensor mesons
such as a+

0 or a+
2 , emitted from a weak current, are significantly suppressed due to

the small decay constants fa0(2)
. Thus, the absolute value of the CKM-suppressed

and favored amplitudes become comparable. As a result, the CP asymmetry in such
decays is expected to be large. However, the theoretical predictions of the branching
fractions for B0 → D(∗)∓a±0(2) is expected of the order of (1 ÷ 4) · 10−6 [36]. The
main uncertainty in the branching fractions of these decay modes is due to unknown
B → a0(2)X transition form factors. One way to verify the expectations and test a
validity of the factorization approach is to measure the branching fractions for the
more abundant decay modes B0 → D(∗)+

s a0(2).
Using a sample of about 230 million Υ (4S) → BB no evidence for these decays

were observed [37]. This allowed one to set upper limits at 90% C.L. on the branching
fractions to be

B(B0 → D+
s a

−
0 ) < 1.9 · 10−5
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B(B0 → D+
s a

−
2 ) < 1.9 · 10−4 (E.49)

B(B0 → D∗+
s a−0 ) < 3.6 · 10−5

B(B0 → D∗+
s a−2 ) < 2.0 · 10−4

Figure E.17 shows the mES distributions for the reconstructed candidates B0 →
D+

s a
−
0 , B0 → D+

s a
−
2 , B0 → D∗+

s a−0 and B0 → D∗+
s a−2 . For each B decay mode, an

unbinned maximum-likelihood fit is performed using the candidates from the three
D+

s decay modes.
The upper limit value for B0 → D+

s a
−
0 is lower than the theoretical expectation,

which might indicate the need to revisit the B → a0X transition form factor estimate.
It might also imply the limited applicability of the factorization approach for this
decay mode. The measured upper limits suggest that the branching ratios of B0 →
D(∗)+a−0(2) are too small for CP -asymmetry measurements given the present statistics

of the B-factories. The measurement of sin(2β + γ) in B0 → D(∗)+a−0(2) decays is an
interesting program for the future experiments such as SuperB-factories.
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Conclusion

The substantial constraint on the CKM angles 2β + γ comes from the measurements
of time-dependent CP asymmetry in the B0→D(∗)∓π± and B0→D∓ρ± decays. The
BABAR experiment has used two techniques such as full and partial reconstruction to
increase the signal yields in the D∗∓π± channel. The combined BABARand BELLE
results [38] for CP violation in the most precisely measured decay channel D∗∓π± is

aD∗π = 2r∗ sin(2β + γ) cos δ = −0.037 ± 0.011 (E.50)

This measurement performed at the level of one per cent deviates from zero by 3.4
standard deviations. Future updates are therefore of a great interest. We interpret
the BABAR result in terms of sin(2β + γ) and find | sin(2β + γ)|>0.64 (0.40) at 68%
(90%) C.L. using a frequentist method.

The BABAR experiment has measured the branching fractions of B0 → D(∗)0K̄(∗)0

and set up the limit on B0 → D(∗)∓a±0(2) decays. The present signal yields and estab-
lished limits suggest that a substantially larger data sample is needed for a competitive
time-dependent measurement of sin(2β + γ) with these decay channels.
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Appendix F

CKM Phase Measurements

This appendix contains the report of “CKM Phase Measurement” I presented on the
15th International Topical Conference on Hadron Collider Physics, HCP2004 held at
Michigan State University in June 2004 (S.Ganzhur, “CKM Phase Measurements”,
Proceedings of the 15th International Topical Conference on Hadron Collider Physics,
HCP2004, 14-18 June 2004, East Lansing MI, USA, AIP Conf.Proc.753: 261-272
(2005), hep-ex/0409023).

This report summarizes the experimental results on CP violation in the B sector
obtained by BABAR and BELLE before summer 2004. Different tests of the CKM
interpretation of CP violation in the Standard Model by constraint of the apex of the
Unitary Triangle from these measurements are discussed in details.
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CKM Phase Measurements
Presented by Sergey Ganzhur

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

Abstract

Recent experimental results on CP violation in the B sector from BABAR and BELLE,
experiments at asymmetric e+e− B-Factories, are summarized in these proceedings.
The constraint on the position of the apex of the unitary triangle, obtained from these
measurements allows a test of the CKM interpretation of CP violation in the Standard
Model (SM).

F.1 Introduction

The violation of CP symmetry is a fundamental property of Nature which plays a key
role in the understanding of the evolution of the Universe. The Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [1] is a source of CP violation in the Standard
Model and is under experimental investigation aimed over constraining its parameters.
A crucial part of this program is the measurement of the three angles

α(φ2) = arg (−VtdV
∗
tb/VudV

∗
ub)

β(φ1) = arg (−VcdV
∗
cb/VtdV

∗
tb)

γ(φ3) = arg (−VudV
∗
ub/VcdV

∗
cb)

of the unitary triangle (UT), which represents the unitarity of the CKM matrix.
These angles can be extracted from the measured time-dependent CP asymmetry in
the different neutral B decay channels. The independent measurements of α, β and
γ allows us to verify the unitary relation (α + β + γ = π), resolve the several-fold
ambiguity on the angles which usually arises from one single measurement, and search
for New Physics (NP), comparing magnitudes of the same angle measured with modes
dominated by either tree or penguin amplitudes [2].

The apex (ρ̄, η̄) [3] of the UT is already constrained from measurements which are
not involve the CP violation in the B meson system. From the measured amplitudes
of the CKM matrix elements, the mixing frequency of the Bd and Bs mesons, and the
magnitude of indirect CP violation in the kaon system, one obtains a 95% confidence
interval for the UT angles [4]:

20.2◦ < β < 26.0◦

77◦ < α < 120◦

39◦ < γ < 80◦
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Figure F.1: Confidence levels in the complex (ρ̄, η̄) plane obtained from the global fit.
The constraint from the world average sin(2β)/(φ1) is not included in the fit and is
overlaid.

Figure F.1 shows the constraint in the (ρ̄, η̄) plane obtained from such a fit. Thus, the
direct measurement of the unitary angles in B meson decays will allow us to check
the CKM interpretation of the CP violation phenomenon in the SM.

F.2 Status of the B-Factories

It is fair to say that most of CP violation measurements in B meson decays are com-
ing from e+e− energy-asymmetric machines (B-Factories). There are two B-Factories,
PEP-II at SLAC (USA) and KEKB at KEK (Japan). Thanks to a recently incorpo-
rated technical feature known as “trickle” injection, both achieved luminosities of
order 1034 cm−2s−1. Two similar asymmetric detectors, BABAR [5] and BELLE [6]
operated at PEP-II and KEKB, respectively, measure charged tracks by a combina-
tion of a silicon vertex detector and a drift chamber embedded in a 1.5 T solenoidal
magnetic field. A ring-imaging Cherenkov detector (DIRC) is used for charged par-
ticle identification in BABAR while BELLE uses aerogel cherenkov counters (ACC)
and a time-of-flight system. Both detectors use a CsI(Tl) electromagnetic calorimeter
(EMC) to detect photons and identify electrons. The detectors are also equipped with
muon chambers to identify muons and reconstruct K0

L
mesons. The key performances

of the two experiments are summarized in the following table:
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Experiment Peak Lum. Best month Analyzed data sample

BABAR 8.8 × 1033 cm2s−1 15.4 fb−1 115 fb−1 (123 M BB̄ pairs)

BELLE 13.0 × 1033 cm2s−1 22.7 fb−1 140 fb−1 (152 M BB̄ pairs)

F.3 Experimental aspects

e+e− collisions at the Υ (4S) resonance is a way to produce BB pairs in a coherent
state. Due to limited phase space, the B mesons from Υ (4S) are produced almost at
rest in the center-of-mass (CM) frame. That is why the beam energies are different in
order to boost the produced B mesons with a βγ = 0.56(0.43) for BABAR (BELLE).
This enables the measurement of the time-dependent CP asymmetry in the decays of
neutral B mesons. The method is described in details elsewhere in [2].

The time-dependent CP asymmetry is obtained by measuring the proper time dif-
ference ∆t between a fully reconstructed neutral B meson (Bcp) decaying into a given
final state, and the partially reconstructed recoil B meson (Btag). The asymmetry in
the decay rate f+(f−) when the tagging meson is a B0 (B0) is given as

f±( ∆t) =
e−|∆t|/τ

B0

4τB0

[ 1 ± S sin (∆md∆t) ∓ C cos (∆md∆t)], (F.1)

where τB0 is the B0 lifetime and ∆md is the B0–B0 mixing frequency. The parameters
C and S describe the magnitude of CP violation in the decay and in the interference
between decay and mixing (mixing-induced), respectively. We expect C = 0 in the
case of a single dominant decay amplitude, because the direct CP violation requires at
least two comparable amplitudes with different CP violating phases, while S is linked
to the CKM phases, e.g. B0 → J/ψK0

S
. Presence of more than one decay amplitudes

can lead to C 6= 0 and a non trivial relation of S with unitary angles, e.g. B0 → π+π−.

F.4 CKM phase β/(φ1)

F.4.1 Charmonium modes

The observation of CP violation in the B0 system has been reported in 2000 by
BABAR and BELLE collaborations. New precise measurements of sin 2β with a set
of charmonium modes similar to the gold plated J/ψK0

S
decay channel were reported

in [7, 8]. The data sample of 88 (152) millions BB pairs has been used by BABAR

(BELLE) to fully reconstruct a sample of neutral B mesons decaying into CP eigen-
states such as J/ψK0

S
, ψ(2S)K0

S
, χc1K

0
S
, ηcK

0
S

(CP -odd) and J/ψK0
L

(CP -even) as
well as vector-vector final state J/ψK∗ which represents a mixture of CP -even and
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Mode BABAR BELLE

( 88 × 106BB) (152 × 106BB)

JψK0
S
(K0

S
→ π+π−) 0.82 ± 0.08 0.67 ± 0.08

JψK0
S
(K0

S
→ π0π0) 0.39 ± 0.24 0.72 ± 0.20

ψ(2S)K0
S
(K0

S
→ π+π−) 0.69 ± 0.24 0.89 ± 0.20

χc1K
0
S

1.01 ± 0.40 1.54 ± 0.49

ηcK
0
S

0.59 ± 0.32 1.32 ± 0.29

All with ηf = −1 0.76 ± 0.07 0.73 ± 0.06

JψK0
L

0.72 ± 0.16 0.80 ± 0.13

JψK∗0(K∗0 → K0
S
π0) 0.22 ± 0.52 0.10 ± 0.45

All charmonium modes 0.74 ± 0.07 ± 0.03 0.73 ± 0.06 ± 0.03

Table F.1: The CP asymmetry (sin 2β) measured in the different charmonium decay
channels.

CP -odd states 1. The obtained results are summarized in Table F.1, where the two ex-
periments are in good agreement within experimental errors. It is interesting to note
that the statistical error is still dominant. The average of the two experiments [10]

sin 2β = 0.739 ± 0.049 (F.2)

is in a good agreement with Standard Model predictions.
The two vector final state J/ψK∗ can also be used to measure the sign and mag-

nitude of cos 2β. Knowledge of the cos 2β sign allows us to reduce the four-fold ambi-
guity in the β angle. The simultaneous time-dependent and angular analysis for this
decay channel obtained by BABAR where the sin 2β is fixed to the world average value
Equation F.2 favors a positive sign for cos 2β [11]:

cos 2β = +2.72+0.50
−0.79(stat) ± 0.27(syst)

F.4.2 Penguin dominated modes

In the SM decays like B0 → φK0
S

are dominated by the b → ss̄s gluonic pen-
guin diagrams.We expect C = 0 in the SM because there is only one dominant
decay mechanism. Since φK0

S
decays proceed through a CP -odd final state, we ex-

pect S = sin 2β. The other contributions in the SM which can deviate the measured

1The angular analysis is required to determine the fraction of CP -even eigenstate [9]
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Figure F.2: The beam-energy constrained mass distributions for three penguin dom-
inated modes: φK0

S
, K+K−K0

S
, η′K0

S
(left) and the raw asymmetry for φK0

S
decay

(right) mode measured by BELLE

asymmetry from sin 2β are rather small and range from several percents for φK0
S

to
some tens percents for others [12]. However, contributions from physics beyond the
Standard Model (NP), could invalidate these predictions [13]. Since b → ss̄s decays
involve one-loop transitions, they are especially sensitive to such contributions. Fig-
ure F.2 shows the beam-energy constrained mass distributions for the three modes:
φK0

S
, K+K−K0

S
, η′K0

S
, obtained by BELLE. Clear peaks at the B mass demonstrate

the ability to reconstruct modes with relatively small branching fractions of the order
of ∼ 10−4 [14].

The BELLE CP violation result obtained with about 152 M BB pairs indicates
a deviation from the sin 2β value obtained with charmonium modes of about 3.5σ:

SφK0 = −0.96 ± 0.50(stat)+0.09
−0.11(syst)

Figure F.2 also shows the raw asymmetry for such a mode with the SM expectation
overlaid. The BABAR results obtained with a similar data sample [15]

SφK0 = +0.47 ± 0.34(stat)+0.08
−0.06(syst),

is consistent with sin 2β. In addition to φK0
S

this result includes the CP asymme-
try measured with CP -even φK0

L
decay mode. However, the two experiments are in

marginal agreement within experimental errors for this decay. 2

2The recent results presented in [16] solves this problem. The two results are now in good agree-
ment.
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Figure F.3: Compilation of the results for −ηf × S

A more accurate CP violation measurement can be made using all decays to
KKK0

S
that do not contain a φ meson. This sample is several times larger than the

sample of φK0
S
, but the CP content of the final state is not known. The CP content can

be determined from isospin symmetry assumptions and measured branching fractions
of KKK0

S
and KK0

S
K0

S
decays. Using this approach [17] one observes that the CP -

even state is strongly dominating decay channel (feven = 0.98 ± 0.15 ± 0.04). It is
fortunate because it maximizes the experimental sensitivity on CP violation. Two
results reported in [14, 18] are in a good agreement with the SM expectation.

Figure F.3 summarizes the measured CP asymmetry relevant to sin 2β for the
charmonium and penguin dominated modes [10]. The 2.4σ difference in average be-
tween the two types of decays does not allow us to state whether it is or is not an effect
of NP. It is important to continue this study to improve the experimental uncertainty
until it is resolved.

F.5 CKM phase α(φ2)

In contrast to the theoretically clean measurements of sin 2β with charmonium final
states, the extraction of sin 2α is complicated by the presence of tree and gluonic
penguin amplitudes in modes like B → hh, where h = π, ρ. Neutral B decays to the
CP eigenstate π+π− can exhibit mixing-induced CP violation through interference
between decays with and without B0–B0 mixing, and direct CP violation through
interference between the b → u tree and b → d penguin decay processes shown in
Figure F.4. Both effects are observable in the time evolution of the asymmetry between
B0 and B0 decays to π+π−, where the interference between decay and mixing leads
to a sine oscillation with amplitude Sππ and direct CP violation leads to a cosine
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Figure F.4: Tree (left) and gluonic penguin (right) diagrams contributing to the process
B → ππ

Parameter BABAR (123 M BB) BELLE (152 M BB)

Sππ −0.40 ± 0.22(stat) ± 0.03(syst) −1.00 ± 0.21(stat) ± 0.07(syst)

Cππ −0.19 ± 0.19(stat) ± 0.05(syst) −0.58 ± 0.15(stat) ± 0.07(syst)

ρ(S,C) -0.02 -0.29

Table F.2: Results on CP violation measurements in B0, B0 → π+π−. ρ(S,C) is the
correlation coefficient between C and S in the likelihood function.

oscillation with amplitude Cππ. In the absence of the penguin process, Cππ = 0 and
Sππ = sin 2α. while significant tree-penguin interference leads to Cππ 6= 0 and Sππ =
√

1 − C2
ππ sin 2αeff . The presence of loop (penguin) contributions introduces additional

phases which can shift the experimentally measurable parameter αeff away from the
value of α. The difference between αeff and α can be determined from a model-
independent analysis using the isospin-related decays B± → π±π0 and B0, B0 →
π0π0 [19].

Results on CP violation in B0, B0 → π+π− decay mode are summarized in Ta-
ble. F.2 taken from Ref.[20, 21]. The BELLE experiment rule out the CP -conserving
case, Sππ = Cππ = 0 at the 5.2σ level. It also finds evidence of direct CP violation
with a significance of 3.2σ. The BABAR collaboration does not confirm the observation
of large CP violation in this decay channel reported by BELLE. However, the two
results are in agreement within experimental errors.

The difference between the measured αeff and α is evaluated using measurements
of the isospin-related decay B0, B0 → π0π0. The observation of this decay, 4.2σ signif-
icance, by the BABAR collaboration (Figure F.5 (left)) with relatively large branching
fraction [22] demonstrates a large gluonic penguin contribution in this mode. However,
this leads to essential difficulties for α extraction with B → ππ decays.

Figure F.5 (right) shows a two-dimensional 68% and 95% C.L. for the experimen-
tal results in the (C,S) plane. For comparison, the colored regions shows the 95% C.L.
obtained from the isospin analysis, the SU(3) B+ → K0π+ decay, and QCD factor-
ization prediction. Large negative correlation between S and C observed in BELLE
reflects the shape of the confidence region. One can state that experimental results
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Figure F.5: The observation of B0, B0 → π0π0 decay by BABAR (left). The 1σ and
2σ contours for the BABAR and BELLE in (C,S) plane obtained for B0, B0 → π+π−

decay (right).

are consistent with isospin symmetry prediction, where knowledge of B(B0 → π0π0)
is still a dominant uncertainty.

The measurement of the B± → ρ±ρ0 branching fraction and the upper limit for
B0 → ρ0ρ0 [23] indicate small penguin contribution to the B → ρρ decay. Higher
branching fraction and smaller shift of the measured parameters αeff from α com-
paring to B0, B0 → π+π− makes B0, B0 → ρ+ρ− decays more attractive for the
extraction of the CKM angle α. It is also fortunate for the sensitivity to α that this
two-vector final state is almost longitudinally polarized as it was measured in [24]
with an angular analysis.

Figure F.6 (left) shows the B mass distribution for the reconstructed ρ+ρ− candi-
dates [25]. The B candidates associated with only lepton tag, which provides the best
signal-to-background ratio, are also shown. A clear peak at B0 mass allows one to
measure polarization and CP asymmetry. The new BABAR result for B0, B0 → ρ+ρ−

decay, obtained with 123 million BB pairs is the following:

fL = 1.00 ± 0.02(stat)+0.04
−0.03(syst)

Clong = −0.23 ± 0.24(stat) ± 0.14(syst)

Slong = −0.19 ± 0.33(stat) ± 0.11(syst)

Ignoring the possible non-resonant contributions, interference, I=1 amplitudes and
assuming isospin symmetry, by using the experimental data on B(B0 → ρ0ρ0), one
can relate the CP parameters Slong and Clong to the CKM angle α up to a four-
fold ambiguity. Selecting the solution closest to the CKM best fit average [4], this
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Figure F.6: The B mass distribution for the B0 → ρ+ρ− decay (left). Constrained on
α obtained from the ππ and the ρρ systems (right). The constraint assuming infinite
precision for Clong and Slong is also shown. The plots are from BABAR.

corresponds to
α = 96◦ ± 10◦(stat) ± 4◦(syst) ± 13◦(peng)

where the last error is the additional contribution from penguins that is bounded at
< 13◦ (68.3% C.L.)

Figure F.6 (right) shows the constraint on α from the ππ and the ρρ systems.
BABAR and BELLE average branching fractions, polarization in ρρ (including the
limit on ρ0ρ0, for which the polarization is unknown ) and asymmetry C and S mea-
surements are used to perform the Gronau-London isospin analysis. One can conclude
that ρρ system provides the most precise constraint on α, where the knowledge of
penguin pollution is dominant.

F.6 CKM phase γ(φ3)

Decays of Bd mesons relevant to the CKM phase γ show either small CP asymmetry
(B → D(∗)π) or branching fractions (B → D(∗)K). This produces essential difficulties
for this measurement, where most of analyses are model dependent. That is why
future experiments at Hadron Colliders are attractive for they will have access to the
physics of the Bs mesons.

F.6.1 CP asymmetry with B0 → D(∗)∓π±

The decay modes B0 → D(∗)∓π± have been proposed to measure sin(2β + γ) [26]. In
the Standard Model the decays B0 → D(∗)+π− and B0 → D(∗)+π− proceed through
the b → ucd and b → c amplitudes Au and Ac, respectively. The relative weak phase
between these two amplitudes is γ. When combined with B0B0 mixing, this yields a
weak phase difference of 2β + γ between the interfering amplitudes. The decay rate
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distribution for B → D(∗)±π∓ is described by an equation similar to Equation F.1,
where the parameters C and S are given by

C ≡ 1 − r(∗)2

1 + r(∗)2
, S± ≡ 2r(∗)

1 + r(∗)2
sin(2β + γ ± δ(∗)).

Here δ(∗) is the strong phase difference between Au and Ac and r(∗) ≡ |Au/Ac|. Since
Au is doubly CKM-suppressed with respect to Ac, one expects r(∗) to be small of order
2%. Due to the small value of r(∗), large data samples are required for a statistically
significant measurement of S.

Two different analysis techniques, full reconstruction and partial reconstruction
were used for the sin(2β + γ) measurement with B0 → D(∗)∓π±.

In the partial reconstruction of a B0 → D∗∓π± candidate, only the hard (high-
momentum) pion track πh from the B decay and the soft (low-momentum) pion track
πs from the decay D∗− → D0π−

s are used. Applying kinematic constraints consistent
with the signal decay mode, the four-momentum of the non-reconstructed, “missing”
D is calculated. Signal events are peaked in the mmiss distribution at the nominal D0

mass. This method eliminates the efficiency loss associated with the neutral D meson
reconstruction. The CP asymmetry independent on the assumption on r∗ measured
with this technique by BABAR is [27]

2r∗ sin(2β + γ) cos δ∗ = −0.063 ± 0.024 ± 0.014

This measurement deviates from zero by 2.3 standard deviations. Both BABAR and
BELLE also use the full reconstruction technique [28, 29] to extract the sin(2β +
γ)value.

Two methods for interpreting these results in terms of constraints on | sin(2β+γ)|
are used. Both methods involve minimizing a χ2 function that is symmetric under
the exchange sin(2β + γ) → − sin(2β + γ), and applying the method of Ref. [30].
In the first interpretation method, no assumption regarding the value of r∗ is made.
The resulting 95% lower limit for the mode B0 → D∗∓π± is shown as a function of
r∗ in Figure F.7 (left). The second interpretation assumes that r(∗) can be estimated

from the Cabibbo angle, the ratio of branching fractions B(B0 → D(∗)+

s π
−)/B(B0 →

D(∗)−π+), and the ratio of decay constants fD∗/fD∗

s
. This method yields the limits [27]

| sin(2β+γ)| > 0.87 at 68% C.L. and | sin(2β+γ)| > 0.58 at 95% C.L. | sin(2β+γ)| = 0
is excluded at 99.4 % C.L.

F.6.2 γ extraction with B → D(∗)K

Several proposed methods for measuring γ exploit the interference between B− →
D0K− and B− → D̄0K−, which occurs when D0 and D̄0 decay into the same final
state f. These methods are the following:

f= K+π− - CKM-suppressed (DCS) for D0 and Cabibbo favored for D0 (ADS) [31];
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Figure F.7: 95% C.L. lower limit on | sin(2β+γ)| as a function of r∗ with BABAR (left).
The solid curve corresponds to the partial reconstruction analysis; the dashed curve
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decays.

f= π+π−, K+K−, K0
S
π0 - CP eigenstate (GLW) [32];

f= K0
S
π+π− - 3-body Dalitz plot analysis [33].

Theoretically clean measurements of the angle γ can be obtained with ADS and GLW
methods, while the Dalitz plot analysis relies on D0 decay model.

The ADS method allows us to determine how large the suppression of b → u
amplitude is. Assuming no CP violation in D meson decays, the measured quantity

RKπ =
1

2
R+

Kπ +R−
Kπ = r2

B + r2
D + 2rBrD cos γ cos(δB + δD), R±

Kπ ≡ Γ([K∓π±]DK
±)

Γ([K±π∓]DK±)

where rB =≡ |A(B−→D0K−)|
|A(B−→D0K−)|

' 0.2, rD ≡ |A(D0→K+π−)
A(D0→K−π+)

| = 0.060± 0.003 can be used to

constraint γ. The analysis performed with 123 million BB pairs yields Nsig. = 1.1±3.0
signal (B+ → [K−π+]DK

+) candidates [34]. This allows one to calculate the Bayesian
limit RKπ < 0.026 at 90% C.L. assuming a constant prior for RKπ > 0. Figure F.8
shows the dependence of RKπ on rB. The area indicates the allowed region for any
value of δ, with a ±1σ variation on rD and the restriction with (filled-in) and without
(hatched) 48◦ < γ < 73◦ constraint suggested by global CKM fit [4]. The 90% C.L.
upper limit on rB < 0.196(0.224) with (without) the constraint on γ. To conclude, the
small value of rB, as suggested by this analysis, makes determining γ from B → DK
difficult.
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Figure F.8: Expectation on RKπ and Nsig versus rB obtained with BABAR [34].

CP -odd (D0 → π+π−, K+K−) [35, 36] and CP -even (D0 → π0K0
S
, φK0

S
, ωK0

S
,

ηK0
S
, η′K0

S
) [36] decay modes were used to reconstruct B− → D0

CPK
−. At the current

precision of such measurements, γ can not be constrained yet.
The CKM phase γ, rB and strong phase difference δ between the two amplitudes

can be fitted in the Dalitz plot of B+ → [K0
S
π−π+]DK

+. The decay model for Cabibbo
allowed 3-body decay of D0 is measured in D∗-tagged D0 decays. By using 152 million
BB pairs BELLE finds 35◦ < γ < 127◦, at 95% C.L. [37]. The fitted rB = 0.31± 0.11
is somewhat large, but in agreement with ADS method.

F.7 Conclusion

In conclusion, the two B-factories have been operating successfully since 1999 and
the BABAR and BELLE experiments have already produced a lot of results relevant
to the CKM phase measurements. Presence of CP violation is well established in
the B-sector and its magnitude is in agreement with the CKM interpretation of this
phenomenon in the Standard Model. Measurements of the three CKM angles provide
very important constraints on the apex of the Unitary Triangle There are several
“hot” modes such as B0 → φK0

S
(penguin dominated) and B0 → π+π− (presence of

large penguin contribution), where statistical room for new effects exists.
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