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Abstract

We review some of the results that we have obtained in the last decade on two problems
related to the structure and evolution of the solar corona: How to reconstruct the magnetic
field of an active region from its values measured at the photospheric level, and how to
determine the evolution of the coronal field driven by the stressing of its footpoints on the
photosphere and/or by flux emergence through that surface, our main goal being to elu-
cidate the nature of the mechanisms triggering large scale eruptive processes like coronal
mass ejections (CME). The first part of the paper is devoted to a first approach in which the
coronal field is assumed to be force-free at any time (but during the late development of
an eruptive event), its evolution being thus considered to be quasi-static. After presenting
some general properties of this type of fields, we use this approximate model as a general
framework for the reconstruction problem. To get a well posed problem, we introduce the
Grad-Rubin formulation in which only a part of the photospheric data are taken into ac-
count. We present some mathematical results on this problem (existence and uniqueness
of solutions), and report our method to treat it numerically in an efficient way. Thus we
turn to the quasi-static boundary driven evolution problem. We find that a continuous injec-
tion of energy into a simple field (arcade or tube) by footpoints shearing leads in the ideal
case to an expansion of the field which is at least as fast as e(t/T )2

at large time t, and to
its eventual partial or total opening with the formation of a current sheet. The second part
of the paper is concerned with a dynamic approach to the evolution problem. The full set
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of equations of the resistive magnetohydrodynamics is used and solved numerically in two
different classes of models. In the first one, the evolution is driven by changing boundary
conditions (describing shear, converging motions, flux cancellation, ...) imposed at the pho-
tospheric level. In the second one, both the corona and the subphotospheric layer (top of the
convection zone) are simultaneously considered, and the rising of a twisted tube below the
photosphere and its emergence through that surface and subsequent evolution in the corona
are followed. In all cases, a catastrophic behavior is found to follow a slow quasi-static
phase. It is characterized by a rapid expansion of the field and a release of energy by re-
connection. Moreover, a twisted flux rope is always observed to form during the evolution.
Depending on the conditions, it is created either in equilibrium during the slow phase, then
appearing as a favorable site for the support of a prominence, or during the global disrup-
tion phase. The energy of the configuration stays below that of the corresponding open field
except when the driving of the evolution is ensured by flux cancellation on the boundary.
In that case – to which we refer as the Flux Cancellation Model (FCM) of CME – the open
field energy decreases up to a critical point at which it becomes close to the value of the
magnetic energy of the configuration, and nonequilibrium sets in. The characteristics of the
evolution in FCM are found to be similar in simple and complex topologies (in contrast,
the Break Out Model of CME works only for a complex topology). However, when the
topology is complex, there is a lowering of the confining effect of the overlying field, and
the twisted rope is ejected at a faster rate.

Keywords: Solar corona, Eruptive events, Magnetohydrodynamics, Force-free magnetic fields,
Numerical simulations

1 INTRODUCTION

The solar corona is the region consisting of a very hot (T = 106K) and underdense (n = 1015

m−3) plasma which extends from the surface of the Sun up to some 2.5 R�. The corona is
highly inhomogeneous. Decades of observations made by sophisticated instruments located ei-
ther on the ground or onboard numerous satellites, have shown the presence of a lot of various
structures over a wide range of length scales: On the largest scales, coronal holes and helmet
streamers, visible by naked eyes during the eclipses, on the intermediate scales, prominences,
loops, arcades, ..., and on the smallest scales, elementary flux tubes, bright points, ... Moreover,
they have shown the corona to be very unsteady. Small scales structures turn out to be in a
state of unceasing evolution on short time scales, and even the largest scale structures, which
may exhibit high degree of permanence over long periods, suffer from time to time a global
catastrophic restructuring. Very spectacular events are associated with the latter, such as flares,
coronal mass ejections (CMEs) and eruptive prominences, during which huge amounts of en-
ergy are suddenly released and huge amounts of mass ejected into the interplanetary space. In
our current understanding of solar physics, it is the magnetic field which is responsible for the
very existence of the corona, its structuring and its quiet or catastrophic evolution. Actually,
most of the observations and theoretical arguments strongly support the idea that the corona is
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a magnetically dominated system. However, we are in a quite strange situation: Although the
magnetic field is so important, we are unable to measure it with the standard methods currently
at our disposal. We can take measurements of it only at the basis of the corona, on the so-called
photosphere. There the much lower temperature allows for the presence of neutral atoms, whose
light can reveal the value of the field after an appropriate analysis.

To be more precise, let us describe quickly the general paradigm underlying the largest
part of the current research on the physics of the solar corona (see, e.g., Priest (1982)). The
story starts in the convection zone of the Sun, that is to say in the external layer of that star
in which the transport of the energy is ensured by convective motions rather than by radiative
processes. The lower part of this zone (the so-called tachocline) is the location of a dynamo
process producing a strong toroidal magnetic field. The confinement of the tubes produced by
this process becomes impossible when the intensity of the field reaches some critical value, and
they start rising through the convection zone due to buoyancy effects and convective transport,
possibly gaining some twist and producing some amount of poloidal field by their interactions
with cyclonic motions. At some time, they reach the photosphere and emerge into the corona,
producing such structures as the big sunspots with their associated active regions. The emerging
magnetic field usually carries electric currents and therefore, it will already have free magnetic
energy. This free energy can be increased further after emergence if photospheric motions like
turbulence or differential rotation stress the coronal field by moving the footpoints of the field
lines, and even by the flux cancellation process which is currently observed at the solar surface
(Welsch 2006, Wang and Sheeley 2002). Release of this free energy by various processes like
magnetic reconnection thus leads on the smaller scales to a continuous heating of the plasma,
which can so maintain its high temperature – this permits the continued existence of the corona
–, while it produces big eruptive events on the largest scales. The largest ones are associated
with CMEs, and they are characterized by a fast expansion of the field leading to its eventual
opening and to an expulsion of a blob of matter. CMEs also transport to large distances from
the Sun some of the helicity which has been produced by the dynamo inside and injected into
the corona by flux emergence, and they may play a basic role in the magnetic cycle (Low 1994).

To try understanding the details of the mechanisms initiating the production of a big erup-
tion, a large amount of work has been done by several groups around the world on the following
problem of magnetohydrodynamics (MHD) – to which we shall refer as the evolution problem:
How the magnetic field embedded in the low beta highly conducting coronal plasma does evolve
as a consequence of the slow perpetual changes which occur in the dense subphotospheric lay-
ers in which its lines are anchored. Several types of configurations have thus been considered –
single flux tube, interacting flux tubes, bipolar or multipolar arcades with or without embedded
flux tubes, ... –, and similarly many types of qualitatively different changes at the photospheric
level – shearing of the footpoints, flux cancellation, flux emergence, ... At first, these changes
were imposed by just setting adequate boundary conditions on the photosphere, but in some
of the most recent contributions, the behaviour of the field and the plasma in at least the up-
per part of the convection zone has also been included as a part of the computation – with as
an ultimate goal the building up of a global model of the solar magnetic machine including in
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a self-consistent way all the processes (dynamo, tube rising and emergence, corona invasion,
plasma heating, large eruptive process, ...). Owing to the large number of possibilities quoted
above, it is not a surprise that several different models have been proposed (for very recent re-
views, see Forbes et al. (2006), Lin et al. (2003), Mikić and Lee (2006), Zhang and Low (2005)),
and it may be reasonably thought that some of the essential features controlling the initiation of
an eruptive event are caught by some or the other of these models. But unfortunately it is still
difficult to distinguish observationally between them, and no consensus on the actual nature of
the triggering mechanism has been reached yet.

One of the reasons for the difficulty to determine the nature of the physical mechanism for
large eruptions is the current impossibility, already noted, to make a direct measurement of the
magnetic field in the corona. It is clear that a knowledge at any time of such basic features
as the topology of the field – with in particular the presence or not of a twisted flux tube –,
or the location and intensity of the associated electric currents, would provide precious clues
to our understanding of these events. They could give information on the places where recon-
nection may be expected to take place, on the nature of the instabilities which could possibly
develop, etc.. However, it has proven possible, up to some extent, to start bypassing the current
observational limitations by developing a new topic in solar physics known as the reconstruc-
tion problem. The point of departure here is the fact that we are able to measure with a good
precision the three components of the magnetic field at the photospheric level with modern
magnetographs (e.g., THEMIS, the Imaging Vector Magnetograph, the Advanced Stokes Po-
larimeter; and many more will be shortly available with SOLIS, HINODE/SOLAR-B, and the
programmed missions SOLAR-ORBITER, and Solar Dynamics Observatory). Then we may
try to set up reasonable assumptions allowing to extend these values into the corona, and thus
to ”reconstruct” the coronal field B. Earlier models were based either on the rough assumption
that B is potential – but such a field has no free-energy available for eruptions – or on the more
satisfying assumption that B is a linear force-free field – but such a field has bad asymptotic
properties and can provide an approximation of B only in a region of not too large extent. More
recently, much efforts have been devoted to a much more realistic model in which B is taken to
be a nonlinear force-free field. This leads to a difficult mathematical problem, for which several
conceptually different practical methods of solution have been developed (for a review, see, e.g.,
Sakurai (1989), Amari and Démoulin (1992), Amari et al. (1997a), Neukirch (2005)).

The aim of this paper is to present some of the analytical and numerical work we have done
ourselves in the last decade or so on both the reconstruction and the evolution three-dimensional
problems along with our collaborators, C. Boulbe, A. Bleybel, T. Z. Boulmezaoud, E. Kersalé,
J.-F. Luciani, J. A. Linker, Z. Mikic, T. Lepeltier, S. Régnier, and M. Tagger. Therefore, this
is not a general review of these topics, and important papers by many others are quoted only
insofar as they bear a direct relation to our own work. Our presentation is organized as follows.
We first give (Sect. 2) a description of the general framework in which our research has been
developed, and recall the definitions of some basic physical quantities (like the relative mag-
netic helicity) that are repeatedly used in the following sections. Then (Sect. 3) we describe
the force-free model of the coronal magnetic field, and present some of its general properties
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(boundedness of a class of generalized energies, asymptotic behavior of the field, ...). Section
4 is devoted to a presentation of our most recent results on the problem of the reconstruction of
the field of an active region as a nonlinear force-free field by using data extracted from photo-
spheric measurements. The remaining part of the paper is concerned with the determination of
the evolution of the coronal field driven by the changing conditions imposed by the dense pho-
tospheric plasma. This evolution is first considered in Section 6 from an analytical point of view
in the context of the force-free model (ideal quasi-static evolution). Thus we report the results
of our numerical dynamical simulations in which we solve the whole set of the MHD equations,
including resistivity, which allows us to study the possibility for the field to reconnect. In Sec-
tion 7, we assume that the evolution is driven by changing boundary conditions imposed on the
basis of the corona and mimicking the effects of the subphotospheric layer. Next this layer is
explicitly introduced as a part of the system under consideration (although in a simplified kine-
matical way) in Section 8, where we consider the rising of a flux tube through the upper part
of the convection zone, its emergence through the photosphere, and its subsequent evolution in
the corona. Finally we emphasize in our concluding Section 9 some of the problems which we
would like to see being elucidated in the near future.

2 THE MHD MODEL

In this section, we describe in some details the general MHD model in which our work has been
developed, and we recall some basic definitions.

2.1 Assumptions

Hereafter, we use Cartesian coordinates (x, y, z) and associated standard spherical coordinates
(r, θ, ϕ), with θ and ϕ measured with respect to the z and x-axis, respectively.

Our general model rests on the following assumptions:

• The corona is represented by the exterior D = {r > r∗} of a spherical domain. Actually,
we are most often interested in only a part of it – e.g., an active region – in which case
we neglect the curvature of the solar surface and take as the relevant domain the upper
half-space D = {z > 0}. In either case, the thin photospheric layer is represented by the
surface S = ∂D.

• D contains a magnetic field B of finite energy, i.e.,

W[B] =
∫

D

B2

8π
dV < ∞ . (1)
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This field is embedded in a low beta and highly conducting plasma, i.e.,

β =
p

B
2
/8π
� 1 and Rm =

Lv

dm

� 1 , (2)

where p, v, dm, and B, are typical values of the thermal pressure, velocity, and magnetic
diffusivity of the plasma, and of the field strength, respectively, and L is the spatial scale
of variation of these quantities.

• The dense plasma in the subphotospheric layers below, out of which the coronal field
emerges, is brought into convective and turbulent motions involving kinetic energy den-
sities larger than the magnetic ones, and this drives the corona into a perpetual evolution.
This driving is modelled in two different ways:

1. The value of the ratio of plasma to magnetic energy density in the corona (<< 1)
is vastly different from the value in the subphotospheric layers (>> 1). We exploit
this by imposing appropriate evolving boundary conditions on S , which mimic the
influence of the subphotospheric layers upon the corona. In this approach we neglect
the back reaction of the corona onto the photosphere and the layers below it. We
speak in that case of a boundary driven evolution. For instance, we may require
the footpoints on S to move horizontally at some prescribed slow velocity v – with
”slow“ meaning here that the typical value v of v is much smaller than the typical
Alfven speed vA in D (observations indicate that v/vA ' 10−2 − 10−3; note that vA

is about the speed of all the MHD waves in D as β � 1). An important feature of
a boundary driven evolution is that the normal component of the field on S can be
considered to be imposed at any time t, i.e., we have Bn = Q on S , with Q a function
which can be determined directly from the data on S , independently of the actual
field in D (here, we take n̂ = r̂ or n̂ = ẑ, depending on the choice of D).

2. A step towards a more realistic model is taken by introducing what we call a sub-
photospheric driven evolution, which amounts to consider as a part of the system
the upper part of the convection zone. The latter is represented either by the shell
D∗ = {r∗−h < r < r∗} (when D = {r > r∗}), or by the layer D∗ = {−h < z < 0} (when
D = {z > 0}). Up to now, however, we have treated this zone only in a kinematic
way, by taking the slow motion of the plasma to be given in the form of convection
cells. The back reaction of the corona on the layers below is thus due essentially to
the resistive diffusion of the field which is allowed in both D and D∗.

• The evolution of the field and the plasma in D (and D∗) is described by MHD. This as-
sumption is justified for the study of the large scale phenomena in which we are interested,
for which the typical spatial and temporal scales are quite large compared to the scales of
the microscopic processes coupling together the charged particles, so insuring the validity
of a one-fluid approximation.
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2.2 The MHD equations

We use the equations of dissipative MHD in the form

ρ
∂v
∂t
= −ρ(v · ∇v) +

(∇ × B) × B
4π

− ∇p + ∇ · (νρ∇v) + ρg , (3)

∂B
∂t
= ∇ × (v × B) − ∇ × (ηj) , (4)

∂ρ

∂t
= −∇ · (ρv) , (5)

∂p
∂t
= −v · ∇p − Γp(∇ · v) + H , (6)

4π
c

j = ∇ × B , (7)

∇ · B = 0 . (8)

The notation used here is standard. In addition to B, v and p which have been already defined,
we use the symbols ρ, ν, η, Γ, H, j, and g, to denote, respectively, the mass density, the kinematic
viscosity, the resistivity, the adiabatic index of the plasma, the heating rate, the electric current
density, and the gravitational field.

2.3 Magnetic energy and helicity

Finally, we introduce some important global physical quantities characterizing a magnetic field
in D. First, we set

W (ν)
k [B] =

∫
D

B2
k

8π

(
r
r0

)ν
dV , k = r,⊥, , (9)

where Br and B⊥ are, respectively, the radial and orthoradial components of B, r0 is a reference
length (we take r0 = r∗ when D = {r > r∗}), and ν is an arbitrary number for which the integral
is well defined. This is certainly the case when ν ≤ 0, as we get for ν = 0 and a blank index
the total energy of B (W (0)[B] = W[B]) which is finite for all the fields we consider (condition
(1)). Quite naturally, we shall refer to W (ν)

r [B], W (ν)
⊥ [B], and W (ν)[B], as the radial, orthoradial

and total ν-energies of B.

An other very important physical quantity is the magnetic helicity. For considerations in
which both the regions D and D∗ are included, the field B can be considered as isolated, and H
is defined by

H[B] =
1
2

∫
D∪D∗

A · B dV , (10)
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where A is an arbitrary vector potential for B. It is worth noticing that the finite energy condition
(1) is not sufficient to ensure the convergence of the integral in the right-hand side of Eq. (10) as
the integration domain is here unbounded. Rather, one should assume the integrability of B3/2

(Aly 1992, Laurence and Avellaneda 1993). H is physically meaningful under that condition
as it does not depend on the gauge A. This is no longer the case if we restrict our attention
to the sole coronal field in D as now Bn , 0 on S , and we need to appeal in that situation to
the concept of relative magnetic helicity H[B], first introduced in Berger and Field (1984). If
we denote as Bπ the unique finite energy potential field (i.e., ∇ × Bπ = 0) determined by the
boundary condition Bπn = Bn on S (with Bn = Bz assumed to have a fast decrease to zero at
infinity when D = {z > 0}), and by Aπ one of its vector potential, H may be defined by (Finn
and Antonsen 1985)

H[B] =
1
2

∫
D

(A + Aπ) · (B − Bπ) dV , (11)

where we still impose B3/2 integrable.

The importance of the concept of helicity stems from the fact that this quantity is conserved
in ideal MHD if we assume that the plasma velocity vanishes on S at the places where Bn , 0.
If the latter condition is not fulfilled – i.e., if the field has some moving footpoints on S – the
change of the helicity is fully controlled by the flux distribution and the velocity on S .

3 THE FORCE-FREE MODEL

In this section, we introduce the force-free model of the solar corona, which is a first approxi-
mation of the general model, and we present some of its properties.

3.1 Assumptions

The force-free model of the solar corona is defined by the following specific assumptions:

• At any time t ≥ 0, say, the finite energy magnetic field B in D is force-free. This means
that the electric current density j is aligned with B everywhere in D, but possibly on
some regular surfaces Σ j and Σc accross which, respectively, j, and B and j, suffer a
discontinuity. Moreover, the force acting on the surface current which has to flow on Σc

vanishes – i.e., Σc appears to be a current sheet in equilibrium. The reasons for introducing
this enlarged definition of a force-free field will appear clearly later on.

• B is driven by slow motions imposed upon its footpoints on S into an unceasing evolution
starting from a given equilibrium configuration B0 at time t = 0 – then we are here in
the context of a boundary driven quasi-static evolutionary model. As noted above, this

8



assumption implies that the flux distribution Q on S can be determined at any time t by
the data on S . We assume that the resulting function Q is sufficiently regular and has a
fast decrease at infinity in the case where D = {z > 0}.

• The low beta plasma in D is perfectly conducting.

To justify the main assumption of the model – the use of the quasi-static force-free ap-
proximation –, we note that the evolution time tev = L/v associated to the changing boundary
conditions on S is much longer than the time teq which is needed for the system to reach an
equilibrium. The latter indeed is of the order of the time tA = L/vA it takes for a MHD wave to
travel accross the whole structure, and we have noted in the previous section that v � vA in the
solar conditions. Then it is legitimate to consider that the system is in equilibrium at each time
t. Moreover, we can see from the equation of equilibrium (the momentum balance equation (3)
with v set to zero) and Ampère’s law (7) that the relative contribution δB/B to the magnetic
field due to the currents flowing perpendicular to the lines is of the order of β � 1, and can thus
be neglected – implying indeed that the currents are aligned with the field.

3.2 Equations

The colinearity of j and B outside the singular surfaces Σ j and Σc, if any, is expressed by the
equation

(∇ × B) × B = 0 , (12)

which can be also cast into the form

−∇
B2

2
+ B · ∇B = 0 (13)

by applying standard formulae of vector calculus. Alternatively, we can introduce an additional
function α to get the equivalent equation

∇ × B = αB . (14)

It results at once from this equation and the constraint ∇ · B = 0 that

B · ∇α = 0 , (15)

which states that α keeps a constant value along any field line.

No specific conditions have to be added when there is a surface Σ j, but we need to impose
for having a current sheet Σc in equilibrium the jump conditions

[[Bn]] = 0 , (16)
[[B2

s]] = 0 , (17)
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on the normal and tangential components Bn and Bs of B. These relations are obtained at once
from the well known jump conditions of general MHD.

In addition to the equation of equilibrium, we still have in the force-free model an equation
of evolution for the field, which is just the ideal version of Eq. (4), i.e.,

∂B
∂t
= ∇ × (v × B) . (18)

We remind the reader that an important consequence of this equation is the frozen-in law, which
implies in particular that a magnetic line connecting two elements of matter on S at some time,
still connects the same elements (which have possibly moved to new positions on S ) at all the
subsequent times.

Finally, we note that the equations of the force-free model can be formally considered as
the limit when Rm → ∞, β → 0, and MA = v/vA → 0 of the equations of general MHD –
or equivalently we can consider them to be the zeroth-order approximation of the latter in an
expansion in terms of the small parameters R−1

m , β, and MA.

3.3 Energy theorems for force-free fields in D

In this subsection and the following one, we consider all the finite energy force-free fields
whose flux distribution is described by the given function Q (i.e., Bn = Q on S ). Their set will
be denoted by H = H[Q]. H contains in particular two fields, which will play an important
role hereafter, and which are the only two fields in H which can be unambiguously computed
without further specifications from the only datum Q. The first one has been already introduced
in Subsection 2.3: It is just the well-known potential field Bπ, which satisfies the current-free
condition ∇ × Bπ = 0 in D. The second one is the so-called open field Bσ. Bσ is constructed
by first introducing the unique potential field P such that ∇ × P = 0 and ∇ · P = 0 in D, and
Pn = |Q| on S , and it is obtained from P by setting Bσ(r) = χ(r)P(r), with χ(r) = 1 (resp.,
−1) if r is connected to the part S + of S where Bn > 0 (resp., the part S − where Bn < 0) by a
magnetic line of P. Bσ satisfies the right boundary condition Bσn = Q on S , but it is potential
only in D \ Σc, where Σc is the surface separating the part of D where χ(r) = 1 from that one
where χ(r) = −1. The field reverses accross Σ, which thus appears as a current sheet, and the
latter is in equilibrium as conditions (16)-(17) are clearly automatically satisfied. Note that Bπ

and Bσ decrease at infinity as r−3 and r−2, respectively.

We now present some general energy estimates, depending only on Q, which apply to an
arbitrary field B ∈ H . For such a field (Aly 1984, 1988, 2006a):

• The energy W[B] satisfies the inequality (this is a standard result)

W[Bπ] ≤ W[B] . (19)
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• For ν ≤ 1, the ν-energies of B satisfy the estimate

(1 − ν)W (ν)
r + (1 + ν)W (ν)

⊥ = F(ν)
S [B] ≤ W (ν)

∗ [Q] for ν < 1 , (20)

2W (1)
⊥ ≤ F(1)

S [B] ≤ W (1)
∗ [Q] , (21)

where F(ν)
S [B] is a functional of the restriction of B to S , and W (ν)

∗ is a number which
can be explicitly computed from Q. Their expressions depend on the choice of D. They
assume the simplest forms when D is the exterior of a sphere, in which case

F(ν)
S [B] =

1
8π

∫
S
(Q2 − B2

s) dS ≤
1

8π

∫
S

Q2 dS = W (0)
∗ [Q] , (22)

with Bs the tangential component of B on S . Therefore, for a force-free field in D, the
mere integrability of B2 implies the ones of rνB2 for ν < 1 and of rB2

⊥.

• If we denote as W[B](r) the part of the energy W[B] located outside the sphere of radius
r ≥ r∗, then

W[B](r) ≤
r∗
r

W[B] ≤
r∗
r

W (0)
∗ . (23)

These inequalities have an important physical consequence: They preclude the existence
of a time-sequence of fields along which a finite amount of energy would be transported at
infinity and lost. Moreover, Eq. (23) contains some information on the decay of B at infin-
ity. It imposes indeed δ[B] ≥ 2, where the exponent δ[B] = sup{s | limr→∞ r2s−3W[B](r) =
0} (δ = γ if B 'r→∞ r−γ). Then a δ[B] in the range [3/2, 2[, allowed for an arbitrary field
of finite energy, is no longer possible if the field is force-free. The estimate δ ≥ 2 cannot
be improved (just note that the open field Bσ has δ[Bσ] = 2).

• A field with δ[B] > 2 is a closed field. It is such that B3/2 is integrable over D, and thus
it has a well-defined helicity H[B]. On the contrary, a field with δ = 2 is an open field,
i.e., it possesses a bundle of lines carrying on a positive amount of flux to infinity, and has
current-sheets. For such a field, B3/2 is not integrable and the helicity is not defined. This
is the case in particular for the helicity of the open field Bσ, and actually it is quite easy
to construct sequences of (non force-free) fields Bk converging to Bσ for which H[Bk]
converges to an arbitrarily fixed real value (finite or infinite).

• It results from Eq. (22) that∫
S

B2
s dS ≤

∫
S

Q2 dS (24)

when D is taken to be the exterior of a ball. Eq. (24) also holds true when D = {z > 0},
actually with an equality sign (in that case B2

s = B2
x + B2

y).
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3.4 A conjecture on the least upper bound on the energy

From the considerations of the previous subsection, we have W[B] ≤ W (0)
∗ for any field in

H . This leads us to introduce the so-called least upper bound on the energy W = supH W[B] ≤
W (0)
∗ , which is the best upper bound one can put on the energy (i.e., it is a upper bound, and there

are fields in H with an energy as close as we want to it). A natural question thus immediately
arises: Is it possible to determine exactly the value of W. There is yet no definite answer to that
question, but the following conjecture has been proposed (Aly 1984):

Conjecture C. The least upper bound on the energy of the fields in H is equal to
the energy of the open field Bσ ∈ H , and it is reached by only that field, i.e.,

∀B ∈ H : B , Bσ ⇒ W[Bπ] ≤ W[B] < W = W[Bσ] . (25)

The importance of C for solar physics stems from the fact that it precludes a spontaneous
opening of a field in the way initially proposed by Barnes and Sturrock (1972), thus causing
much trouble to the so-called storage model of eruptive events (Lin et al. 2003). A first rationale
to put it forward was to note that a field B inH for which W[B] = W (if there is one!) is likely
to be a field fully determined by Q, and then has to coincide with either Bπ or Bσ, whence
B = Bσ as Bπ is known to be an energy minimizer. A second rationale was to note that C is true
(but maybe for the uniqueness statement) at least for a particular class of functions Q (defined
by Q = ±B0, with B0 a constant) for which it is readily checked that W[B] ≤ W (0)

∗ = W[Bσ].

Efforts to prove C have first concentrated onto a weaker formulation – conjecture Cc here-
after – in which H is replaced by its subset Hc constituted of the fields having all their lines
connected to S (W being accordingly replaced by the least upper bound Wc ≤ W over that sub-
set). The validity of Cc is supported by a general argument (Aly 1991, Sturrock 1991) showing
that a field B for which W[B] = Wc (once again, if there is one!) has necessarily all its lines
open, for otherwise it would be possible to deform it inHc into a field with a larger energy, and
then B = Bσ. Another argument is provided by the analytical and numerical studies of time
sequences {Bt} of fields belonging toHc (see Sects. 5-6 below). Such sequences can be made to
start from an arbitrary field B0, to have an increasing energy, and to converge to the open field
Bσ, whence W[B0] ≤ W[Bt] ≤ W[Bσ]. In particular, these inequalities can be directly checked
to be verified (Aly 2006a) by the explicit sequences exhibited by Lynden-Bell and Boily (1994)
(in which however Q and then Bσ change in time). Unfortunately, there is also one result going
against the validity of Cc: Choe and Cheng (2002) have reported the construction of numerical
configurations constituted of two interwinding tubes and having an energy larger than W[Bσ].
What differentiates these configurations from the previously considered ones is still unclear.

The later consideration of fields having lines disconnected from S have lead many authors
to conclude that the general C is not valid – a possibility previously pointed out on intuitive
grounds by Aly (1991). In particular, Hu et al. (2003), Flyer et al. (2004), Wolfson et al. (2007)
have constructed numerically parametrized sequences of axisymmetric fields containing one or
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several embedded toroidal flux ropes. And for some values of the parameters, they have found
that the energy can exceed that of Bσ. This result deserves some theoretical investigations to be
fully understood. In particular, it would be quite helpful to determine the limit of a sequence of
fields whose energy approaches W, and to obtain a physical characterization of it.

An interesting related problem has been discussed in the literature. It amounts to compare
the energy of a field B in H with that of a partially open field B′σ[B] in the same set, obtained
from B by opening a bundle of lines while conserving the topology of the other lines. This
problem was first introduced by (Wolfson and Low 1992), who found numerically that, in a
special axisymmetric setting, it is possible to have W[B] > W[B′σ]. However, it was noted (Aly
1993, Lepeltier 1994) that, after some adaptation, the arguments supporting Cc suggest that one
should rather have W[B] ≤ W[B′σ], and the latter inequality was conjectured to hold for all
the configurations of the type studied by (Wolfson and Low 1992). More recently, the problem
has been reconsidered by Hu (2004), who formulated independently the same conjecture and
presented new numerical calculations in support of it. Finally, it has been argued in Aly (2006a)
that the inequality W[B] ≤ W[B′σ] should hold quite generally, at least for fields having all their
lines connected to S – conjecture C′c.

4 RECONSTRUCTION OF THE FIELD OF AN ACTIVE
REGION

In this section, we discuss the reconstruction problem of the magnetic field of an active region.
We thus assume that measurements effected by a vector magnetograph at the photospheric level
have provided us with a magnetic field B0 defined on S = {z = 0} and having zero flux through
that plane, and we try to use this given function to construct in the half-space D = {z > 0} an
approximate representation B of the actual field. We remind the reader that there is actually a
well-known indeterminacy in the measured field – the sign of its component transverse to the
line of sight cannot be determined – but we assume here that the brut data have been submitted
to an adequate treatment to get rid of this 1800 ambiguity (see, e.g., Metcalf et al. (2006) for a
description of the various methods proposed so far, and a comparison of their merits).

4.1 General statements

We first note that the values B(x, y, 0) taken on S by a finite energy force-free field B in D are
strongly constrained by a series of integral relations. For instance (Aly 1989), we have∫

S

(
−

B2

2
ẑ + BzB

)
dS = 0 , (26)∫

S
r ×

(
−

B2

2
ẑ + BzB

)
dS = 0 , (27)
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which just express the obvious fact that the total force and torque exerted by B on S have to
vanish. Also, the restriction to S of the force-free function α, which can be computed from B
on S by using the relation

α =
1
Bz

(
∂By

∂x
−
∂Bx

∂y

)
, (28)

is subject to the infinite set of constraints∫
S

f (α)Θ(α − τ)Bz dS = 0 ∀τ ∈ R , (29)

where Θ denotes the standard Heaviside step function, and f an arbitrary function. Eq. (29) is a
consequence of Eq. (15), and it contains in particular the requirement that the ranges of values
taken by α respectively on S + and S − should be identical. It is worth noticing that this set of
relations provides necessary but not sufficient conditions for B(x, y, 0) to be the trace on S of a
finite energy force-free field in D (a set of sufficient conditions is not known).

Therefore we certainly should not define the reconstruction problem as consisting in the
determination of a finite energy force-free field B in D matching exactly on S the observed
field B0. For a solution of this problem to be possible, B0 should indeed satisfy exactly at
least all the relations above, what it will never do in practice. Rather, we propose to define the
reconstruction problem as follows: To set up a well posed problem for B in D by keeping as
much as possible of the two incompatible requirements – that B should be exactly force-free in
D, and that it should match on S the field B0 provided by the observations. The requirement
of well-posedness means that the problem should have a solution, and that this solution should
be unique and continuously depending on the data. Clearly, this is a quite natural condition to
impose if we want to get a meaningful problem.

Of course, there are a priori many different ways to try to set up such a well posed problem,
and we next recall briefly some of the methods which have been attempted so far and are still
under study (for a more detailed presentation, we refer the interested reader to the recent review
paper by Neukirch (2005)):

• A first possibility amounts to keep the strict force-free assumption in D and the require-
ment that the field should decay at infinity, but to disregard a part of the data available
on S – the latter being possibly used a posteriori to evaluate the accuracy of the recon-
struction by comparing their values with the computed ones. A method of this type is the
so-called Grad-Rubin method, first considered in a different context by Grad and Rubin
(1958) and introduced into the framework of solar physics by Sakurai (1981). It amounts
to retain as relevant data the normal component B0z on S , and the function α0 (computed
from B0 by Eq. (29)) on that part S + of S where B0z > 0, say.

• A second possibility is to require B to be strictly force-free in D and to match exactly
the field B0 on S , which forces us to give up with imposing a condition on B at large
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distances. This approach is adopted in the progressive extension methods (Wu et al. 1990,
Cuperman et al. 1991, Demoulin et al. 1992, Song et al. 2006), in which the equations for
the force-free field are written in the form (14)-(15), with the terms containing a derivative
with respect to z being singled out in the left-hand sides. This form suggests strongly to
compute B by setting a Cauchy problem in which the values of (B, α) at height z + dz
are computed from those at z, B0 providing the initial conditions at {z = 0} necessary to
start the computation. The use of some regularizing scheme is needed for this calculation
for avoiding the growing up of errors inherent to the resolution of this type of Cauchy
problems, and this method may be a priori expected to give acceptable results only up
to some not too large height. Note however that this way of proceeding has given good
results in the case (not considered here) where the force-free field is assumed to be linear
(Amari et al. 1997a, 1998).

• A third possibility amounts to introduce an approximate problem chosen “as close as
possible” to the original one. For instance, the field B may be only required to be ”as
force-free as possible“ in D and/or to match ”as closely as possible“ the observed values
B0 on S . This idea may be practically implemented by setting an optimization problem
of the following type: To determine a field B minimizing the functional

O[B] =
∫

D
(a|(∇ × B) × B|2 + b|∇ · B|2) dV +

∫
S

c|B − B0|
2 dS , (30)

with possibly a = 0 and/or b = 0 and/or c = 0 (in which case the admissible B are imposed
to satisfy (∇ ×B) ×B = 0 and/or ∇ ·B = 0 and/or B = B0 on S ). The problem with c = 0
has been much developed in the last few years (Wheatland et al. 2000, Wiegelmann and
Neukirch 2003). Note that it is not possible to achieve individual control on the resulting
∇ · B and Lorentz force in that setting.

As a last general remark, we note that the constraints on B(x, y, 0) that we have indicated at
the beginning of this section (and any other which could be derived) may be used to replace the
field B0 by a field B′0 satisfying some of them and choosen to be as close as possible, in some
sense, to B0. It is intuitively clear that such a reprocessing of the data should make more easy
the reconstruction process by any method. This has been checked to be the case by Wiegelmann
et al. (2006), who actually only used the two constraints (26)-(27).

In our own work on the reconstruction problem, we have mainly tried to develop the Grad-
Rubin approach by working out new iterative schemes able to determine efficiently the field in
D, and in accordance with the spirit of this paper, we concentrate from now on on a presentation
of our achievements. We just note that different technical tools have been used by other authors
to attack the same problem (Sakurai 1981, Wheatland 2004, Inhester and Wiegelmann 2006,
Yan and Sakurai 2000).
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4.2 The Grad-Rubin problem and the Grad-Rubin iterative scheme

To make the presentation of our results clearer, we first describe in some details the Grad-Rubin
method, which is intuitively grounded on the following simple remark. Consider the form (14)-
(15) of the force-free equations. On the one hand, we may note that if we consider α as a
given function in D, Eqs. (14) and (8) constitute an elliptic div-curl system which can be solved
uniquely if we prescribe Bz on S along with an appropriate asymptotic condition. On the other
hand, we see that Eq. (15) with B assumed to be known in D is an hyperbolic equation for α
which determines this function in D by a simple transport along the lines if we prescribe α on
S +. (This decomposition of the system of equations shows their mixed elliptic-hyperbolic type,
which can be also exhibited by a standard calculation of their characteristics). Then the two
retained data may be expected to be sufficient indeed for determining a unique B.

Let us now write formally the problem we have to deal with – to which we shall refer from
now on as the Grad-Rubin boundary value problem. For its elliptic part, we have

∇ × B = αB and ∇ · B = 0 in D , (31)
Bz = B0z on S and lim

r→∞
B = 0 , (32)

while its hyperbolic part reads

B · ∇α = 0 in D , (33)
α = α0 on S + . (34)

The principle of a quite natural scheme to solve it has been proposed in Grad and Rubin (1958).
It is an iterative scheme in which the elliptic and hyperbolic parts are successively solved at
each step. More precisely, we look for a sequence (B(n), α(n)) which is a solution to

B(n).∇α(n) = 0 in D , (35)
α(n) = α0 on S + , (36)

and

∇ × B(n+1) = α(n)B(n) and ∇ · B(n+1) = 0 in D , (37)
B(n+1)

z = B0z on S and lim
r→∞

B(n+1) = 0 . (38)

The iteration process is initialized by choosing B(0) = Bπ – i.e., we start with the potential field
associated to B0z.

It is worth noticing that a solution to this problem may be expected a priori to contain sin-
gular surfaces Σ j once the field to be reconstructed has a complex topology. By this expression,
we mean that the magnetic mapping M : S + → S − associating to the footpoint of any line of
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B on S + its footpoint on S −, has discontinuities along specific curves L of S + (a field with a
continuous map M being said to have a simple topology), which implies the presence of sepa-
ratrix surfaces S in D cutting S + along L. In the general case where α0 does not vanish in the
neighborhood of L, two magnetic lines starting from infinitely close points located on either
sides of L will separate at some point of S, thus transporting the same initial value of α to
distant points on S −. As a result and even if the function α0 is very smooth, different values of
α can be obtained on either sides of S – we have thus indeed to deal with a surface Σ j.

4.3 Existence and uniqueness of solutions to the Grad-Rubin problem

The Grad-Rubin problem set in some domain D has now received some attention from the
mathematical point of view, and we collect in this section some general results relevant to the
reconstruction problem. Unfortunately, existence and uniqueness results are not yet available
for the problem in a half-space, for which there is just a simple result which can be stated as
follows: If we write the boundary condition on α in the form α = λg on S +, with λ ≥ 0 a
parameter and g a prescribed function, then the Grad-Rubin problem has no solutions when λ
is chosen too large, i.e., when λ ≥ λc[Q, g] (Aly 1984, 1988).

But some rigorous results have been established – actually by proving the convergence of
the Grad-Rubin scheme when some conditions are fulfilled – for the Grad-Rubin problem set in
other types of domains D:

• When D is bounded and α0 not too large, a solution exists (Bineau 1972) in a Hölder
functional space under some restrictive additional assumptions (in particular, B should
have a simple topology, the presence of surfaces of discontinuity Σ j of ∇ × B being a
priori excluded in the adopted functional setting). Moreover, this solution is unique, and
it depends continuously on the boundary conditions – the problem appears to be well-
posed.

• Bineau’s theorem relative to a bounded domain D has been extended to more general
spaces ((α,B) ∈ L∞ × H1(D)) by Boulmezaoud and Amari (2000). In this new setting,
solutions with singular surfaces Σ j on which B is not continuously differentiable are al-
lowed, and the reconstruction of fields with a complex topology does not lead to any
particular problem.

• For D an exterior domain – e.g., the exterior of a sphere – and for boundary conditions
submitted to restrictions quite similar to those imposed in Bineau (1972), the existence
of a solution belonging to a Hölder functional space has been recently proven by Kaiser
et al. (2000) in the case where α is not too large.

It is worth noticing that all the results obtained for fields occupying bounded domains are of
practical interest for us here, as a solution has eventually to be calculated on a computer, with

17



the problem being set in a bounded numerical box. Moreover, the reconstruction problem in
the whole corona should certainly be addressed in the near future, which would make the last
stated result directly relevant to solar physics.

4.4 Numerical approach

Finally, we describe the numerical results which have been presented in details in Amari et al.
(2006). As noted just above, the effective determination of the field of an active region is not
done in the half-space D, but rather in a bounded box Db = [x0, x1] × [y0, y1] × [z0, z1], which
has just to be choosen large enough for the effects of the boundary to be as small as possible.
Accordingly, the asymptotic condition (32)b has to be replaced by a boundary condition, and
we prescribe here conditions of type (32)a and (34) on the whole ∂Db.

For reconstructing a field, we use two different implementations of the Grad-Rubin scheme,
the code XTRAPOL and FEMQ. They do differ firstly by the way they do address the issue of
the ∇ · B = 0 constraint, which still represents a serious challenge in the development of any
numerical MHD scheme. In XTRAPOL (a code based on a finite difference scheme initially
introduced in Amari et al. (1999a)), we use a vector potential A for the magnetic field B (B =
∇×A) and a staggered mesh such that the approximate solution lies in the functional space that
is in the kernel of the div operator. In FEMQ on the contrary, the introduction of A is avoided.
Rather, the method consists in working in a functional space corresponding to ∇ · B , 0 Q1
finite elements, with ∇ · B being minimized in the least square sense for the associated div-curl
system corresponding to the elliptic Biot-Savart problem. The second difference between the
two implementations stems from the way the force-free function α (which is constant along the
field lines) is computed at each iteration. This is done by following the characteristics (field
lines) in XTRAPOL, and by solving a hyperbolic linear system in FEMQ. Both methods have
advantages and drawbacks. In XTRAPOL the solution satisfies ∇ · B = 0 to machine accuracy
while in FEMQ ∇ · B is just minimized. On the other hand the use of a potential vector in
XTRAPOL and of B as the main variable in FEMQ makes the electric current to be given by
second derivatives in the former case, but by derivatives of only the first order in the latter one.

To test and compare these different methods, we have applied them to the reconstruction
of the particular semi-analytic exact solutions derived in Low and Lou (1990) from its values
of Bz on S and of α on S +. The latter has also been used with the same error diagnostics and
the same choices of parameters in Schrijver et al. (2006). We have also considered other more
local diagnostics such as cuts of α at various heights, and the divergence of B in infinite norm.
Diagnostics of this type are indeed important since global diagnostics alone cannot reveal the
failures of a reconstruction method which is not based on a well posed formulation.

Table 1 shows the results of a test case (called FF1 in Amari et al. (2006)) corresponding to
one particular set of parameters. It can be seen that a characteristic error smaller than 0.01 is
achieved, while Figure 1 shows accordingly a good agreement between the computed field lines
and those of the exact solution. We have also computed an other case (called FF2 in Amari et al.
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(2006)), corresponding to an extreme nonlinear situation, for which the numerical results give
some feedback to solar data. They show indeed that increasing numerical resolution leads to an
improvement of the error diagnostics and to a better fitting of the approximate solution. This
result, although limited, may imply that in order to handle some of the active region current
distributions, high enough resolution vector magnetographs are necessary.

In addition to these experimental cases, our methods have been applied successfully to the
reconstruction of the actual coronal magnetic field above observed active regions (Bleybel et al.
2002, Régnier et al. 2002, Régnier and Amari 2004). Finally, we note that with the coming of
SOLIS and HINODE, we should have soon at our disposal full disk measurements and therefore
synoptic vector magnetic maps. Methods able to handle this new type of data will then be
needed, and we have undertaken an effort in that direction by developing a new approach. It
consists in using finite elements for B which belong to a functional space in which ∇ · B = 0
on tetrahedral meshes. Until now, this method has been applied only to laboratory toroidal
configurations (Boulbe et al. 2006), but the same numerical code should be used soon to handle
the reconstruction of the field of both a localized active region and the full Sun (Amari et al., in
preparation).

5 BOUNDARY DRIVEN EVOLUTION OF B: THE ANA-
LYTIC QUASI-STATIC APPROACH

Next we consider the problem of the boundary driven evolution of a coronal structure in the
quasi-static approximation.

5.1 The boundary driven evolution problem

As stated in the Introduction, the boundary driven evolution problem amounts to determine
the evolution of the field B in D which is driven by imposed boundary changes on S . This
problem has been set mainly to try understanding the nature of the mechanisms which may
be the triggers of the large-scale eruptive events which occur sporadically in the solar corona.
Among the various relevant issues that it is worth addressing in this context, we may list the
following ones:

• Is an evolution describable in terms of a stable equilibrium sequence, or on the contrary
does it lead either to an unstable state, or to a state beyond which an equilibrium is no
longer possible?

• Does an evolution lead to a fast opening of the field in a part of the corona?

• Is there any constraint on the magnetic energy and helicity during the evolution?
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• Is there a change of topology during the evolution leading, e.g., to the formation of a
twisted flux tube? We remind the reader that there is observational evidence in favor of
the presence of such a structure during the disruption phase of an eruptive event (Gary
and Moore 2004).

• Is a twisted flux rope (TFR) created as an equilibrium structure or only produced by
reconnection during a nonequilibrium phase of the evolution?

To begin the study of that problem, we consider it in this section in the framework of the
force-free model, i.e., we assume that an evolution can be described by a sequence of force-
free equilibria. This simplification has the advantage of allowing analytic developments, and
it is certainly reasonable at least to study the evolution of a structure which is not too far from
a potential configuration, in which case we may be quite safely ensured of the validity of the
justifications reported in Section 3, which were based on the orders of magnitude of v and L.
The model will, however, break down if the system starts to evolve on time-scales which are
comparable to the Alfven time-scale and/or if there is a spontaneously formation of structures
with length scales which are much smaller than the characteristic length L of the system itself.

We start with the case which has been studied in greatest details, that of an axisymmetric
arcade occupying the exterior of a sphere (but similar results hold true for an axisymmetric
arcade in a half-space). Thus we quote some results on the evolution of a flux tube and on the
evolution of a configuration with a complex topology.

5.2 Ideal evolution of an axisymmetric arcade

Let us assume that the field in the domain D = {r > r∗} is at any time t axisymmetric about the
z-axis, and mirror symmetric with respect to the equatorial plane {z = 0}. It can thus be given
the representation

B =
1

r sin θ
(∇A × ϕ̂ +Gϕ̂) (39)

in terms of the flux functions A(r, θ, t) and G(r, θ, t), with A(r, π − θ, t) = A(r, θ, t) and G(r, π −
θ, t) = G(r, θ, t). At the initial time t = 0, B is taken to be potential (∇ × B = 0) and to have an
arcade structure, i.e., its lines (which are drawn in poloidal planes) all emerge from the northern
hemisphere, say, and re-enter into the sphere in the southern hemisphere, after bridging over
the equator, which imposes A ≥ 0. For t ≥ 0, the footpoints of B on S are submitted to purely
azimuthal stationnary motions, i.e., we impose on S a velocity field of the form

v = v(θ)ϕ̂ = r sin θΩ(θ)ϕ̂ , (40)

with v(π−θ) = −v(θ) in order to be coherent with the symmetry assumptions on B. As a result of
this imposed shearing, the field evolves through a sequence of force-free configurations, which
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imposes that

G(r, θ, t) = F[A(r, θ, t), t] , (41)
−∆∗A = (FḞ)(A, t) , (42)

where ∆∗ = ∂2
r + (1 − µ2)∂2

µ (µ = cos θ) is a standard elliptic operator. The second relation is the
well known Grad-Shafranov equation. The function F appearing above is not given a priori in
this problem. Rather, it has to be determined in such a way that the field, which keeps a dipolar
topology due to the frozen-in law, has the connectivity imposed by the boundary motions. This
requires that the total variation δϕ(a, t) of ϕ when going along a line on which A = a is equal to
the difference in the ϕ-positions of its footpoints imposed by the velocity field, i.e.,

δϕ(a, t) = F(a, t)
∫
La(t)

dl
r sin θ|∇A|

= [Ω−(a) −Ω+(a)]t = ζ(a)t , (43)

where La is the curve traced out in a meridional plane by the toroidal surface on which the line
is drawn, dl is an element of length along it, and Ω+/− is the angular velocity at its upper /lower
footpoint.

To determine the evolution of the field, we thus have to compute at each time t in the plane
domain Π = {r > r∗, ϕ = 0} a flux function A whose level contours have an arcade topology,
which solves the Grad-Shafranov equation (42) with a right-hand side determined by the condi-
tion (43), and which takes on the boundary the initial value A(r∗, θ, 0). Note that this problem is
both nonlinear and nonlocal. In particular, inserting the expression of F given by Eq. (43) into
Eq. (42) results in a strange type of equations first introduced in plasma physics by Grad and
Hogan (1970) and named by them Queer Differential Equations, or Generalized Differential
Equations.

5.3 Characteristics of the evolution

It can be shown (see Aly (1995) and important improvements in Aly (2006b)) that there are
two different phases in the evolution of the field (these results are not obtained by computing
an exact or approximate solution of the problem, but by deriving directly from the equations
a series of exact relations which constrain the evolution of the system and allow at least its
qualitative description).

• There is a first phase where the poloidal structure does not change much. The strength of
the toroidal field increases linearly with time at the (field line dependent) rate |ζ(a)|, and
free magnetic energy accumulates at a rate quadratic in t.

• The second phase starts roughly when the strength of the toroidal field becomes of the
order of that of the poloidal field. It is characterized by a fast increasing expansion of the
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poloidal structure at a rate that becomes very large compared to the driving rate |ζ(a)|.
Using in particular Eqs. (21) and (43), it is possible to derive the estimate

ra(t) ≥ r∗e(t/Ta)2−1/2 (44)

for the radius ra of the smallest circle of center O in Π which contains the region Πa

where A > a (clearly, Πa is bounded by the line La and an arc of circle of radius r∗).
Simultaneously, the toroidal component of the field decreases to zero (at least as e−(t/Ta)2

),
and the bulk electric currents concentrate into a layer of decreasing thickness. Eventually,
the field opens, while the current layer collapses to an infinitely thin current sheet. The
opening is total (the asymptotic state coinciding with the open field introduced in Sect.
3.4) if there is an interval ]a1, a = max A[ on which ζ(a) > 0 (meaning that the field
is effectively sheared arbitrarily close to the equator), but only partial if ζ(a) = 0 on
some interval [a1, a] (a1 < a). In that case, the equatorial current sheet extending to
infinity starts above the surface of the Sun, and there is a separatrix separating a region of
unsheared closed lines from a region of open ones.

One of the arguments in favor of the conjecture Cc quoted in Sect. 3.4 is linked as follows
to the results above. Let us give an arbitrary arcade equilibrium B, and consider the evolution
generated for t ≥ 0 by a shearing function of the form δϕ(a, t) = (t/t0)δϕ(a, t0), with t0 > 0
an arbitrary number and δϕ(a, t0) computed from B with the help of Eq. (43). Then we get
obviously for t ≥ t0 a sequence of fields {Bt} along which the energy increases and converges
eventually to the open field energy (this last statement being supported by inequality (23), which
precludes a loss of energy at infinity), whence W[B] ≤ W[Bt] ≤ W[Bσ] indeed.

5.4 Discussion

In the previous analysis, a continuous sequence of regular force-free equilibria B(t) correspond-
ing to an arbitrary initial arcade B(0) = Bπ and to an arbitrary shearing function ζ, has been
implicitly assumed to exist for 0 ≤ t < ∞, i.e., we have assumed that a field can stay in force-
free equilibrium all along when it is indefinitely sheared. Of course, this assumption has to be
proved to get a satisfactory theory, and this could possibly be done by working with the well
known variational formulation of the problem, which amounts to look at each time t for a field
which extremizes the magnetic energy among all the arcade fields which can be obtained from
B(0) by a continuous deformation compatible with the imposed displacements of the footpoints
on S up to t (see, e.g., Aly (2006b)). Actually, we could even look for a field making the energy
an absolute minimum rather than a mere extremum, as this would give at the same time the
existence of the sequence and its nonlinear stability with respect to axisymmetric perturbations
(note that this possibility is compatible with our initial condition as Bπ is actually an energy
minimizer at t = 0; see Eq. (19)).

Although we currently feel that the existence of {B(t)}, 0 ≤ t < ∞, is a reasonable assump-
tion, we have to note that the possibility for the sequence to exist only for the finite interval
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0 ≤ t < T has been considered in the literature. For instance, it has been recently conjectured
by Zhang et al. (2006) that there is a upper bound on the absolute value |H| of the helicity which
can be injected into a force-free field when the boundary condition Bn = Q is enforced on S ,
i.e., H = supH |H[B]| < ∞ in our notations. As the stationary motions we have imposed on
the boundary inject helicity at the constant rate Ḣ[Q, ζ], this would imply indeed that a field
can stay in equilibrium at most up to a time T ≤ H/Ḣ. If the field does exist as an equilibrium
only for 0 ≤ t < T , the problem arises of what happens when t → T . A possibility is that the
field opens totally (B(t) → Bσ) or partially at this finite time (Uzdensky 2002). An argument
in favor of this behavior is provided by the existence of the approximate analytical solution due
to Lynden-Bell and Boily (1994) and already considered in Subsection 3.4. This solution de-
scribes a continuous transition in D = {r > r∗} from a potential dipolar field to an open field of
the split monopolar type through a sequence of force-free configurations, with the total amount
of injected helicity being finite. It is however quite peculiar as the boundary motions become
singular when opening does occur (this is possible because these motions are not stationary as
in our formulation above), and then it may at least be doubted that this example represents the
most general situation (Aly 2006b). In any case, we remind the reader that the helicity of the
open field is not defined (as noted in Sect. 3.3), and this leaves the possibility for an opening
being obtained with the injection of either a finite or an infinite amount of helicity, depending
on the choice of the boundary motions. To discuss further this last point, it may be interesting
to anticipate on the presentation of our numerical results in the next part of the paper. For an
evolution driven by either converging motions, flux cancellation or flux diffusion, the total mag-
netic helicity remains constant, while the configuration experiences a global disruption (Amari
et al. 2003a,b). It must be noted, however, that Bn is not fixed during the flux change, and then
the cases that we have computed do not correspond exactly to the problem above. Moreover,
although the total magnetic helicity of the configuration remains constant, the “partial helicity”
of the flux rope may be expected to increase.

Let us now consider the results of the previous subsection from a physical rather than a
mathematical point of view. Clearly, they can describe what happens in the real corona only up
to some point. The predicted large-time behavior is indeed in conflict with the basic assumptions
of the force-free model. Firstly, there is a violation of the quasi-static approximation when the
field is stretched out to large distances and expansion becomes faster than some fraction of the
Alfven speed. And secondly, ideal MHD is violated in the thin region where the electric currents
concentrate. To care for the first problem, we need to add inertial effects. This may be expected
on intuitive grounds to have the simple following consequences. The domain D divides into two
parts. An outer one which is strictly static, as the information about the motion of the footpoints
has not yet reached it. And an inner extending one, in which the field expands at a speed which
has initially about the value predicted by the quasi-static model (it is just a little bit smaller),
but which saturates at some stage at a fraction of the Alfven velocity. This retardation effect
makes the magnetic energy becoming larger than the force-free energy (possibly, it could even
exceed W[Bσ]), and it is the corresponding energy excess which allows for the acceleration of
the plasma. Then the often expressed opinion that conjecture Cc precludes the opening of the
field and acceleration of the plasma appears to be a quite pessimistic view. If we give up with the
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strict storage paradigm of eruptive processes (see, e.g., Lin et al. (2003)) and substitute for it a
model in which energy is continuously injected into a structure, there is no longer any problem.
At some stage, the field starts expanding at a fast rate, following the tendency exhibited by the
force-free model, and it still eventually opens, the excess magnetic energy due to the retardation
effect accounting for the kinetic energy of the ejected plasma.

The problem posed by current concentration is more interesting. Clearly we have to intro-
duce resistivity to take care of it, and this opens the possibility for the field to reconnect at some
stage, with one or several isolated twisted ropes being produced. The details of such a process
are beyond the present capability of an analytic approach, and they have to be computed nu-
merically (see the following sections). However, we can at least address in general terms the
following question: Is reconnection energetically favorable at time t? If we assume that this
process implies only a localized violation of the frozen-in law and then a quasi-conservation of
magnetic flux, we can follow the approach used for a Cartesian arcade in Aly (1990). It consists
to reformulate the variational problem quoted above by enlarging the set of allowable fields: We
now also admit complex topology fields which can be obtained from those with arcade topol-
ogy by reconfiguration conserving the differential poloidal and toroidal magnetic fluxes. The
asymptotic results quoted in the previous subsection imply that a transition from an arcade to an
allowed more complex field is energy releasing when the shear is sufficiently large: reconnec-
tion is thus to be expected. There is however an energy barrier between the two configurations,
and a finite amplitude perturbation is required for the transition to actually occur.

5.5 Extensions to more general configurations

Arguments of the type of those used above for treating the evolution of an axisymmetric arcade
can also be used to deal with the problem of the twisting of a flux tube in D (exterior of a sphere,
or half-space). In the latter problem, a tube which is initially a part of a potential field is driven
into an evolution by imposing to its footpoints on S rotational motions conserving Q, say. It is
found that after a quiet phase during which the overall shape of the tube does not change much,
there is a phase of very fast expansion leading to a partial or total opening of the field. It is worth
noticing here, however, that there is an important difference between this fully 3D case and the
previous axisymmetric one: In an axisymmetric situation, the expansion of a line implies for
an obvious geometrical reason an expansion of all the lines above it, while in 3D there is the
possibility for an expanding tube to make its way between the overlying lines without pushing
them outward. This makes a precise characterization of the 3D opening difficult to obtain.

An arcade and a tube are examples of configurations with a simple topology, and the ques-
tion immediately arises of what happens when a complex configuration – e.g., a quadrupolar
axisymmetric field – is driven into an evolution by boundary motions. In fact, it turns out that
all the arguments used for simple fields still apply. There is however a well known but im-
portant difference: Once the evolution starts, current sheets need to form on the separatrices
as a consequence of the joint requirements that the field be in equilibrium and its topology be
conserved. Then we still get in the ideal case an expansion and an opening of the field, but this
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result appears to be of little application, as even in the corona the plasma resistivity is tiny, but
nonvanishing. Therefore it would be desirable to use a more realistic description of the physics
in the vicinity of, for example, separatrix layers, because they would be preferred locations for
reconnection to occur. This still needs to be done for the analytical point of view considered
here.

Finally, we report on work (Aly, in preparation) on a problem which does not seem to
have been considered up to now, but whose solution would be important to better understand
important points like the linear or nonlinear stability of a sequence of evolving equilibria {B(t)}
or the formation of current sheets when the fields B(t) have no separatrices (Parker problem;
see, e.g., Parker (1994)). It can be formulated as follows in general terms: Given an equilibrium
in some domain D, is there another equilibrium which can be obtained from it by a continuous
ideal deformation preserving the positions of the footpoints on the boundary S . Owing to
its difficulty, it has yet been attacked only for the Parker specific model (and a variant of it
for which explicit sequences {B(t)} are available) in which an initially uniform vertical field
B0 contained in a cylinder of height h, say, is driven into an evolution by motions imposed
on the two horizontal parts, S ±, of its boundary. In the case where the driving motions are
incompressible and vanish on the boundaries of S ±, the most interesting result obtained so far
is the estimate∫

D
(B2 − B2

0) dV =
∫

D
|B − B0|

2 dV ≤
B2

0

3h

∫
S +
|R · ∇Rh − Rh|2 dS , (45)

where Rh(R) is the magnetic mapping associating to the point R = (x, y) on the lower boundary
S + the point Rh(R) = (xh(x, y), yh(x, y)) of the upper one, S −, and B is an arbitrary equilibrium
compatible with this mapping. A consequence of that formula is that at low shear, two possible
equilibria would have about the same energy, which may be taken as an indication of uniqueness
when Rh(R) is close to the identity mapping. A strict result of uniqueness is obtained for the
identity mapping Rh(R) = R, in which case one gets indeed B = B0 (Aly 2005). This is a quite
modest result (however relevant to the treatment of Parker problem by Ng and Bhattacharjee
(1998)), but it may be hoped that the somewhat involved method introduced to obtain it will be
applicable to more interesting cases soon.

6 BOUNDARY DRIVEN EVOLUTION OF B: THE NU-
MERICAL APPROACH

We now turn to the numerical approach to the boundary driven evolution problem.
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6.1 Model

In our numerical calculations, we consider the evolution of the 3D field of an active region,
represented theoretically by the half-space D = {z > 0}, and practically by a finite box of
large size Db. Our code deals with the nondimensional form of the system of dissipative MHD
equations (3)-(8) in Db, which are discretized on a nonuniform mesh, and solved by using our
semi-implicit scheme (Amari et al. 1999b). As for the choice of the various parameters, we
use small values for the dissipation coefficients: ν = 10−2 − 10−3 for the kinematic viscosity
and η = 10−4, 10−5, 0 for the resistivity (for our mesh resolution, this gives Lundquist numbers
of order 104, 105). Note that these values are the values of the true physical parameters. In
addition, there are also the usual viscosity and resistivity of numerical origin, with the latter
playing a nonnegligible role when we impose η = 0. The term H can be neglected in equation
(6), and the plasma β is taken to be 10−3 (i.e., of the order of the very small values observed
in the corona) or 0 – without any differences being actually found between the results. When
we choose β = 0, we need to fix arbitrarily a mass density profile, and of course to neglect the
gravity term in equation (3). Here, we choose ρ = B2, which insures a constant Alfven velocity,
or ρ = 1. Alternative choices of density profiles (exhibiting for instance a slower decrease with
distance) do not lead to noticeably different results.

In the simulations described below, we start from a force-free equilibrium constructed by
first shearing a potential field and thus letting the system relax viscously for a long period of
time. We consider two types of evolution. The first one – flow driven evolution – is triggered
by horizontal motions imposed on the lower boundary of Db, while the second one – flux driven
evolution – results from diffusive motions on the latter. In either case, the evolution is imposed
by fixing the form of the tangential component, Es, of the electric field, which leads to a well
posed MHD boundary value problem.

6.2 Flow driven Evolution

Imposing the velocity field to be horizontal on the photosphere in order to describe twisting and
shearing motions, we have from Ohm’s law

−cẑ × Es = ẑ × (v × B)s = Bzvs = ∇s f + ∇sg × ẑ on S , (46)

assuming the resistive effects to be negligible (here, ∇s = x̂ ∂x + ŷ ∂y). The last equality is a
Helmholtz decomposition of Bzvs into an irrotational part and a solenoidal one, which intro-
duces two functions f (x, y, t) and g(x, y, t) uniquely determined (when appropriate asymptotic
conditions are assumed) from the equations

∇2
s f = ∇s · (Bzvs) , (47)
∇2

sg = −[∇s × (Bzvs)] · ẑ . (48)
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Moreover, we have from Faraday’s induction law

∂Bz

∂t
= −c∇ · (Es × ẑ) = −∇ · (Bzvs) = −∇2

s f . (49)

In some of our simulations, we consider motions which keep Bz invariant on S , which can
be easily achieved by imposing f = 0. A different (but of course mathematically equivalent)
procedure was actually used in our earlier paper (Amari et al. 1996) where we imposed directly
a velocity field of the form vs = ∇sφ × ẑ on S , with φ a potential related to g (Amari et al.
2003a).

One of the main results in Amari et al. (1996) is that large scale twisting motions of a bipo-
lar configuration leads to a transition towards very fast expansion, a phenomenon that appears
to be generic for simple and complex topologies (Amari et al. 1997b). This phenomenon was
later confirmed using different numerical schemes by Török and Kliem (2003), Aulanier et al.
(2005). Imposing a more localised twist on the bipolar configuration (which results in the for-
mation of a confined TFR) leads to a transition to nonequilibrium, and, in presence of finite
conductivity, to reconnection of the twisted tube with the overlying confining arcade (Amari
and Luciani 1999). There is thus a splitting of the single flux rope into two ropes (Amari and
Luciani 2000), as was also found by Baty (2000) to occur in cylindrical geometry during the re-
connection process following the development of the ideal kink instability. Although magnetic
helicity is conserved during the whole evolution, the relaxed state after reconnection is different
from a Taylor state (Amari and Luciani 2000), i.e., a linear force-free state with a value of the
constant α determined by the total helicity. Both the confined and unconfined evolutions can
be interpreted as a way of redistributing magnetic helicity towards the boundary of the domain:
Helicity is indeed transported to infinity in the unconfined case (relevant to CMEs and interplan-
etary magnetic clouds ), and transferred to the overlying confining arcade (which represents an
artificial boundary of the domain) in the confined case (relevant to confined eruptions).

Since magnetic fields emerge with twist/shear (Leka et al. 1996, Liu et al. 2005), it is worth
considering the effects of converging motions on a pre-sheared configuration represented by a
force-free equilibrium. We have thus constructed a set of force-free states with increasing mag-
netic energies and helicities by applying large scale twisting motions as described above, but by
staying below the limit at which very fast expansion occurs. For equilibria obtained by twisting
motions for which f , 0, the evolution of the field due to the converging motions exhibits two
different phases (Amari et al. 2003a). In the first one, the evolution is almost quasi-static. The
magnetic topology remains arcade-like, with a shear along the inversion line increasing, mag-
netic energy being stored, and helicity keeping its initial value. At some critical stage, however,
this quiet phase is stopped and the configuration experiences a transition to a dynamic and
strongly dissipative phase, during which reconnection leads to the formation of a TFR, however
not in equilibrium. These results extend and complement the 2D results found earlier by Priest
and Forbes (1991), Forbes and Priest (1995), Forbes (1991), Inhester et al. (1992). In these
papers it was shown that when a flux distribution on the boundary evolves in a suitable way
a catastrophic nonequilibrium transition can occur which implies the ejection of a plasmoid.
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But these conclusions were limited by the presence in the system of an unanchored flux rope,
and the unsolved issue of nonequilibrium in 3D. In 3D the system dynamically reconnects as
soon as it looses equilibrium, with no secondary intermediate nonequilibrium bifurcation being
produced.

Therefore a global disruption may occur in a magnetic structure with a nonzero helicity
contents when it is driven into an evolution by the converging motions which have been shown
by some observations to be actually present on the photosphere. Since magnetic helicity keeps a
constant value during the quasi-static phase of evolution, it needs to have been produced during
a previous phase. In our simulations described here, helicity is obtained by twisting motions,
but we do not claim that this process actually occurs in the corona – observational evidence
for adequate transverse photospheric velocities still being needed. It could be as well the result
of processes taking place before the emergence of the structure as also estimated recently by
Démoulin et al. (2002), Nindos and Zhang (2002). We should also note that we cannot exclude
that some amount of helicity be produced by the converging motions themselves, if they are less
symmetric than the ones we have considered in our model.

Helical structures associated with prominences ejected as part of the CMEs are sometimes
observed, and it is clear that twisted ropes are good candidates for the support of cool material.
It is still an open problem, however, whether a rope does exist prior to the disruption, thus
possibly playing a role in its triggering. Previous 3D results have shown that both a sheared
complex topology configuration of the multiarcade type (Antiochos et al. 1999) or a twisted
flux rope (Amari et al. 2000) in a not necessarily bipolar configuration are candidates for the
initiation of a CME. These results complement the earlier ones, by showing an example of
an evolving bipolar configuration suffering a major disruption, but without the presence of a
TFR in equilibrium. A rope is created, but only as a result of reconnection during the global
disruption, and it is then part of a process far away from equilibrium.

6.3 Flux driven evolution: cancellation, diffusion

We now want to model the effects of photospheric flux variations, either flux cancellation or
flux dispersion, during the last stages in the life of an active region. For that, we start from a
class of force-free equilibria having different magnetic helicities and energies, constructed as
above, and we drive an evolution by imposing a particular form of the tangential component Es

of the electric field on S , which can be Helmholtz decomposed according to

cEs = ∇sφ + ∇sψ × ẑ . (50)

Specifically, we set

ψ(x, y, t) = κbBz(x, y, 0, t) , (51)
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with κb > 0 a constant having the dimension of a magnetic diffusivity, and

φ(x, y, t) = 0 . (52)

Calculations are conducted without adding any other conditions on S . In particular, the tangen-
tial component Bs of B is not required to satisfy any a priori constraint.

Once more, the evolution is divided into two phases – quasi-static and dynamic, respectively
–, during which magnetic energy decreases at different rates. The topology changes from an
arcade type to a flux rope type at some t f l < tc, i.e., a TFR appears spontaneously during
the first slow quasi-static phase and stays in equilibrium. Rope formation is associated with
a reconnection process occuring at the inversion line on S , a process already used in Amari
et al. (1999c) to obtain a TFR in equilibrium. Nonequilibrium develops at tc, and leads to a
confined disruption for small initial helicity, and to an unconfined major disruption for large
initial helicity. Moreover, for all the values of the initial helicity, the energy of the field remains
always below that of the open field having the same distribution of Bz on the boundary plane.

These results are actually relevant for understanding the observed persistence of CMEs in
the late phase of dispersion of an active region. They show indeed that the dispersion process
(insofar as it can be modelled by boundary flux diffusion, as first proposed by Leighton (1964)),
can trigger eruptive events that may be either confined or unconfined, depending on the value of
the initial helicity. Moreover, they shed some light on the question of the necessity or not of the
presence of a TFR in the preerupting configuration. It appears that such a rope can be formed
during the diffusion driven evolution and stay in equilibrium for a while (see also Amari et al.
(2000)). This is in contrast with the results of Amari et al. (2003a) and of Antiochos et al. (1999)
(where a quadrupolar configuration is studied), as it was found therein that in an evolution driven
by some types of boundary motions the flux rope can only be produced by reconnection during
the disruption itself. This rope may be the site of the formation of a prominence – the lines have
a shape favorable to mass support against the Sun gravitational field – (Aulanier and Démoulin
1998, Lionello et al. 2002), and this could explain why prominences form again in the same
place between CMEs during the active region dispersion phase.

It also appears that the helicity, which keeps a constant value through the diffusion driven
evolution, cannot be the only parameter controlling the triggering of an ejection – the initial
configuration does not erupt, in spite of the fact that it has the same helicity as the final erupting
one. Then having a large enough helicity seems to be a necessary condition for an ejection to
occur, but not a sufficient one.

Finally, from the observational point of view, changes at the photospheric level in both jz

(vertical component of the electric current density) and Bz may be measured, as well as changes
of the twist of the coronal configuration. For instance, each half-turn of twist observed in the
twisted arcade configuration merges to give a flux rope of twist 2π, with the same magnetic
helicity. This is an evidence of conversion of mutual helicity to self-helicity with conservation
of the total magnetic helicity (see Fig. 2). By the same token, the coronal magnetic helicity
contents cannot be explained by this process. Therefore, the amount of magnetic helicity in the
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pre and post CME configurations depends entirely on that of the initial force-free configuration
possibly injected by emergence (although we cannot exclude the possibility of some addition
due to differential rotation and boundary motions as in Amari et al. (2003a) since these have
been proved not to inject helicity into the system).

To describe an evolution driven by flux submergence through the boundary, it is possible to
set (Amari et al. 2000)

∇2
sψ(x, y, t) = µBz(x, y, 0, t0) , (53)

with µ < 0 a constant. Eq. (53) results in a linear variation of Bz on S , and the associated
evolution of a bipolar configuration leads to a transition to nonequilibrium when the rapidly
decreasing energy of the open field becomes of the order of the magnetic energy of the con-
figuration, unlike for the diffusion case. We have recently extended (Amari et al. 2007) these
calculations to the case of a quadrupolar configuration having an X-point in D = {z > 0} (see
Fig. 3). As for the simple topology case, the evolution leads to the formation of a TFR and its
disruption accross the overlying system of magnetic lines which have a weaker tension. This
proves that the observed presence of an X-point in an erupting configuration cannot be taken
as evidence in favor of the validity of the Break-Out model of Antiochos et al. (1999). Flux
cancellation can operate as well in a quadrupolar configuration to initiate an eruptive event.

Let us conclude this subsection by a general comment on the relation between the appear-
ance of a catastrophic phase in the evolution of a field, and the way the magnetic energy com-
pares with the energy of the open field. For most of the cases considered above, the energy W(t)
is monotonically increasing and approaches Wσ (which remains constant as Bn is kept fixed),
but it fails to reach this bound. In FCM however, flux changes on the boundary and Wσ(t) de-
creases at a fast rate, while the free magnetic energy actually increases. As a result we have
W(t) becoming very close to Wσ(t) only for this mechanism. Moreover, we see that TFRs are
important in this respect since configurations for which W(t) exceeds Wσ(t) contain such an
object (which would be disconnected from S in 2D). This is an interesting feature since in the
3D FCM we have proposed that a TFR which remains connected to the boundary is created, and
allows Wσ(tc) ' W(tc) at the critical time. Flux cancellation as it is currently observed (Welsch
2006, Wang and Sheeley 2002), could therefore be considered as a good explanation for the
triggering of a CME, and the open field conjecture could be a key feature of this mechanism.

7 SUBPHOTOSPHERIC DRIVEN EVOLUTION OF B: NU-
MERICAL APPROACH

7.1 General statements

In the approach followed in the previous section, the details of the physics of the subphoto-
spheric layers are completely omitted, and their influence on the corona is taken into account by
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merely imposing changing boundary conditions on S . These may be chosen either to fit some
observations on the photosphere, or to mimic phenomena which are expected to take place be-
low on theoretical grounds. This state of affairs is not fully satisfying, and it is certainly worth
trying to include in the system under study both the corona and the convection zone (or at least
its upper part) to get a more consistent picture. Clearly, the most satisfying way to realize this
would be to use the results of recent studies dealing with the rising through the convection zone
(CZ) of flux ropes either having a minimum amount of twist in order to reach the solar surface
(Moreno-Insertis and Emonet 1996, Linton et al. 1998, Fan et al. 1999, Linton et al. 1998, Fan
et al. 1999, Abbett et al. 2000, Fan 2001) or having already started to emerge (Magara 2001,
Magara and Longcope 2003, Magara 2004, Abbett and Fisher 2003). This turns out however to
be too ambitious, due to many technical difficulties, and we have therefore considered in a first
step a model in which the corona is described dynamically as in our boundary driven evolution
studies, while the convection zone is described kinematically, the motions inside being assumed
to be given. Actually, we have considered two models, differing from each other by the types
of the motions in the convection zone.They are taken to be purely vertical in the first case, and
to be convective in the second case, being organized in cells in which the motions near the
photosphere are mostly horizontal.

As in the previous section, we want to model what happens in an active region rather than
in the whole corona, and thus we neglect the curvature of the solar surface. The corona is
represented by the upper half-space D = {z > 0}, and the convection zone by the layer D∗ =
{−h < z < 0} – actually by the bounded but large domains Db and D∗b, respectively, in practice.
Note that the total helicity in D∪ D∗ is approximately conserved owing to the low resistivity of
the plasma.

7.2 Rigid emergence model

In the first model (Amari et al. 2004), we start from a TFR located at the basis of D∗, and we
impose a nonuniform vertical velocity field vB = v(x, y)ẑ in all that domain. Although quite
simple, this approach allows to add an important element to our models without the necessity
to solve the difficult problem – actually a true numerical challenge! – resulting from the strong
variation of some physical quantities accross the thin photosphere (Amari et al. 2004). As usual,
we use in our calculations the tangential component

Es = vB
z Bs (54)

of the electric field at the boundary S , which is the important quantity controlling the exchanges
between D∗ and D through S .

The imposed velocity field turns out to be sufficient to get an emergence of magnetic flux
and electric current in the corona. Once this emergence has occurred, the subsequent evolution
of the field in D exhibits two phases. During the first one, the coronal field in D evolves
quasi-statically through a series of equilibria. At some time, however, there is a change in the
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topology of the lines, which evolves from an arcade type to a flux rope type. Thus there is
a second phase during which the configuration experiences a nonequilibrium transition, and
the TFR does not stay any longer in equilibrium. The topological transition as well as the
development of the nonequilibrium both occur when the net flux on the photosphere has already
started decreasing, which happens when a sufficiently large part of the tube has already emerged
through the photosphere. The formation of a TFR occurs without reconnection and the magnetic
energy of the configuration in D stays between the magnetic energy of the potential field and
that of the open field field having the same distribution of flux.

Similar behaviour has been found when vB is uniform in the presence of a pre-existing
coronal magnetic field (Fan and Gibson 2003, 2004, Fan 2005)

7.3 Photosphere prevents rigid emergence : the Resistive Layer Model

The simple picture presented above is somewhat limited. Indeed, we impose in the CZ a vertical
flow which still persists at the photospheric boundary (we just stop it from time to time to check
the existence of an accessible nearby equilibrium), while the actual rising flow is certainly
expected to be reduced when hitting the sharp and optically thin photospheric layer, with the
subsequent appearance of a tangential velocity field. This is actually what is shown by some
numerical studies of the emergence through the stiff photosphere of an individual flux rope
launched not too deep in the CZ (Fan 2001, Magara and Longcope 2003, Abbett and Fisher
2003, Magara 2004, Manchester IV et al. 2004): There is a large horizontal component of the
velocity field and then a cell-like structure of the motions. We are thus lead to address the
following question: How it is possible for a magnetic structure to emerge when the flows are
almost horizontal at the top of the convection zone. To make a step towards the solution to that
problem, we introduce the Resistive Layer Model (RLM) (Amari et al. 2005) which allows us
to close a subphotospheric MHD model by naturally allowing the transfer of magnetic energy
and helicity into the solar corona through non current-free fields. The resistive layer modelizes
a turbulent photospheric boundary layer in which the effective resistivity is larger than in the
convection zone below and in the corona above. It has been suggested by many observations,
like the observations of Ellerman bombs (Pariat et al. 2004), that the photospheric resistivity
plays an important role in many solar activity processes.

In this approach, the horizontal component of the electric field, Es, is continuous during
the crossing of the RLM, but its expression changes from an inductive form (related to the
convection flow) near the top of the convection zone to a resistive form inside the photospheric
layer and again to an inductive form at the basis of the corona, where it acts as the driver of an
evolution in which force-free magnetic fields are naturally produced.

We have found that in the case η = 0 (which was run for a test) the TFR in D∗ is strongly
deformed, but no flux is transferred through S . Emergence into D occurs only when η , 0, and
it implies in that case both the magnetic flux and the electric current, i.e., the emerging field
appears to be sheared. This shows that a closure of the MHD model in D∗ by a current carrying
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solution in D can be performed only in the presence of resistivity when the condition vz = 0 is
imposed on S . As magnetic flux and electric current continue emerging, a critical time t f l > 0
is reached at which the magnetic topology switches from an arcade type to a TFR type. This
transition occurs while the rate of increase of the magnetic flux on S starts decreasing. Later on,
the configuration inflates much more rapidly as shown by the variation of the kinetic energy.
Eventually, it reaches the top of the domain, exhibiting a dynamic transition at some critical
time tc, 0 < t f l < tc. Moreover, the energy Wπ of the potential field having a distribution of
Bz on {z = 0} identical to that of B, first increases and thus decreases at a finite rate. But the
energy W of the configuration decreases at a much smaller rate than Wπ. Unlike the case of the
purely vertical CZ flow considered in Amari et al. (2004), the total relative magnetic helicity
does not keep increasing at the same rate, but seems to saturate at a value outside the limits of
the simulations.

By introducing a resistive layer of width equal to that of the return layer where the con-
vection flow matches the photosphere, it is thus possible to transfer a part of the transverse
component of B from the region where vz is strong to the corona. In the case where the rising
of a TFR is described by a kinematical convection model, the RLM exhibits several features
observed in full MHD simulations of the transition between the convection zone and the chro-
mosphere, such as concentration of magnetic flux and transfer of magnetic helicity. However,
it shows that a divergence-free velocity field closing up at the boundary implies a tendency
for magnetic energy and helicity to saturate, a feature not seen when imposing vertical com-
pressible nonuniform motions (Amari et al. 2004). As in several previous studies (Amari and
Luciani 2000, Amari et al. 2003b, 2004), a TFR is produced during an equilibrium phase of
the evolution rather than during a major disruption as in Amari et al. (2003a) and Antiochos
et al. (1999). Note that the RLM could be used to couple coronal models with more elaborate
large scale CZ models such as anelastic spherical harmonics or compressible models. While
the results obtained in Amari et al. (2004) show that the TFR may emerge without any recon-
nection occurring at the photosphere, the RLM shows that the role of resistivity and therefore
of reconnection is important in this layer, as it was the origin of the coronal models driven by
flux changes (Amari et al. 2000, 2003b). The reconnection location is however different from
that one in the work by Antiochos et al. (1999) in which reconnection is necessary in the corona
above the sheared arcade to trigger the large scale disruption.

8 CONCLUSION

We have reviewed in this paper some of the analytical and numerical work we have recently
done with several collaborators on two important topics of solar physics: The problem of the
reconstruction of the field of an active region from measurements made at the photospheric
level, and the problem of the MHD evolution of the coronal field driven by changes imposed
by the dense plasma constituting the subphotospheric layers – our main motivation for studying
these problems being that they are likely to be important for understanding the initiation of
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large scale eruptive events, and for establishing efficient tools for predicting them. Although
some important progress has been made in the study of both problems by us and by several
other teams, there are still a lot of interesting issues which are unsolved, and we would like to
indicate some of them in form of a conclusion.

Let us first consider the force-free model, which constitutes a convenient approximation
which may be thought a priori to give a good description of the corona, but during the most
violent phase of an eruptive event. Among the problems we would like to see being solved in a
not too far future, we quote the following ones:

• Proving or disproving the conjecture C according to which the least upper bound on the
energies of all the force-free fields in the unbounded domain D which share the same flux
distribution Q on the boundary is just the energy of the open field. As a first step, it would
be interesting to understand from a mathematical point of view the recent numerical re-
sults suggesting that the conjecture could be true only for the restricted class of fields
having all their lines connected to the boundary (conjecture Cc).

• For the theoretical part of the reconstruction problem: Finding a proof of convergence of
the Grad-Rubin scheme valid for fields of arbitrary complexity occupying the half-space.

• For the practical reconstruction problem: Determining which one among the algorithms
proposed so far is the more efficient for a fast extrapolation of the boundary measure-
ments to the corona. This point may be first explored by using tests based on a known
solution, with the possible addition of some amount of noise, but eventually the algo-
rithms should be compared on the actual new challenging data provided by THEMIS,
SOLIS and SOLAR-B.

• For the boundary driven evolution problem: Determining the maximal interval of time
[0,T [ (with possibly T = ∞) for which a sequence of fields solving the axisymmetric and
the fully 3D problems do exist. As a first step here, it would be interesting to investigate
in more details the conjecture of Zhang et al. (2006) on the existence of a upper bound on
the helicity which can be injected into a force-free field.

As for the more complex MHD model, we indicate the following problems:

• Extending some of the analytical results which have been obtained for the boundary
driven evolution in the framework of the force-free model (e.g., the fast expansion of
a structure and its eventual opening) by including the effects of inertia and/or resistivity.

• Elucidating the role of the instabilities of the kink type in the evolution of a magnetic
structure.

• Computing the evolution of various structures of complex topology in order to have a
larger set of results for comparison with the observations, the goal being of course to be
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able to determine eventually which one of the models – breakout or cancellation, or both,
or none – is really able to explain the initiation of an eruptive event.

• Improving the models in which both the corona and the convection zone (or at least the
upper part of it) are included. In particular, we would like to give up our kinematic de-
scription of the convection zone, by taking into account in a dynamical way the effects of
the stratification and the associated buoyancy. Note that the next generation of space mis-
sions following SOHO will provide useful hints and constraints for the subphotospheric
models.

Finally, we want to stress the importance of developing in parallel the analytical and the
numerical approaches, which turn out to be quite complementary. Analytical studies allow
indeed to establish from first principles general results providing qualitative informations at
least on the gross behavior of simple fields. Numerical simulations on the contrary can deal
only with specific cases, but they are able to describe them quantitatively in details, even when
intricate phenomena like 3D reconnection occur in the system under consideration.
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Table 1: Comparison between the solutions obtained by using our two implementations of the
Grad-Rubin methods in XTRAPOL and FEMQ, and the exact solution called FF1. The error
diagnostics are defined as in Schrijver et al. (2006) and Amari et al. (2006) by VC(u, v) =∑N

i=1 ui · vi/
√∑N

i=1 | ui |
2
√∑N

i=1 | vi |
2 , CS (u, v) = (1/N)

∑N
i=1 | ui · vi |/| ui || vi | , NVE(u, v) =∑N

i=1 | vi − ui |/
∑N

i=1 | vi | , MVE(u, v) = (1/N)
∑N

i=1 | vi − ui | /| ui | , where u and v denote the
exact solution and a numerical one, respectively, and N is the number of computational nodes.

Model VC CS NVE MVE || ∇ · B ||L∞
Exact Solution 643 1 1 0 0 theory: 0 residual 1.510−2

FEMQ 643 0.9999 0.9999 0.0097 0.0109 0.056
XTRAPOL 643 0.9999 0.9999 0.0208 0.0162 0.5310−14

XTRAPOL 1283 0.99999 0.99999 0.0043 0.0058 0.1510−13
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Figure 1: Comparison of a selected set of field lines obtained with our two implementations of
the Grad-Rubin method in XTRAPOL (a) and FEMQ (b), and the exact solution called FF1 (c).
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Fig. 1.—Configuration obtained at after applying a localized bound-t ! 550
ary twisting vector field shown at the bottom of the figure (superposed to the
photospheric image of the Bz distribution) to the equilibrium configuration
obtained at the end of shear buildup (shearing motions followed by a relaxation
phase) at .t ! 400

Fig. 2.—Evolution of the configuration (obtained at the end of shear buildup ; left) from an arcade-like topology to a twisted flux rope–like topologyt ! 400
(right), after applying an electric field corresponding to diffusive photospheric boundary conditions ( ).t ! 480

of 10 time units) and the system is allowed to relax up to
to an accessible neighborhood equilibrium.t ! 400

3. TWIST BUILDUP BY IDEAL MHD PHOTOSPHERIC MOTIONS

For , we now start applying a twisting boundaryt ≥ 400
velocity field such that the free function w in equation (1) is
given by two Gaussian distributions located on each side of
the neutral line of this new initial configuration, as shown in
Figure 1 (superposed to the photospheric image of Bz) with

. This velocity field corresponds to two parallel vor-"2v ! 100

tices rotating in the same direction and located symmetrically
with respect to the origin O of the plane [their center is (!1.4,
!0.5) with respect to O] and width equal to 0.4. The ramp

function f, which is used to smoothly switch on or off the
velocity field, is chosen to be linear. The configuration evolves
through a sequence of force-free equilibria with a monotoni-
cally increasing energy. Figure 1 shows one of this intermediate
equilibrium obtained at after these twisting motionst ! 550
have been applied. We actually checked that the configuration
relaxed toward an equilibrium by performing a viscous relax-
ation procedure (see ALAT; Amari et al. 1996b). The config-
uration clearly presents a twisted flux tube aligned along the
neutral line and still confined by an overlaying arcade. The
maximum value of is 8.2 in our units. The concavity isFaF
directed upward in the central part of the tube, which implies
(Amari et al. 1991) a configuration favorable to material
support.

4. DIFFUSIVE PHOTOSPHERIC MHD PROCESS

Let us now consider again the sequence of equilibria obtained
in § 3 with boundary shearing motions. Let us then apply

with as boundary con-v (x, y, t) ! v (x, y, t) ! 0 t ! [0, 400]0x y

ditions for and apply a tangential electric field corre-t 1 t0
sponding to diffusion of Bz on the boundary only, while{z ! 0}
the domain is treated ideally ( ). Let us take two{z 1 0} h ! 0
particular cases:
1. : In the first case, we choose as the initial statet ! 4000

for this relaxation process the configuration obtained at the end
of the process of shearing and ideal viscous relaxation consid-
ered in § 2. As shown on Figure 2 ( ), reconnectiont ! 480
takes place on the sheared field lines (mainly along the neutral
line; left), producing a large twisted flux tube (right). Although
the net twist is about the same order as for the configuration
obtained in § 3 (almost 3p) with an ideal process, the amount
of flux from which the field lines that have the upward con-
cavity originate is larger, leading to a much larger magnetic
dip favorable for material support. Note that in the ideal MHD
case considered in § 3, the twisting motions produce electric
currents that tend to make the tube deviate from its axis, while
we actually found that in the diffusive case the large electric
currents (corresponding to ) are created by thoseFaF ! 36.6max

currents originating from the highly sheared field lines and are
strongly confined to the core of the twisted flux rope—along
the tube axis—keeping the structure aligned with its axis.

Figure 2: Conversion of mutual helicity into self helicity during the process of flux change
occuring at the boundary. The total magnetic helicity is conserved during this process.
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Figure 3: Selected set of field lines for the MHD flux cancellation driven evolution of an initially
quadrupolar configuration having an X-Point in D = {z > 0}.
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Photosphere :
 resistive layer, turbulent diffusion, mixing ...

– 3 –

This problem represents a serious numerical challenge as we have to solve a global MHD

problem including both the large scale CZ and atmosphere and their small scale boundary
layer interface through which the physical quantities suffer very stiff changes.

The key quantity controlling the transfer of energy and helicity between two regions
has been abundantly shown in our previous studies to be the parallel component Es of

the electric field. Thus our approach here is based on following up the value of the latter
throughout a turbulent photospheric boundary layer in which the effective resistivity is larger
than in the CZ just below and in the corona above, and that we modelize by a resistive layer.

Basically, Es is continuous during this crossing, but its expression changes from an inductive
form (related to the convection flow) near the top of the CZ to a resistive form inside the

photospheric layer and again to an inductive form at the basis of the corona, where it acts
as the driver of an evolution in which force-free magnetic fields are naturally produced.

The RLM is described in general terms in Sect. 2. In Sect. 3, it is illustrated by the
computation of a case in which an initially twisted flux rope is kinematically raised by a

convection cell in the CZ and evolves in a full MHD way after its emergence in the corona.

2. THE RESISTIVE LAYER MODEL

We take the solar corona, the CZ, and their interface to be represented, respectively, by
the upper half-space Ω+ = {z > 0}, the lower one Ω

−
= {z < 0}, and the plane Γ = {z = 0}.

We assume that two MHD models are available for determining for all t > 0 the evolution

in Ω+ and Ω
−
, respectively, of a state {B,v, p, ρ} (with standard notations). Moreover, we

suppose that the normal component of the velocity vanishes on Γ (vz = 0). We recall that,

from Ohm’s law, we have for the horizontal component of the electric field at any point

Es = ẑ × (Bzvs − vzBs) + ηjs, (1)

where η is the magnetic diffusivity and Xs = Xxx̂+Xyŷ. This quantity which is continuous

accross any interface will play a basic role hereafter.

Let us first take the plasma to be perfectly conducting in both domains, whence Es =
ẑ × v+

s Bz = ẑ × v−

s Bz on Γ by Eq. (1) (the +/− indicate a value just above/under an
interface). Therefore v+

s = v−

s and we just get a generic shearing-like boundary condition

for the field in Ω+, with the associated injection of magnetic helicity depending on the only
component Bz of B (the component Bs has disappeared from the expression of Es, in con-

trast with the situation considered in Amari et al. (2004)). But Bs contributes in general to
the creation of a nonzero normal component of the electric current on Γ

−,+.
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ẑ × v+

s Bz = ẑ × v−
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Let us now introduce at the top of Ω
−

a thin resistive layer ΩRBL of width zRBL –

i.e., a region of nonzero resistivity which may be thought to mimic the turbulent pho-
tosphere at the top of the CZ in which an effective resistivity enhancement is expected.
Then ΩRBL is comprised between the upper plane Γu

RBL = Γ and the new lower interface

Γl
RBL = {z = −zRBL}, and Es is continuous across both of them. On Γu

RBL, we have now
Es = ẑ×v−

s Bz + ηj−s = ẑ×v+
s Bz. The second term in the middle member is crucial since it

shows that the MHD state in Ω
−

depends on the one in Ω+ through B. In principle, the ker-
nel in Ω+ could be : (i) Potential : B = ∇Φ, with ∆Φ = 0, ∂zΦ(x, y, 0, t) = g(x, y, t).

(ii) Force-free: ∇ × B = αB, Bz(x, y, 0, t) = g(x, y, t) and α(x, y, 0, t) = h(x, y, t) on
{r ∈ Γ | Bz(r, t) > 0}, with h being determined by Bs in ΩRBL. (iii) MHD: B is ob-
tained by solving the full set of MHD equations. As noted in the Introduction, option (i) is

often adopted for closing dynamo models (e.g., Brun et al. (2004)); option (ii) seems to have
never been implemented so far, while option (iii) is the one considered here.

In order to fix an adequate value of zRBL, we consider the various length and time

scales involved in the problem. We first define the return layer in Ω
−

to be the layer of
thickness ∆RL in which v switches from an almost vertical direction to an horizontal one in

order to match the condition vz |Γ= 0, and assume that ∆RL << LC , with LC the global
length scale of the domain. As shown in Amari et al. (2003b,a, 2004), the key quantity to

transfer magnetic helicity into Ω+ is Es, and the latter was efficiently determined in our
previous kinematic model (Amari et al. 2004) by the imposed purely vertical velocity field
v
−

= vz(x, y)ẑ. We therefore choose as a first condition (C1): ∆RL ≈ zRBL. Accross Γl
RBL,

the expression of Es switches from the ideal form Es = −ẑ × vzB
−

s valid below (we neglect
here the weak horizontal velocity) to a resistive form, and it switches back from a resistive

form to an ideal one on Γu
RBL. The net effect may be described as a transfer through ΩRBL

of the parallel component Bs of the field from the region in Ω
−

where vz is non zero into Ω+.
Next we introduce the diffusion time τD associated to zRBL, the characteristic convection

time τC associated to LC and the characteristic time τMHD associated to the coronal MHD
evolution (typically τMHD = τAlfven). In order to have the magnetic field convected in

Ω
−

not diffusing before being transferred upwards, we impose τD & τC . As zRBL ' LC

(C1), this is obtained by requiring (C2) η being not too large. As a last condition (C3),

we demand that τC ! τMHD so that the coronal evolution should adapt to subphotospheric
changes (either quasi-statically or at most on the wave crossing time scale). This is fullfiled
by taking vC " vMHD (vC ' vAlfven in the case considered below).
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s Bz + ηj−s = ẑ×v+
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Figure 4: In the Resistive Layer Model a resistive layer is introduced above the convection zone
to model the diffusive photospheric layer.

47


