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We show that next-leading logarithmic (NLL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) effects
can be tested by the forward-jet cross sections recently measured at HERA. For dσ/dx, the NLL
corrections are small which confirms the stability of the BFKL description. The triple differential
cross section dσ/dxdk2

T dQ2 is sensitive to NLL effects and opens the way for an experimental test
of the full BFKL theoretical framework at NLL accuracy.

1. Forward-jet production in deep inelastic scatter-
ing is a process in which a jet is detected at forward
rapiditites in the direction of the proton. The virtuality
of the intermediate photon Q2 and the squared trans-
verse momentum of the jet k2

T are two hard scales. When
the total energy of the photon-proton collision W is as-
sumed to be large, corresponding to a small value of the
Bjorken variable x, forward-jet production is relevant [1]
for testing the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
approach [2].

Indeed in the small−x regime, besides the large log-
arithms coming from the strong ordering between the
proton scale and the forward-jet scale (which are re-
summed using the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation [3]), other large log-
arithms arise in the hard cross section itself, due to the or-
dering between the energy W and the hard scales. These
can be resummed using the BFKL equation, at leading
(LL) and next-leading (NLL) logarithmic accuracy [2, 4].
By contrast, in fixed-order perturbative QCD calcula-
tions the hard cross section is computed at fixed order
with respect to αs, and the next-to-leading order (NLO)
predictions fail to describe the data.

NLL corrections to the LL-BFKL kernel were found to
feature spurious singularities. It has been realised that
renormalisation-group improved NLL regularisations can
solve this singularity problem [5, 6] and lead to consistent
NLL-BFKL kernels. This, along with the success [7, 8]
of the LL-BFKL approach in describing the dσ/dx data,
motivates the present phenomenological analysis of NLL-
BFKL effects in forward-jet production.

When fitting dσ/dx, we obtain that the NLL correc-
tions are small, which results in a good description of
the H1 data by NLL-BFKL predictions. We also show
that the recently measured triple differential cross sec-
tion dσ/dxdk2

T dQ
2 [9] allows for a detailed study of the

NLL-BFKL approach and of the QCD dynamics of for-
ward jets. In particular, it has the potential to address
the question of the remaining ambiguity corresponding
to the dependence on the specific regularisation scheme
of the NLL kernel.

The present study is a phenomenological analysis of
the new forward-jet data using NLL-BFKL predictions
depending on the regularisation schemes and the renor-
malisation scale. In Ref. [10], such a phenomenological
investigation has been devoted to the proton structure
function data, taking into account NLL-BFKL effects
through an “effective kernel” (introduced in [6]) using
three different schemes. A saddle-point approximation
for hard enough scales is used in order to obtain a phe-
nomenological description of NLL-BFKL effects. In the
present study devoted to forward-jet production, we im-
plement them in a similar way. This allows to study the
NLL-BFKL framework even though the determination of
the next-leading impact factors is still in progress [11].

2. We shall use the usual kinematic variables of deep
inelastic scattering: x=Q2/(Q2+W 2) and y=Q2/(xs)
where

√
s is the center-of-mass energy of the lepton-

proton collision. In addition, xJ is the jet longitudinal
momentum fraction with respect to the proton. The fully
differential cross section for forward-jet production reads

d4σ

dxdQ2dxJdk2
T

=
αem

πxQ2

∑

λ=L,T

fλ(y)
dσγ∗p→JX

λ

dxJdk2
T

(1)

with fT (y) = 1− y+ y2/2, fL(y) = 1− y, and where

dσγ∗p→JX
T,L /dxJdk

2
T is the cross section for forward-jet pro-

duction in the collision of transversely (T) or longitudi-
nally (L) polarized virtual photons with the proton.

In the following, we consider the high-energy regime
x ≪ 1 in which the rapidity interval Y = log(xJ/x) is
assumed to be large. Following the phenomenological
NLL-BFKL analysis of [10], one obtains for the forward-
jet cross section:

dσγ∗p→JX
T,L

dxJdk2
T

=
αs(k

2
T )αs(Q

2)

k2
TQ

2
feff (xJ , k

2
T )

∫

dγ

2iπ

(

Q2

k2
T

)γ

φγ
T,L(γ) eᾱ(kT Q)χeff (γ,ᾱ(kT Q))Y (2)

with the running coupling constant given by

ᾱ(k2) = αs(k
2)Nc/π =

[

b log
(

k2/Λ2
QCD

)]−1
(3)
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FIG. 1: γc, ᾱχeff (γc, ᾱ) and ᾱχ′′
eff (γc, ᾱ), as functions of

ᾱ for the three BFKL resummation schemes CCS, S3 and
S4. The fixed LL values are respectively 1/2, 0.43, and 5.47
corresponding to ᾱ = 0.16.

where b=11/12−Nf/6Nc.
In formula (2), feff (xJ , k

2
T ) = g+(q+ q̄)CF /Nc is the

effective parton density which resums the leading log-
arithms in log(k2

T /Λ
2
QCD). g (resp. q, q̄) is the gluon

(resp. quark, antiquark) distribution function in the inci-
dent proton. Since the forward jet measurement involves
large values of kT and moderate values of xJ , formula
(2) features the collinear factorization of feff , with k2

T

chosen as the factorization scale.
The NLL-BFKL effects are phenomenologically taken

into account by the effective kernel χeff (γ, ᾱ). Indeed,
the NLL-BFKL kernels χNLL(γ, ω) provided by the reg-
ularisation procedure obey a consistency condition [5, 12]
which allows to reformulate the problem in terms of
χeff (γ, ᾱ). We shall consider the CCS scheme [6] and the
S3 and S4 schemes [5] in which χNLL also depends ex-
plicitly on ᾱ. In each case, the effective kernel χeff (γ, ᾱ)
is obtained from the NLL kernel χNLL(γ, ω) by solving
the implicit equation

χeff = χNLL(γ, ᾱ χeff ) , (4)

as a realization of the consistency condition.
The details of the approximation (2) are given in [10],

with the only difference that the kernel considered for F2

was naturally the asymmetric one χNLL(γ + ω/2, ω). In
the forward-jet problem, the energy scale is considered
to be given symmetrically between the hard probes by
log(W 2/kTQ) instead of log(W 2/Q2) ≃ log(1/x) as was
the case for F2. In other words, we do not perform the
shift γ→γ+ω/2 used for F2.

Following Ref. [13], the renormalisation scale is k2 ∼
kTQ. We have tested the sensitivity of our results when
varying k2 in the range [kTQ/λ, λ kTQ] with λ = 2, with
the substitution ᾱ(kTQ)→ ᾱ(λkTQ)+b ᾱ2(kTQ) log(λ).
Note that, following formula (4), the effective kernel is
modified accordingly for each scheme, and we also modify
the energy scale kTQ→λ kTQ.

It is important to note that in formula (2), we use the
leading-order (Mellin-transformed) impact factors given
by

(

φγ
T (γ)
φγ

L(γ)

)

= παemN
2
c

∑

q

e2q
1

2γ2

(

(1 + γ)(2 − γ)
2γ(1 − γ)

)

Γ3(1 + γ)Γ3(1 − γ)

Γ(2 − 2γ)Γ(2 + 2γ)(3 − 2γ)
(5)

as the full next-leading photon impact factors are not yet
available (the jet impact factors are known at next-to-
leading order [14]). We point out that our phenomeno-
logical approach can be adapted to full NLL accuracy,
once the next-leading impact factors available.

Expressing the integral in (2) using a saddle-point ap-
proximation in γ, one finds for the theoretical forward-jet
cross section

dσγ∗p→JX
T,L

dxJdk2
T

≃
αs(k

2
T )αs(Q

2)

k2
TQ

2
feff (xJ , k

2
T )φγ

T,L(γc)

(

Q2

k2
T

)γc

eᾱχeff (γc, ᾱ)Y
exp

(

− log2(Q2/k2

T )
2ᾱχ′′

eff
(γc,ᾱ) Y

)

√

2πᾱχ′′
eff (γc, ᾱ) Y

, (6)

where χ′′
eff = d2χeff/dγ

2, and where the saddle point
equation is χ′

eff (γc, ᾱ) = 0. It is possible to extract the
values of γc, ᾱχeff (γc, ᾱ) and ᾱχ′′

eff (γc, ᾱ) after solving
the implicit equation (4). They are given in Fig.1 for the
different schemes, as functions of ᾱ.

The description of the forward-jet cross section is then
almost parameter free; the value of ᾱ is imposed by the
renormalisation group equations and only the overall nor-
malisation is unknown (only the knowledge of the next-
leading impact factors will provide a full prediction). By
comparison, the LL-BFKL formula is formally the same
as (6), but with the substitutions

χeff → χLL(γ) = 2ψ(1) − ψ(1 − γ) − ψ(γ)

γc → 1/2

ᾱ(k2) → ᾱ=const.

with ψ(γ)= d log Γ(γ)/dγ. In the LL-BFKL case, this is
a two-parameter formula (normalisation and ᾱ). The in-
teresting property of our phenomenological approach is
that formula (2) has formally the structure of the LL for-
mula, but with only one free (normalisation) parameter
and a NLL kernel. The delicate aspect of the problem
comes from the scheme-dependent effective kernel χeff .



3

0

200

400

600

800

1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
x 10

-2

x

d 
σ 

/ d
x 

(n
b)

CCS

S3

S4
scales 2kTQ, kTQ, kTQ/2

H1 DATA

FIG. 2: The forward-jet cross section dσ/dx measured by
the H1 collaboration, compared with the three NLL-BFKL
parametrizations S4, CCS and S3 using the kT Q scale. For
the S4 scheme, we also display the results of the 2kT Q and
kT Q/2 scales without changing the normalisation.

3. The NLL-BFKL formula for the fully differential
forward-jet cross section is obtained from (1) and (6),
with γc, ᾱχeff (γc, ᾱ) and ᾱχ′′

eff (γc, ᾱ) shown in Fig.1
for the three different schemes.

To fix the normalisation (the only free parameter) and
check the quality of the data description using the BFKL
formalism, we start by fitting the dσ/dx H1 data [9].
The choice of this data set corresponds to the kinemat-
ical domain where the BFKL formalism is expected to
hold (x≪ 1 and Q2/k2

T ∼ 1). The fitting procedure is
the same as the one described in Ref. [8], Appendix A.
The integrals over xJ , Q2 and k2

T are performed numeri-
cally taking into account the kinematic cuts given in [9].
We performed fits on statistical errors only, systematics
errors being strongly point-to-point correlated. In other
words, we do as if the systematic errors were 100% cor-
related (which is close to reality).

The fit results to the dσ/dx H1 data are shown in Fig.2.
The S4 fit can describe the data nicely (χ2 =5.4/5 d.o.f.)
whereas the S3 and CCS schemes show higher values of
χ2 (χ2 = 46.5/5 and χ2 = 22.2/5 respectively). Note
that, when fitting using total errors (shown on the fig-
ures), all three schemes give values of χ2 below 1. In
any case, the fitted normalisations keep reasonable val-
ues, even with LL impact factors. We also display in
Fig.2 the results obtained when varying the renormalisa-
tion scale in the range [kTQ/λ, λ kTQ] for the S4 scheme
with λ=2. We notice that this change of scale essentially
affects the overall normalisation and thus does not alter
the quality of the fit, after reajusting the normalisation.
For larger values of λ, the quality of the fit deteriorates,
due to the high values reached by ᾱ.
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FIG. 3: The forward-jet cross section dσ/dx measured by the
H1 collaboration, compared with LL and NLL (S4) BFKL
fits and with NLO QCD predictions. The considered range of
renormalisation scale for S4 does not alter the quality of the
fit, after reajusting the normalisation.

A comparison of the S4 fit with the LL-BFKL results
taken from Ref. [8] is shown in Fig.3. We notice the
tiny difference between the LL and NLL results (the cor-
responding curves are not distinguishable on the figure).
This confirms that the data are consistent with the BFKL
enhancement towards small values of x. Contrary to the
proton structure function F2, the forward-jet cross sec-
tion dσ/dx does not show large NLL-BFKL corrections,
once the overall normalisation fitted. This is due to the
rather small value of the coupling ᾱ ≃ 0.16 obtained in
the LL-BFKL fit [8], corresponding to an unphysically
large effective scale.

We display in Fig.3 the result obtained when the γ
integration in (2) is computed exactly, and it is com-
pared with the one obtained when using the saddle-point
approximation (6). Considering the moderate values of
Y = 3 − 5 probed by the forward-jet measurement, one
could question the validity of the saddle-point approx-
imation. In the case of the S4 scheme, the comparison
with the exact computation shows that, after all the kine-
matic integrations have been performed, the difference
can be absorbed in the overall normalization. This is also
true for the S3 scheme. The case of the CCS scheme, for
which there are difficulties to define the effective kernel
in the whole complex plane, is left for future work.

We also present in Fig.3 the fixed order QCD calcula-
tion based on the DGLAP evolution of parton densities.
The next-to-leading order (NLO) prediction of forward-
jet cross sections is obtained using the NLOJET++ gen-
erator [15]. CTEQ6.1M [16] parton densities were used,
and the renormalisation µr and the factorization scale µf

were set equal to µ2
r = µ2

f = Qkmax
t , where kmax

t corre-
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FIG. 4: The forward-jet cross section dσ/dxdk2

T dQ2 measured
by the H1 collaboration, compared with LL and NLL (S4)
BFKL fits and with NLO QCD predictions. The S4 result
with exact integration of (2) is also shown, and it generally
agrees with the saddle-point calculation.

sponds to the maximal transverse momentum of forward
jets in the event. The NLO QCD predictions do not de-
scribe the data at small values of x, as they are below by
a factor of order 2.

The fit parameters obtained with statistical error only
are used in the following to make predictions for other
observables. Namely, the relative normalisations between
the different NLL-BFKL calculations (CCS, S3 and S4)
are used to make predictions for the triple differential
cross section dσ/dxdk2

T dQ
2. This is an interesting observ-

able as it has been measured with 3 different k2
T and Q2

cuts, yielding 9 different regions for the ratio r=k2
T /Q

2.
It was noticed in [8] that the LL-BFKL formalism leads
to a good description of the data when r is close to 1 and
deviates from the data when r is further away from 1, as
effects due to the ordering between Q and kT start to set
in. NLO QCD predictions show the reverse trend.

The H1 data for dσ/dxdk2
T dQ

2 are shown in Fig.4 and
compared with the S4 prediction, the LL-BFKL results
(taken directly from [8]) and NLO QCD predictions. It is
quite remarkable that the NLL-BFKL calculation, which
includes some ordering betweenQ and kT , leads to a good
description of the H1 data on the full range. As it was the
case for dσ/dx, the difference between the LL and NLL
results is small when r ∼ 1. By contrast when r differs
from 1, the difference is significant, and the observable
dσ/dxdk2

T dQ
2 is quite sensitive to NLL-BFKL effects.

When varying the renormalisation scale in the range
[kTQ/2, 2kTQ], the results shown in Fig.4 differ by a
small amount [17], at most 10%. Also, we show in Fig.4
the curves obtained with the exact integration of (2), and
one can see that they are quite close to the saddle-point
results, except for large values of r, where there is some
deviation. Finally, we point out that the triple differen-
tial cross section has the potential to resolve the scheme
ambiguity, as the predictions of the other schemes CCS
and S3 do not compare with the data as well as the pre-
dictions of the S4 scheme [17].

4. Let us summarize our main results. For the
cross section dσ/dx, measured in the kinematical regime
Q2/k2

T ∼ 1, the difference between the LL-BFKL and
NLL-BFKL descriptions is very small (see Fig.3), once
the overall normalisation fitted. This confirms the va-
lidity of the BFKL description of [7, 8] previously ob-
tained with the LL formula and a (rather small) effec-
tive coupling. In the case of the triple differential cross
section dσ/dxdk2

T dQ
2, the same conclusion holds when

r = k2
T /Q

2 ∼ 1. In addition when r differs from 1, the
NLL-BFKL description is quite different from the LL-
BFKL one, as it is closer to the NLO QCD calculation
(see Fig.3).

As a result, the best overall descrition of the data for
dσ/dxdk2

T dQ
2 is obtained with the NLL-BFKL formal-

ism and the S4 scheme is favored. We need the com-
plete knowledge of the next-leading impact factors be-
fore drawing final conclusions, in particular with respect
to the overall normalisations, but our analysis strongly
suggests that the data show the BFKL enhancement at
small values of x. This is of great interest in view of the
LHC, where similar QCD dynamics will be tested with
Mueller-Navelet jets [18, 19].
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