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Quark-Hadron Duality in Spin Structure Functions gp
1 and gd
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Abstract

New measurements of the spin structure functions of the proton and deuteron gp
1(x,Q2) and

gd
1(x,Q2) in the nucleon resonance region are compared with extrapolations of target-mass-

corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire

resonance region (W < 2 GeV), the data and QCD fits are in good agreement in both magnitude

and Q2 dependence for Q2 > 1.7 GeV2/c2. This “global” duality appears to result from cancel-

lations among the prominent “local” resonance regions: in particular strong σ3/2 contributions in

the ∆(1232) region appear to be compensated by strong σ1/2 contributions in the resonance region

centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W

and Q2 than have been used previously.

PACS numbers: 13.60.Hb, 25.30.Fj,24.30.Gd
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The theoretical description of particle interactions has utilized quark-gluon degrees of

freedom at high energies and hadronic degrees of freedom at low energies. With suitable

averaging over resonant excitations, the two approaches have been found in several cases

to be nearly equivalent, a phenomenon referred to as quark-hadron duality. These cases

include e+e− annihilation, semi-leptonic decays of heavy mesons, electron-pion scattering,

semi-inclusive deep-inelastic scattering, and both spin-averaged and spin-dependent inclu-

sive lepton-nucleus scattering [1], the subject of the present investigation. Pragmatically,

understanding the limitations and applicability of quark-hadron duality in this process is

useful in order to define the kinematic region in which parton distribution functions (PDF)

can be reliably extracted.

In lepton-nucleon scattering, the low and high energy regimes have traditionally been

separated using W , the invariant mass of the hadronic final state, and Q2, the four mo-

mentum transfer squared. A region of prominent nucleon resonances is observed for W < 2

GeV and Q2 < 10 GeV2/c2, while for higher W or Q2 there is no longer any obvious res-

onance structure. Historically, quark-hadron duality was first observed in 1970 by Bloom

and Gilman [2] in the spin-averaged lepton-nucleon process. They noted that the inclusive

structure function, F2(W, Q2) averages smoothly at low W and Q2 to the scaling function

F2(W, Q2) measured at high energy, using an empirical scaling variable in place of the original

Bjorken x scaling variable. Subsequently, Georgi and Politzer [3] found that quark-hadron

duality is exhibited down to Q2
∼ 1 GeV2/c2 using the Nachtmann [4] scaling variable

ξ ≡ 2x/(1 +
√

1 + 4M2x2/Q2) which approximates the purely kinematic higher twist cor-

rections arising from the non-zero nucleon mass M . More recently, explicit target-mass

(TM) corrections have been derived in the framework of QCD for both unpolarized and

polarized structure functions [5] that obviate the need for an approximate scaling variable.

To explain quark-hadron duality theoretically, de Rújula, Georgi, and Politzer [6] em-

ployed a perturbative operator product expansion of QCD structure function moments. In

this framework, quark-hadron duality implies a small net effect from higher twist contri-

butions, once the kinematic target-mass contribution is taken into account. In a simple

QCD picture, the additional higher twist contributions (which are proportional to powers of

1/
√

Q2) are due to quark-quark and quark-gluon correlations. Close and Isgur [7] provided

an interesting explanation in the constituent quark model in terms of cancellations from

resonance contributions with opposite parity. A recent theoretical QCD study [8] of both
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polarized and unpolarized structure functions incorporates many of these concepts, with the

addition of a careful treatment of so-called high-x resummation corrections. The authors

concluded that higher-twist corrections are suppressed more for the unpolarized structure

function F2 than for the proton polarized structure function gp
1, where a sizable negative

contribution is observed. A comprehensive review of quark-hadron duality from both the

experimental and theoretical perspective was also published recently [1].

Unpolarized structure function data exhibit excitation-energy-averaged scaling not only

averaged over the entire resonance region (M < W < 2 GeV), referred to as “global duality”,

but also in each of several restricted regions in W , corresponding to the three prominent

resonance regions centered on W = 1.23, 1.5 and 1.7 GeV, a phenomenon referred to as

“local duality”. This was demonstrated experimentally using high-statistical-accuracy data

from Jefferson Lab [10], and interpreted theoretically by Carlson and Mukhopadhyay [11]

using the expected pQCD Q2-dependence of nucleon transition form factors.

The new data presented in this report augment previously available results for gp
1 from

SLAC [12, 13], DESY [14] and JLab [15, 16] with higher statistical precision and an expanded

range of Q2. This allows us to experimentally examine local duality for gp
1 much more

accurately than was previously possible. The addition of a considerable body of deuteron

gd
1 data allows the first examination of the isospin dependence of global duality in g1.

When testing duality there is an intrinsic uncertainty as to which DIS curves to use for

comparison with the averaged resonance region data. In this paper, we choose the average

of two representative Next-to-Leading Order (NLO) QCD fits [17, 18] to polarized structure

function data above the resonance region. The NLO evolution is considered to be reasonably

reliable down to Q2 values of order 1 GeV2/c2. We choose to use fits with NLO evolution,

rather than LO or purely empirical fits to data, to give the best possible estimate of the

Q2-dependence of g1. The high-energy data used in the NLO QCD fits have relatively large

errors compared to those for unpolarized structure functions, particularly at high values

of x that tend to correspond to our resonance region data. Since precise error bands in

our kinematic region are not available, we ascribe a very approximate relative error of 10%

(20%) to the gp
1 (gd

1) DIS fits, independent of x. The error on the average deuteron DIS fit

is larger due to the much larger relative contribution of negatively polarized quarks in the

neutron compared to the proton. We take kinematic target-mass corrections into account
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using the prescription of Blümlein and Tkabladze [5]:

gTM
1 (x, Q2) =

x

ξ(1 + γ)3/2
gQCD
1 (ξ, Q2) (1)

+
(x + ξ)γ

ξ(1 + γ)2

∫ 1

ξ

du

u
gQCD
1 (u, Q2)

−

γ(2 − γ)

2(1 + γ)5/2

∫ 1

ξ

du

u

∫ 1

u

dv

v
gQCD
1 (v, Q2),

where γ = 4M2x2/Q2. This prescription is not unique, and in particular has the drawback

of resulting in non-zero values of g1 at x = 1. An approach that avoids this problem has been

worked out for F2 [19], but is not yet available for g1. The calculation of high-x resummation

corrections is theoretically more complicated [9] and technically more challenging than target

mass corrections. Rather than attempting these calculations ourselves, we simply note that

Ref. [8] finds enhancements of order 10% to 20% for the proton averaged over the full

resonance region, roughly independent of Q2 for 0.5 < Q2 < 5 GeV2/c2. This corrections

could well be different for the deuteron and for individual “local” regions in W .

The analysis is based on recently published data [20] from Jefferson Lab. Very briefly, in

this experiment the CEBAF Large Acceptance Spectrometer [21] in Jefferson Lab’s Hall B

was used to measure spin asymmetries in the scattering of longitudinally polarized electrons

from longitudinally polarized protons and deuterons. The data were collected in 2001 using

incident energies of 1.6 GeV and 5.7 GeV. Beam currents ranged from 1 to 5 nA, and the

beam polarization averaged 70%. The detector package [21] allowed clean identification

of electrons scattered at polar angles between 8 and 45 degrees. Ammonia, polarized via

Dynamic Nuclear Polarization [22], was used to provide polarized protons and deuterons,

using the 15NH3 and 15ND3 isotopes, respectively. The average target polarization was about

75% for the proton and about 25% for the deuteron. The data were divided into 40 bins in

Q2, equally spaced on a logarithmic scale between 0.01 and 10 GeV2/c2.

Values of g1(x, Q2) were determined from the ratios of g1/F1 presented in [20] using recent

fits to proton [23] and deuteron [24] data to evaluate the unpolarized structure function

F1(x, Q2). The resulting values of g1(x, Q2) for both the proton and the deuteron are plotted

(scaled by x) as a function of x for four representative Q2 bins in Figure 1. The three arrows

on each panel correspond to the three prominent resonance regions at W = 1.7, 1.5, and

1.23 GeV, from left to right. We compare the data to the extrapolations of DIS fits (as

described above), represented by the hatched bands.
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It can be seen in Fig. 1 that the data in fixed Q2 bins indeed exhibit oscillations in x

compared to the smooth behavior of the DIS curves. In addition, the averaged data become

increasingly commensurate with the models with increasing Q2, as expected if quark-hadron

duality is valid for g1. In closer detail, one can also observe that the experimental data for

both the proton and the deuteron lie below the curves in the ∆(1232) region, and above

in the W = 1.5 GeV [S11(1535)/D13(1520)/P11(1440)] region. This is not surprising at low

to moderate Q2, where resonant contributions dominate over non-resonant contributions.

Recall that g1 is proportional to σ1/2 − σ3/2. The N → ∆(1232) is known to be dominated

by M1 strength [25] over the Q2 range of the present study, which results in a virtual photon

cross section σ3/2 about three times larger than σ1/2, corresponding to negative values of

g1. In contrast, in the DIS limit of incoherent scattering from massless quarks, g1 must

be positive due to helicity conservation. In the second resonance region, the S11(1535)

and P11(1440) transitions can only contribute to σ1/2, and recent studies [26] show that

the N → D13(1520) changes from dominantly σ3/2 at low Q2 to dominantly σ1/2 above 1

GeV2/c2. The three resonances together therefore are expected to result in large positive

values of g1 above 1 GeV2/c2 (potentially larger than the DIS limit).

To clarify these observations with respect to both local and global duality, we have

averaged over x both data and models for g1 over a Q2-dependent interval corresponding to

four specific regions in W . The x-averaged values of g1 for the entire resonance region (scaled

by Q2) are plotted as a function of Q2 in Fig. 2 for both targets. The proton averages for

four smaller regions in W are plotted in Fig. 3. Specifically, the averages were determined

as

< g1(Q
2) >=

∫ xh

xl

g1(x, Q2)dx

xh − xl
,

where xl and xh correspond respectively to the maximum and minimum values of W in the

interval considered, at the given value of Q2 [using the definition x−1 = 1+(W 2
−M2)/Q2].

The TM-corrected NLO PDF parameterizations shown in Fig. 1 were averaged in the same

way as for the experimental data.

The averages displayed in Figs. 2 test “global” duality by averaging g1 over x for the

entire region from pion threshold to W = 2 GeV. The data for both targets exhibit a power-

law-type deviation from the DIS curves at low Q2, but essentially agree with them above

Q2 = 1.7 GeV2/c2, within the systematic errors of the data and models. This is somewhat
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higher in Q2 than for the unpolarized F2 structure, supporting the conclusions of Ref. [8].

Turning to the examination of “local” duality for the proton, it can be seen in the upper

left panel of Fig. 3 that in the “first” resonance region, dominated by the ∆(1232) resonance,

the data have the opposite sign of the extrapolations of DIS models at low Q2. This is allowed

by the spin-3/2 nature of the ∆(1232), and is expected due to the dominance of the M1

transition strength [25], as discussed above. What is interesting is that, while the data

change sign at Q2 near 1 GeV2/c2, the averaged values are significantly below the models

even to the highest Q2 of the present experiment, in spite of the fact that the N → ∆(1232)

transition form factor (FF) decreases more rapidly with Q2 than, for example, the elastic

FF or the N → S11(1535) transition FF [25, 27] (a phenomena sometimes referred to as the

“disappearing ∆”). It is evident that the ∆(1232) has not yet completely disappeared at

Q2 = 5 GeV2/c2.

In the second resonance region, two of the three known resonances [P11(1440) and

S11(1535)] contribute only to σ1/2, while the third [D13(1520)] contributes more to σ1/2

than to σ3/2 above 1 GeV2/c2 [26]. Therefore, it isn’t surprising that the proton data lie

significantly above the DIS extrapolations in this narrow region of W .

In the “third” resonance region centered on 1.7 GeV, the F15(1680) is dominant at low Q2,

but above about 1 GeV2/c2 other resonances are also important [26], such as the S11(1650),

S31(1620), and D33(1700). The F15 contributes mainly to σ3/2 at low Q2 (i.e. negative g1),

but switches to σ1/2 dominance at higher Q2 [26]. The average over all of these resonances

plus non-resonant background produces very good agreement between data and DIS models

in this region, as might be expected from the parity-averaging arguments of Close and

Isgur [7].

For completeness, we have also studied a fourth region centered on 1.9 GeV (for which

there are a large number of poorly established resonances, difficult to distinguish from non-

resonant contributions). In this case, the data lie slightly below the DIS models, although

the significance is marginal when systematic errors are taken into account. It appears that

much of the good agreement between data and models observed in the entire resonance

region comes about from pairing the “first” and “second” resonance regions together, with

further improvement from including the “fourth” region. This lends further support to the

Close-Isgur model.

Again following Close and Isgur [7], one might expect DIS and resonance region data to
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converge at lower values of Q2 if the ground state elastic contribution is also included in

the global duality averaging. The open circles in Fig. 2 include the elastic (quasi-elastic)

contributions to the g1 averages for the proton (deuteron), given by GE(Q2)[GE(Q2) +

τGM(Q2)]/2(1 + τ)(xh − xl), where τ = Q2/4M2. To evaluate the nucleon electric and

magnetic form factors GE(Q2) and GM(Q2), we used a slightly modified version of the

parameterization of Ref. [28]. For both the proton and the deuteron, the Q2-dependence

with the elastic contribution more closely resembles the Q2-dependence of the models, down

to values of Q2 as low as 0.7 GeV2/c2, which is already pushing below the expected region

of validity of 1 GeV2/c2 for the PDF fits. However, the magnitude of the data is of order

10% to 20% higher than the models. As mentioned above, high-x resummation corrections

may well account for this difference. The result of pairing the ∆(1232) resonance (the lowest

spin-3/2 ground state) with the elastic contribution (the lowest spin-1/2 ground state) is

illustrated in the upper left panel of Fig. 3 for the proton. The elastic contribution, in

the way we have treated it, over-compensates, resulting in power-law deviations at low Q2

that lie well above the data, rather than well below. It appears that including the elastic

contribution with the entire resonance region works much better than pairing it with the

single ∆(1232) resonance.

In summary, we have used data for both the proton and deuteron to examine both “local”

and “global” quark-hadron duality in g1. As was determined in previous studies [1, 8], gp
1 in

the resonance region oscillates around extrapolations of NLO PDF fits to higher energy data,

especially when target-mass corrections are taken into account. Averaged over the traditional

resonance region (W < 2 GeV), the data and fits agree within errors for Q2 > 1.7 GeV2/c2,

a slightly higher value than observed for the spin-averaged structure function F2 [8, 10].

Including the elastic contribution may extend the region of agreement to Q2 = 0.7 GeV2/c2,

after consideration of the uncertainties due to high-x resummation. A similar effect was

found in the unpolarized case [1, 10]. We find similar results for the previously unexamined

gd
1 structure function as for gp

1, indicating no large effects from different isospin projections.

In terms of “local” duality, we find that in the ∆(1232) region, the proton data lie below the

PDF fits, even for Q2 values as large as 5 GeV2/c2, while the region centered on 1.5 GeV

lies above the PDF fits for all Q2 values studied. It appears that global duality is largely

realized by summing over the four lowest-mass resonances. Since the Q2-dependence for the

PDF fits and the data are remarkably similar above Q2 = 1.7 GeV2/c2, we conclude that

10



from the practical point of view, it is not unreasonable, with suitable averaging over W , to

include data with W > 1.58 GeV and Q2 > 1.7 GeV2/c2 in future global NLO PDF fits,

as long as the effects of TM and high-x resummation effects are taken into account. In the

near future, high statistical accuracy data from the present experiment with 2.5 and 4.2

GeV electron energies, and additional data at 5.7 GeV, presently under analysis, will allow

more precise studies, particularly for the deuteron.
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FIG. 1: Present data for proton gp
1(x,Q2) (left panels) and deuteron gd

1(x,Q2) (defined to be

per nucleon, right panels) at four representative values of Q2. The errors include statistical and

systematic contributions added in quadrature. The three arrows on each plot indicate the central

kinematic position of the three prominent resonance regions at W = 1.7, 1.5, and 1.23 GeV from

left to right. The hatched band represents the range of g1 predicted by modern NLO Parton

Distribution Function (PDF) fits (GRSV [18] and AAC [17]) to high energy data, evolved to the

Q2 of our data and corrected for target-mass as described in the text.
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FIG. 2: The Q2-dependence of Q2g1(x,Q2), averaged over a region in x corresponding to 1.08 <

W < 2 GeV (solid circles) for: a) proton; b) deuteron. The inner error bars reflect only statistical

contributions, while the outer error bars include statistical and systematic components added in

quadrature. The open circles represent our data after adding the contribution from ep elastic (ed

quasielastic) scattering at x = 1 for the proton (deuteron). For clarity these results are slightly

displaced in Q2, and the error bars include only statistical contributions. The hatched bands

represent the range of the averages calculated from extrapolated NLO DIS fits, as in Fig. 1 (see

text for details).
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FIG. 3: The Q2-dependence of Q2g1(x,Q2) for the proton, averaged over various regions of x. At

each Q2, the x-range over which g1 was averaged is determined by the corresponding range in W

as indicated in each panel (see text). Symbols and curves as in Fig. 2.
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