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We propose a new set of measurements which can be performed at the LHC using roman pot de-
tectors. This new method is based on exploiting excitation curves to measure kinematical properties
of produced particles. We illustrate it in the case of central diffractive W pair production.

I. INTRODUCTION

We propose a new method to measure heavy particle properties via double photon exchange at the LHC. In this
category of events, the heavy objects are produced in pairs, whereas the beam particles often leave the interaction
region intact, and can be measured using very forward detectors.

If the events are exclusive, i.e., if no other particles are produced in addition to the pair of heavy objects and the
outgoing protons, the proton measurement gives access to the photon-photon centre-of-mass, and the dynamics of
the hard process can be accurately studied. In particular, one can observe the threshold excitation and attempt to
extract the mass of the heavy particle, or study its (possibly energy-dependent) couplings by measuring cross-sections
and angular distributions [1]. As examples of this approach, we give a detailed account of the W boson measurement
at production threshold. The method can easily be extended to other heavy objects in exclusive production.

The Letter is organised as follows. We start by giving the theoretical formulation of W+W− production (via
QED). We then describe the event generation, the simulation of detector effects, and the cuts used in the analysis.
The following part of the paper describes in detail the threshold scan method, in a twofold version (“turn-on”and
“histogram” fits), and its application to the W boson measurements.

II. THEORETICAL FORMULATION OF W PAIR QED PRODUCTION

The QED process rates are obtained from the following cross section formula

dσ(pp→ p W+W−p) = σ̂γγ→W+W− dnγ
1 dnγ

2 ,

where the Born γγ → W+W− cross-section reads [2]
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where MWW is the total W+W− mass. The photon fluxes dnγ are given by [3]
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and

q2
0 ∼ 0.71 GeV2 ; y =

ω2

E(E − ω)
; a ∼ 7.16 ; b ∼ −3.96 ; c ∼ 0.028 , (5)

in the usual dipole approximation for the proton electromagnetic form factors. ω is the photon energy in the laboratory
frame, q2 the modulus of its mass squared in the range
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where E and m are the energy and mass of the incident particle and tmax ≡ (m2
W/M2

WW)max is defined by the
experimental conditions.

The QED cross section dσ(pp → p W+W−p) is a theoretically clear prediction. One should take into account
however, two sources of correction factors. One is due to the soft QCD initial state radiation between incident
protons which could destroy the large rapidity gap of the QED process. It is present but much less pronounced than
for the rapidity gap survival for a QCD hard process (see the discussion in the next subsections), thanks to the large
impact parameter implied by the QED scattering. The second factor is the QCD gg → W+W− exclusive production
via higher order diagrams. This remains to be evaluated. In standard recently (non diffractive) production [4], it is
small. The similar calculation for the diffractive W+W− production by comparison with the QED process is outside
the scope of our paper but deserves to be studied together with the “inclusive” background (W+W−+hadrons) it
could generate.

A. Rapidity Gap Survival

In order to select exclusive diffractive states, such as for W+W− (QED), it is required to take into account the
corrections from soft hadronic scattering. Indeed, the soft scattering between incident particles tends to mask the
genuine hard diffractive interactions at hadronic colliders. Starting with the “hard” scattering amplitude A(WW),
the formulation of this correction [5, 6] consists in considering its convolution with a soft S-matrix elemeny S which
reflects the small “rapidity gap survival” factor due to the soft radiation always present when two initial hadrons
collide [5]. One writes

A(pT1, pT2, ∆Φ) = {1 + ASP }×A(WW,t̄t) ≡ S×A(WW,t̄t) =

∫

d2kT S(kT ) A(WW,t̄t)(pT1−kT ,pT2+kT ) , (7)

where pT1,2 are the transverse momenta of the outgoing p, p̄ and ∆Φ their azimuthal angle separation. kT is the
intermediate transverse momentum integrated out by the convolution.

The correction for the QED process is present but much less pronounced than for the rapidity gap survival for a
QCD hard process, thanks to the large impact parameter implied by the QED scattering. In a specific model [7] the
correction factor has been evaluated to be of order 0.9 at the LHC for γγ → H and by contrast, 0.03 for the QCD
exclusive diffractive processes at the LHC.

III. EXPERIMENTAL CONTEXT

A. The DPEMC Monte Carlo

A recently developed Monte-Carlo program, DPEMC [8], provides an implementation of the W+W− events described
above in the QED exchange modes. It uses HERWIG [9] as a cross-section library of hard QCD processes, and when
required, convolutes them with the relevant pomeron densities. HERWIG is only used for parton sjowering and
hadronisation for exclusive processes. The survival probabilities discussed in the previous section (0.9 for double
photon exchange processes) have been introduced at generator level. The cross section at generator level for W+W−

QED is found to be 55.9 fb for a mW mass of 80.42 GeV after applying the survival probabilities.
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B. Roman pot detector positions and resolutions

A possible experimental setup for forward proton detection is described in detail in [10]. We will only describe its
main features here and discuss its relevance for the W boson and top quark masses measurements.

In exclusive QED processes, the mass of the central heavy object can be reconstructed using the roman pot detectors
and tagging both protons in the final state at the LHC. It is given by M2 = ξ1ξ2s, where ξi are the proton fractional
momentum losses, and s the total center-of-mass energy squared [11]. In order to reconstruct objects with masses in
the 160 GeV range (for W+W− events) in this way, the acceptance should be large down to ξ values as low as a few
10−3. The missing mass resolution directly depends on the resolution on ξ, and should not exceed a few percent to
obtain a good mass resolution.

These goals can be achieved if one assumes two detector stations, located at ∼ 220 m, and ∼ 420 m [10] from the
interaction point. The ξ acceptance and resolution have been derived for each device using a complete simulation of
the LHC beam parameters. The combined ξ acceptance is close to ∼ 60% at low masses (at about twice mW).

Our analysis does not assume any particular value for the ξ resolution. We will discuss in the following how the
resolution on the W boson mass depends on the detector resolutions, or in other words, the missing mass resolution.

C. Experimental cuts

Let us summarise the cuts applied in the remaining part of the analysis. As said before, both diffracted protons
are required to be detected in roman pot detectors.

The triggers which will be used for the W+W− events will be the usual ones at the LHC requiring in addition a
positive tagging in the roman pot detectors.

The experimental offline cuts and their efficiencies have been obtained using a fast simulation of the CMS detector
[12] as an example, the fast simulation of the ATLAS detector [12] leading to the same results. If we require at
least one lepton (electron or muon) with a transverse momentum greater than 20 GeV and one jet with a transverse
momentum greater than 20 GeV for W+W− to be reconstructed in the acceptance of the main detector in addition to
the tagged protons, we get an efficiency of about 30% for W+W− events. We give the mass resolution as a function
of luminosity in the following after taking into account these efficiencies. If the efficiencies are found to be higher, the
luminosities have to be rescaled by this amount.

IV. THRESHOLD SCAN METHODS

A. Explanation of the histogram and turn-on fit methods

We study two different methods to reconstruct the mass of heavy objects double diffractively produced at the
LHC. As we mentioned before, the method is based on a fit to the turn-on point of the missing mass distribution at
threshold.

One proposed method (the “histogram” method) corresponds to the comparison of the mass distribution in data
with some reference distributions following a Monte Carlo simulation of the detector with different input masses
corresponding to the data luminosity. As an example, we can produce a data sample for 100 fb−1 with different W
masses. For each Monte Carlo sample, a χ2 value corresponding to the population difference in each bin between data
and MC is computed. The mass point where the χ2 is minimum corresponds to the mass of the produced object in
data. This method has the advantage of being easy but requires a good simulation of the detector.

The other proposed method (the “turn-on fit” method) is less sensitive to the MC simulation of the detectors. The
threshold scan is directly sensitive to the mass of the diffractively produced object (in the W+W− case for instance,
it is sensitive to twice the W mass). The idea is thus to fit the turn-on point of the missing mass distribution which
leads directly to the mass of the produced object, the W boson. Due to its robustness, this method is considered as
the “default” one in the following.

To illustrate the principle of these methods and their achievements, we apply them to the W boson in the following,
and present in detail the reaches at the LHC. They can be applied to other threshold scans as well.

B. W mass measurement using diffractive QED events

In this section, we will first describe the result of the “turn-on fit” method to perform a measurement of the W mass
using diffractive QED events. The advantage of the W+W− processes is that they do not suffer from any theoretical
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FIG. 1: Two examples of fits to missing mass reference distributions with a resolution of the roman pot detectors of 1 GeV (left)
and 3 GeV (right). We see on these plots the principle and the accuracy of the “turn-on fits” to the MC at threshold. (Please
note that the produced events were reweighted to a luminosity of 100 fb−1 in a standard way explaining why the statistical
fluctuations are small.)
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FIG. 2: Calibration curves (see text) for two different roman pot resolutions of 1 GeV (left) and 3 GeV (right). We notice that
the calibration can be fitted to a linear function with good accuracy. The dashed line indicates the first diagonal to show the
shift clearly.

uncertainties since this is a QED process. The W mass can be extracted by fitting a 4-parameter ‘turn-on’ curve to
the threshold of the mass distribution (c.f. Ref. [13]):

F = P1 ·
(

[

e−
x−P2

P3 + 1
]−1

+ P4

)

. (8)

P1 is the amplitude, P2 the inflexion point, P3 the width of the turn-on curve, and P4 is a vertical offset, x being
the missing mass. With a detector of perfect resolution, P2 would be equal to twice the W mass. However, the finite
roman pot resolution leads to a shift between P2 and 2mW which has to be established using a MC simulation of the
detector for different values of its resolution. This shift is only related to the method itself and does not correspond to
any error in data. For each value of the W input mass in MC, one has to obtain the shift between the reconstructed
mass (P2/2) and the input mass, which we call in the following the calibration curve. It is assumed for simplicity that
P2 is a linear function of mW, which is a good approximation as we will see next. In order to determine the linear
dependence between P2 and mW, calibration curves are calculated for several assumed resolutions of the roman pot
detectors. The calibration points are obtained by fitting F to the mass distribution of high statistics samples (100 000
events) for several values of mW. An example is given in Fig. 1 for two resolutions of the roman pot detectors. The
difference between the fitted values of P2/2 and the input W masses are plotted as a function of the input W mass and
are then fitted with a linear function. To minimise the errors on the slope and offset, the difference P2/2− 80.42 GeV
is plotted versus mW (Fig. 2).

To evaluate the statistical uncertainty due to the method itself, we perform the fits with some 100 different “data”
ensembles. For each ensemble, one obtains a different reconstructed W mass, the dispersion corresponding only to
statistical effects. The expected statistical uncertainty on the actual measurement of the W mass in data is thus
estimated with these ensemble tests for several integrated luminosities and roman pot resolutions. Each ensemble
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FIG. 3: Distribution of the fitted value of the W mass from ensemble tests. Left: corresponding to 150 fb−1, right: corresponding
to 300 fb−1. We note the resolution obtained on the W mass for these two luminosities.
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FIG. 4: Expected statistical uncertainty on the W mass as a function of luminosity for three different roman pot resolutions
using the turn-on fit method.

contains a number of events that corresponds to the expected event yield for a given integrated luminosity, taking into
account selection and acceptance efficiencies. The turn-on function F is fitted to each ensemble. Only the parameters
P1 and P2 are allowed to float, P3 and P4 are fixed to the average values obtained from the fits for the calibration
points.

In order to obtain the fitted estimate for the W mass, mfit
W, in each ensemble, the fit value of P2 is corrected with the

calibration curve that corresponds to the roman pot resolution. For each resolution mfit
W is histogrammed as shown

in Fig. 3. The distributions are fitted with a Gauss function where the width corresponds to the expected statistical
uncertainty of the W mass measurement. Fig. 4 shows the expected precision as a function of the integrated luminosity
for several roman pot resolutions. With 150 fb−1 the expected statistical uncertainty on mW is about 0.65 GeV when
a resolution of the roman pot detectors of 1 GeV can be reached. With 300 fb−1 the expected uncertainty on mW

decreases to about 0.3 GeV.
We notice of course that this method is not competitive to get a precise measurement of the W mass, which would

require a resolution to be better than 30 MeV. However, this method can be used to align precisely the roman pot
detectors for further measurements. A precision of 1 GeV (0.3 GeV) on the W mass leads directly to a relative
resolution of 1.2% (0.4%) on ξ using the missing mass method.

Let us now present the result on the “histogram” method, which is an alternative approach to determine the W
mass. The same high statistics templates used to derive the calibration curves are fitted directly to each ensemble
(see Fig. 5 left). The χ2 is defined using the approximation of poissonian errors as given in Ref. [14]. Each ensemble
thus gives a χ2 curve which in the region of the minimum is fitted with a fourth-order polynomial (Fig. 5 right). The
position of the minimum of the polynomial, mmin

W , gives the best value of the W mass and the uncertainty σ(mW) is
obtained from the values where χ2 = χ2

min + 1. The mean value of σ(mW) for all ensembles are quoted as expected
statistical uncertainties (see Fig. 6).

The expected statistical errors on the W mass using histogram fitting are comparable to those using the function
fitting method. However, since the former exploits the complete missing mass distribution, it is more sensitive to
potential biases from imperfect simulation of the roman pot detectors.
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FIG. 5: Left: Example of the histogram-fitting method. We see the difference between the “data” sample (full histogram
with error bars, mW = 80.42 GeV) and a reference histogram (dashed line, mW = 85.42 GeV). Right: Example of the χ2

distribution in one ensemble.
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FIG. 6: Expected statistical precision of the W mass as a function of the integrated luminosity for various resolutions of the
roman pot detectors using the histogram-fitting method.

V. CONCLUSION AND OUTLOOK

Recent work on DPE has essentially focused on the Higgs boson search in the exclusive channel. In view of the
difficulties and uncertainties affecting this search [15], we highlight new aspects of double diffraction which complement
the diffractive program at the LHC.

In particular, QED W pair production provides a certain source of interesting diffractive events. In this paper,
we have advocated the interest of threshold scans in double photon exchange. This method may extend the physics
program at the LHC. To illustrate its possibilities, we described in detail the W boson mass measurement. The
precision of the W mass measurement is not competitive with other methods, but provides a very precise calibration
of the roman pot detectors, since the cross sections and characteristics of this QED process are well under control.
This method can be extended to any particle production via exclusive processes and was applied to SUSY particle
production as an example [16].

Finally, W pair production in central diffraction gives access to the coupling of gauge bosons. Namely, as we
mentioned already, W+W− production in two-photon exchange is robustly predicted within the Standard Model.
Any anomalous coupling between the photon and the W will reveal itself in a modification of the production cross
section, or by different angular distributions. Since the cross section of this process is proportional to the fourth]
power of the photon-W coupling, a good sensitivity is expected. This study will be described in an incoming paper
[17].
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