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ABSTRACT

Context. The Sun is a magnetic star whose magnetism and cyclic activity is linked to the existence of an internal dynamo.
Aims. We aim to understand the establishment of the solar magnetic 22-yr cycle, its associated butterfly diagram and field parity
selection through numerical simulations of the solar global dynamo. Inspired by recent observations and 3D simulations that both
exhibit multicellular flows in the solar convection zone, we seek to characterise the influence of various profiles of circulation on the
behaviour of solar mean-field dynamo models. We focus our study on a number of specific points: the role played by these flows
in setting the cycle period and the shape of the butterfly diagram and their influence on the magnetic field parity selection, namely
the field parity switching from an antisymmetric, dipolar field configuration to a symmetric, mostly quadrupolar one, that has been
discussed by several authors in the recent literature.
Methods. We are using 2-D mean field flux transport Babcock-Leighton numerical models in which we test several types of merid-
ional flows: 1 large single cell, 2 cells in radius and 4 cells per hemisphere.
Results. We confirm that adding cells in latitude tends to speed up the dynamo cycle whereas adding cells in radius more than triples
the period. We find that the cycle period in the four cells model is less sensitive to the flow speed than in the other simpler meridional
circulation profiles studied. Moreover, our studies show that adding cells in radius or in latitude seems to favour the parity switching
to a quadrupolar solution.
Conclusions. According to our numerical models, the observed 22-yr cycle and dipolar parity is easily reproduced by models includ-
ing multicellular meridional flows. On the contrary, the resulting butterfly diagram and phase relationship between the toroidal and
poloidal fields are affected to a point where it is unlikely that such multicellular meridional flows persist for a long period of time
inside the Sun, without having to reconsider the model itself.
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1. Introduction

The Sun possesses striking magnetic and dynamical properties,
such as its turbulent convective envelope, large-scale surface
differential rotation, 22-yr cycle of magnetic activity, butterfly
diagram of sunspot emergence, hot corona, etc. (Stix 2002).
Understanding how the physical processes operating in the so-
lar turbulent plasma nonlinearly interact to yield this wide range
of dynamical phenomena is very challenging. One successful
and powerful approach is to rely on multi-dimensional magne-
tohydrodynamics (MHD) numerical simulations. Today, despite
tremendous advances in building powerful supercomputers, it is
still not possible to compute a fully integrated 3-D MHD model
of the Sun starting from its core up to its corona. One is thus
forced to study individually complementary pieces of the full
solar MHD puzzle and to progressively incorporate them in a
more nonlinearly coupled model. One important characteristic
of the Sun that needs to be understood is the origin of its mag-
netic activity because it has direct societal impact by impairing
satellites, damaging electric power grids, interfering with high
frequency radio communications and radars. It is currently be-
lieved that the solar magnetism is linked to an internal dynamo
(Parker 1955). More precisely the Sun is the seat of both a small
scale and irregular dynamo and a large scale and cyclic dynamo
that generate and maintain its magnetic field and lead to the var-
ious magnetic phenomena observed at its surface (Parker 1993;
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Cattaneo & Hughes 2001; Ossendrijver 2003). Developing nu-
merical models of the solar dynamo has thus been a very active
field of research. This has mainly involved two types of numeri-
cal experiments:

– kinematic solar dynamo models that solve only the induc-
tion equation in its mean field approximation and assume the
velocity field as given (Steenbeck & Krause 1969; Roberts
1972; Stix 1976; Moffat 1978; Krause & Radler 1980; see
Charbonneau 2005 and Solanki et al. 2006 for recent re-
views). These models rely on the parametrization of two im-
portant effects that are thought to be at the origin of the solar
global dynamo, the α and Ω effects. They provide a useful
and fast tool to model the solar 22-yr magnetic cycle and
its associated butterfly diagram since no feedback from the
Laplace force on the motion is accounted for.

– or dynamical solar dynamo models that solve explicitly
the full set of MHD equations (Gilman 1983; Glatzmaier
1985; Cattaneo 1999; Brun et al. 2004). These models self-
consistently compute all the physical processes in three di-
mensions allowing significant progress to be made on the
intricate interactions operating in a turbulent magnetized
plasma. The cost of 3D models and the large number of de-
grees of freedom needed to model the whole Sun make it
difficult, as of today, to provide quantitative predictions such
as the cycle period.

Clearly, both approaches are complementary and are needed to
better understand the magnetic solar activity. Since the original
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ideas of Parker regarding the operation of a hydromagnetic dy-
namo in the Sun, many articles have been written to improve our
understanding of this subtle physical process. In the late 70’s,
solar dynamo models were relying on a cylindrical differential
rotation profile and an α-effect linked to non-reflexion symmet-
ric motions within the turbulent and rotating solar convection
zone (CZ), the so called α − Ω dynamo. In such dynamo mod-
els, the product of α and ∂Ω/∂r must be negative in the northern
hemisphere in order to obtain an equatorward butterfly diagram
(Yoshimura 1975). However, these distributed α − Ω dynamo
models have since been discarded for two main reasons: first
the inversion in the mid 80’s of the internal solar rotation pro-
file (Brown et al. 1989; Thompson et al. 2003) showed a conical
differential rotation profile in the convection zone (∂Ω/∂r ' 0)
rather than a cylindrical profile. Secondly, it was demonstrated
that strong magnetic fields could significantly reduce the ef-
ficiency of the α-effect, in a phenomenon called α-quenching
(Ossendrijver 2003). In a landmark paper, Parker (1993) pro-
posed the segregation of sites of generation of the poloidal field
on the one hands with that of the toroidal field in the other hand,
in what is now called the interface dynamo. He was encouraged
by the latest helioseismic inversions which indicated the exis-
tence of a swift transition from the differential rotation of the
solar convection zone to an inner solid body rotation in the ra-
diative interior, i.e the tachocline (Spiegel & Zahn 1992). In the
late 90’s, Charbonneau & Mc Gregor (1997), were the first to
incorporate all the ingredients of the modern interface dynamo:
a solar-like (conical) differential rotation + a tachocline, a sepa-
rate site of generation of poloidal field (in the convection zone)
vs the toroidal field (in the tachocline). They showed that with
this new solar dynamo model, the 22-yr cycle period, the but-
terfly diagram, the phase relationship between the poloidal and
toroidal fields and the field parity can be reproduced. However,
these models do not include meridional circulation (MC). To
address this issue, Dikpati & Charbonneau (1999) computed
Babcock-Leighton (BL) models (Babcock 1961; Leighton 1969;
Choudhuri et al. 1995) with a solar-like Ω profile and an unicel-
lular meridional flow. They showed that a solar dynamo model
based on this so-called Babcock-Leighton flux transport dynamo
could also be successful at reproducing most of the solar global
magnetic properties. In this model, the meridional circulation
transports the poloidal field from the surface, where it appears
through the twisted nature of the solar active regions, to the bot-
tom of the convection zone where it is transformed into a toroidal
field in the tachocline. This meridional circulation thus plays a
major role in the behaviour of BL flux transport dynamo models.
It is then important to understand its origin and structure in the
Sun.

An analysis of the governing equations tells us that mean
meridional flows arise from a combination of buoyancy forces,
Reynolds stresses, latitudinal pressure gradients and Coriolis
forces acting on the mean zonal flow (differential rotation)
(Miesch 2005). The competition of these physical processes
make it difficult to anticipate the meridional flow profile. Inside
the solar envelope, this flow is much weaker than the differential
rotation, making it relatively difficult to measure. Furthermore,
although it can in principle be probed by global helioseismology,
its effect on global acoustic waves is weak and difficult to distin-
guish from rotational and magnetic effects. Thus, we must cur-
rently rely on surface measurements and local helioseismology.
The 15 m.s−1 poleward flow observed at the surface (Hathaway
1996) has been confirmed by local helioseismology with great
accuracy down to r/R� = 0.95 (Haber et al. 2002) and some
attempts have been made to probe the MC down to r/R� = 0.85

(Giles et al. 1997; Schou & Bogart 1998; Braun & Fan 1998) but
the pattern and localisation of the equatorward return flow is still
not well established. Today, the favoured solar dynamo models
are of flux transport type, assuming both a source of poloidal
field at the surface (a BL source term) and at the bottom (α-
effect like) (Bonanno et al. 2002; Dikpati et al. 2004; Küker et al.
2001; Chatterjee et al. 2004). In particular, recently these models
have been successful at reproducing a series of solar cycle and
even for starting to predict the next/starting solar cycle (cycle
24) (Dikpati & Gilman 2006).

In this paper we will follow the kinematic approach, by com-
puting 2-D axisymmetric mean field solar dynamo models of the
flux transport BL type. We seek to answer the simple follow-
ing questions: What is the role of meridional flows in setting
the solar cycle period and butterfly diagram? Can the presence
of multicellular meridional flows lead to variations of the gen-
eral properties of the solar activity? The motivation behind these
questions is that both observational evidence via local helioseis-
mology technics (Haber et al. 2002) and 3-D MHD numerical
models as described above (Miesch et al. 2000; Brun & Toomre
2002; Brun et al. 2004; Browning et al. 2006) exhibit multicellu-
lar flow both in radius and latitude. If such permanent multicel-
lular flow were indeed acting continuously in the Sun, it is likely
that it will lead to a different solar global dynamo model since to-
day most models rely on a single monolithic meridional flow to
transport poloidal field from the surface down to the tachocline
at the base of the solar convection zone.

The paper is organized as follows: in Sect. 2, we present the
mean field induction equation and the ingredients of the model,
in Sect. 3, we discuss the results of our study, mainly the ef-
fect of introducing many meridional cells both in latitude and
radius in the model. In Sect. 4 we discuss the influence of the
more complex meridional flow in setting the field parity (i.e ei-
ther dipolar or quadrupolar) and we conclude in Sect. 5. Finally,
the numerical techniques used to solve the induction equation
and the boundary conditions introduced to compute the tempo-
ral evolution of our solar dynamo models are presented in the
appendix.

2. Setting the solar dynamo model

2.1. Mean field equations

To model the solar dynamo, we use the hydromagnetic induction
equation, governing the evolution of the large scale magnetic
field B in response to advection by a flow field v and resistive
dissipation.

∂B
∂t

= ∇× (v × B) − ∇ × (η∇× B)

where η is the effective magnetic diffusivity.
Working in spherical coordinates and under the assumption

of axisymmetry, we write the total mean magnetic field B and
the velocity field v as:

B(r, θ, t) = ∇ × (Aφ(r, θ, t)êφ) + Bφ(r, θ, t)êφ

v(r, θ) = vp(r, θ) + r sin θΩ(r, θ)êφ

Note that our velocity field is time-independant since we
will not assume any fluctuations in time of the differential ro-
tation Ω or of the meridional circulation vp. Reintroducing this
poloidal/toroidal decomposition of the field in the mean induc-
tion equation, we get two coupled partial differential equations,
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one involving the poloidal potential Aφ and the other concerning
the toroidal field Bφ .

∂Aφ
∂t

=
η

ηt
(∇2 − 1

$2
)Aφ − Re

vp

$
· ∇($Aφ) + CsS (r, θ, Bφ) (1)

∂Bφ
∂t

=
η

ηt
(∇2 − 1

$2
)Bφ +

1
$

∂($Bφ)

∂r
∂(η/ηt)
∂r

− Re$vp · ∇(
Bφ
$

)

− ReBφ∇ · vp + CΩ$(∇ × (Aφêφ)) · ∇Ω (2)

where $ = r sin θ, ηt is the turbulent magnetic diffusivity
(diffusivity in the convective zone), vp the flow in the meridional
plane (i.e. the meridional circulation), Ω the differential rotation.
The break of axisymmetry needed to circumvent Cowling’s anti-
dynamo theorem comes from the addition of a term S (r, θ, Bφ)
in Eq.(1), representing the BL surface source term for poloidal
field. In order to write these equations in a dimensionless form,
we choose as length scale the solar radius R� and as time
scale the diffusion time R2�/ηt based on the envelope diffusiv-
ity ηt. This leads to the appearance of three control parame-
ters CΩ = Ω0R2�/ηt, Cs = s0R�/ηt and Re = v0R�/ηt where
Ω0, s0, v0 are respectively the amplitude of the differential rota-
tion, of the surface source term and of the meridional flow.

Equations 1 and 2 are solved in an annular meridional cut
with the colatitude θ ∈ [0, π] and the radius r ∈ [0.6, 1]R�
i.e from slightly below the tachocline (r = 0.7R�) up to the
solar surface, using a finite element method (STELEM code)
which was validated thanks to an international dynamo bench-
mark (Jouve et al. 2007, see the appendix for more details on the
numerical technique). At θ = 0 and θ = π boundaries, both Aφ

and Bφ are set to 0 and at r = 0.6R� , both Aφ and Bφ are set to
0 . At the upper boundary, we smoothly match our solution to
an external potential field, i.e. we have vacuum for r ≥ R� . As
initial conditions we are setting a confined dipolar field config-
uration, i.e the poloidal field is set to sin θ/r2 in the convective
zone and to 0 below the tachocline whereas the toroidal field is
set to 0 everywhere.

2.2. The physical ingredients

The model “ingredients” are basically those used by Dikpati &
Charbonneau (1999). The rotation profile is a representation of
that deduced from helioseismic inversions, assuming a solid ro-
tation below 0.65R� and a differential rotation above the in-
terface. With this profile, the radial shear is maximal in the
tachocline:

Ω(r, θ) = Ωc +
1
2

(
ΩEq + a2 cos2 θ + a4 cos4 θ − Ωc

)

×
[
1 + erf

(
2

r − rc

d1

)]

with ΩEq = 1, Ωc = 0.93944, rc = 0.7R�, d1 = 0.05,
a2 = −0.136076 and a4 = −0.145713.

In BL flux transport dynamo models, the poloidal field owes
its origin to the twist of the magnetic field emerging at the solar
surface. Thus, the source has to be confined in a thin layer just
below the surface and as the process is fundamentally non-local,
the source term depends on the variation of Bφ at the base of the

convection zone. Moreover, a quenching term is introduced to
prevent the magnetic energy from growing exponentially:

S (r, θ, Bφ) =
1
2

[
1 + erf(

r − r2

d2
)

] [
1 − erf(

r − R�
d2

)

]

×
1 +

(
Bφ(rc, θ, t)

B0

)2
−1

cos θ sin θBφ(rc, θ, t)

where r2 = 0.95, d2 = 0.01, B0 = 105.

We assume that the net diffusivity in the envelope η is dom-
inated by its turbulent contribution whereas in the stable zone,
the value of the diffusivity has to be much weaker (we have
ηc << ηt). We smoothly match the two different constant val-
ues thanks to an error function which enables us to quickly and
continuously transit from ηc = 109 cm2 .s−1 to ηt which is a vari-
able parameter in our computations. It gives us the diffusivity
function below:

η

ηt
=
ηc

ηt
+

1
2

[
1 + erf

(
2

r − rc

d1

)]

We have now set up a detailed model of the global solar dy-
namo, using the framework of mean field theory. One of the key
ingredients of this kind of models is the meridional circulation.
We now investigate the influence of complex flows on the solar
dynamo and its global properties.

3. Influence of meridional circulation on magnetic
cycles

3.1. Our reference unicellular model

We first compute a model where we assume one large single
meridional cell per hemisphere which we will consider as the
reference model. The components of the meridional circulation
are those used in Van Ballegooijen & Choudhuri (1988) which
defines a steady circulation pattern, symmetric with respect to
the equator, with a single flow cell per hemisphere directed pole-
ward at the surface and allowed to penetrate a little below the
base of the CZ, where it is equatorward. With this typical model,
we are able to reproduce several aspects of the solar cycle, no-
tably its period of approximately 20 years, a strong equatorward
branch for toroidal field restricted to low latitudes, a phase shift
of π/2 between the surface polar field and the deep toroidal field,
so that the polar field changes its polarity from negative to pos-
itive when the toroidal field is positive and maximal in inten-
sity near the equator (Fig. 1). Moreover, the strong equatorward
branch for the toroidal field is the signature of the drag of the
toroidal field by equatorward MC at the base of the convection
zone and thus clearly shows the dominating effect of field ad-
vection over diffusion. Indeed, a least square fit indicates that
the cycle period T strongly depends on the meridional flow am-
plitude, i.e. T ∝ v−0.63

0 .
One could wonder why we are seeking to improve and mod-

ify the reference model given its relatively good agreements with
observations. There are in fact several reasons.

First, a 26-year interval studied by Snodgrass and Dailey
(1996) exhibited large temporal variations in the meridional flow
amplitude. Indeed they found that even if the latitudinal flow
peaked at about 15 m.s−1 in average, MC could achieve ampli-
tudes as large as 50 m.s−1. Given the strong dependance of the
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Fig. 1. Reference case: butterfly diagram (time-latitude cut at r = cst)
of the unicellular model with v0 = 643 cm.s−1, s0 = 20 cm.s−1 and
ηt = 5.1010 cm2.s−1. The contours of Bφ (upper panel) are plotted at the
base of the convection zone and Br (lower panel) is taken at the surface.
Contours are logarithmically spaced with 2 contours covering a decade
in field strength and red colours represent positive values of the field.
The vertical dashed line corresponds to the epoch of reversal of toroidal
field, the plain line correspond to the epoch of reversal of poloidal field
at the poles from negative to positive polarity and the dash-dotted line
corresponds to the positive maximum of toroidal field near the equator.

cycle period on the amplitude of the flow (if we triple the ve-
locity amplitude we reduce the period by about one-half), we
can thus wonder if a systematic period of about 22 years can be
conserved in this context of temporally varying flows. A study
of the impact of stochasticity in such BL models (Charbonneau
& Dikpati 2000) yet showed that these solar cycle models were
quite robust to stochastic variations of the meridional circulation.

Another argument against this type of BL models comes
from Dikpati & Charbonneau (1999) who showed that even if
the configuration of the toroidal field seems to fit the obser-
vations quite well particularly concerning the strong equator-
ward branch, a relatively strong toroidal field (103 G) is also
present at all latitudes. This strong field existing at all latitudes
could be significantly decreased by imposing a lower thresh-
old for quenching in the surface source term that would prevent
toroidal flux tubes that are too weak in intensity to rise through
the CZ and thus participate in the regeneration of the poloidal
field (Charbonneau et al. 2005).

Finally, Dikpati & Gilman raised in 2001 a major concern
about the BL flux transport model, concerning the symmetry of
the magnetic field with respect to the equator. They claim that, in
the particular range of parameters they are using to get a solar-
like period, the pure BL flux transport model fails to reproduce
the persistent antisymmetry of the toroidal field and that what-
ever the magnetic initial conditions imposed, this model would
always end up giving a quadrupolar configuration, which we do
not currently observe in the Sun (see Sect. 4).

Thus the single cell pure BL model does not seem fully satis-
factory and needs to be improved. Moreover, both observations
by Haber et al. (2002) and 3D simulations by Brun et al. (2004)
show multiple cells circulation in the CZ and modulation of the
MC with magnetic fields. Dikpati et al. (2004) and Bonanno et

al. (2005) computed dynamo models including 2 cells in lati-
tude per hemisphere. Dikpati, with a BL source term, found that
these additional cells tended to decrease the cycle period and
Bonanno, with a distibuted α-effect model, found that the global
pattern of the meridional circulation could strongly influence
the location of the dynamo action in the advection-dominated
regime. Consequently, we would like to verify the influence of
even more complex multicellular (both in radius and in latitude)
meridional flow on the cycle, on the butterfly diagram, on the
phase relationship between the poloidal and the toroidal parts of
the magnetic field.

3.2. Solar dynamo models with additional cells in the
meridional circulation

We focus here on two cases, the case with 2 cells in radius and
the case with 2 cells in radius and 2 in latitude. We will not deal
with the 2 latitudinal cells model, as this was already treated
by Dikpati et al. (2004) and Bonanno et al. (2005). The main
characteristics of the different cases studied are summarized in
Table 1.

To get a multicellular flow, we write the stream functionψ as
a product of Chebyshev polynomials in radius and of Legendre
polynomials in latitude. Through the following equations: ρvr =
1
z2
∂ψ
∂x and ρvθ = − 1

z
√

1−x2

∂ψ
∂z , with z = r, x = − cos θ and ρ =

1/z, which ensure that ∇.(ρv) = 0, we easily deduce the shape
of the meridional flow components from the polynomial stream
function.

3.2.1. Case 1: 2 cells in radius per hemisphere

For this case, all the ingredients are kept identical to the ref-
erence model but the meridional flow is modified. We set the
stream function ψ to:

ψ(x, z) = K1z(z − 0.6)(500(z − 0.8)3 − 20(z − 0.8))(x3 − x)

K1 is a normalization factor, i.e. it is chosen so that vθ/v0 = 1
at the solar surface and at a latitude of 45◦ (see Fig. 2).

In Fig. 3, we represent the butterfly diagram of case 1 with
the parameters used in the reference unicellular model. For this
model the cycle lasts 84.6 years, more than 3 times longer. The
increase of the period comes from the fact that the magnetic flux
is not transported from the surface to the interface as fast as it
was in the unicellular model. This is a direct consequence of
the presence of a return flow at mid depth. The two source re-
gions (the surface for the poloidal field and the tachocline for
the toroidal field) are thus not linked as directly as they were in
the reference model. This leads to a slower regeneration of the
toroidal field from poloidal field and vice versa.

We also see that since the meridional flow is directed pole-
ward at the base of the convective zone, we get a very strong
poleward branch for the toroidal field. Moreover, the last panel
of Fig. 2 shows that the latitudinal velocity intensity is 3 times
higher at mid-depth (where it is equatorward) than at the base of
the CZ (where it is poleward). As a consequence, the field is ad-
vected 3 times faster to the equator at mid-depth than to the poles
at the base of the convection zone and this explains the strong
domination over time of the poleward against the equatorward
branch seen on the upper panel of Fig. 3. This figure also shows
the existence of an equatorward branch between 0 and 30◦ as re-
quested by observations. A small amount of poloidal field is thus
advected towards the equator even though the flow is poleward
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Table 1. Summary of the 5 different cases and associated parameters. The last column indicates the period in years for each case.

Resolution Time step v0 ηt s0 Cycle Period
nx × nz (cm.s−1) (cm2 .s−1) (cm.s−1) (Yrs)

Reference case 1282 7.2 10−7 643 5.1010 20 21.8
Case 1a 256× 128 4.53 10−8 643 5.1010 20 84.6
Case 1b 256× 128 4.53 10−8 1916 1.491011 20 22.4
Case 2a 256× 128 4.53 10−8 643 5.1010 20 44.7
Case 2b 1282 7.2 10−7 1071 1.5 1011 20 22.4

Fig. 2. Stream function and components of the meridional flow multi-
plied by v0 = 643 cm.s−1 for the 2 radial cells model.

in this region. This is a direct consequence of the non-locality of
our surface source-term. Indeed, at these latitudes and between
0.73R� and 0.94R� , the toroidal field is advected toward the
equator by the MC flow. Both through advection and diffusion,
this equatorward-migrating toroidal structure is transported in-
ward near 0.7R� and as the poloidal source term is linked to the
toroidal field at this radius, the poloidal field ends up drifting
equatorward. This figure also shows the appearance of smaller
scale structures in the radial field at the surface. In particular,
we note a small equatorward branch (about 80 times less intense
than the value near the pole) in a very narrow band around the
equator (between −20◦ and 20◦ in latitude) which is of opposite
polarity than that of the present cycle. This branch is the rem-
nant of a small amount of field of the preceeding cycle which
was driven back up to the surface by the upper cell which creates
an upflow at mid-depth near the equator (see the radial velocity
profile on Fig. 2).

The dependance of the period of this model on variation of
the magnetic Reynolds number and thus of the velocity am-
plitude is very strong in comparison to the unicellular model.
In this case, we have the following dependance for the period:
T ∝ v−0.93

0 . The strong dependance of the cycle period on the

Fig. 3. Case 1a: butterfly diagram (time-latitude cut at r = cst) of case 1
with v0 = 643 cm.s−1. The format is the same as Fig. 1.

MC amplitude suggests that it would be easy to recover a solar
period of about 22 years, only by increasing the amplitude of
the meridional flow, keeping the other parameters constant. So
the maximum latitudinal velocity v0 needed to get a 22-yr cycle
period keeping s0 = 20 cm.s−1, ηt = 5 × 1010 cm2.s−1 would be
about 2500 cm.s−1 . However, if we only increase the MC ampli-
tude, we lose the antisymmetry of the toroidal field with respect
to the equator observed in the Sun (see Sect. 4). Thus, to keep
the correct dipolar parity for this 2 radial cell model, we need
to increase both the MC amplitude and the magnetic diffusivity,
hence, we get a solar-like parity 22-yr model with the follow-
ing parameters: s0 = 20 cm.s−1 , ηt = 1.49 × 1011 cm2.s−1 and
1916 cm.s−1. In Fig. 4, we represent the butterfly diagram for this
22-yr cycle case which also exhibits the phase relationship be-
tween the poloidal and toroidal fields. We maintain the equator-
ward branch for the toroidal field between 0 and 30◦. Moreover,
the radial field evolution is smoothened by the increased diffu-
sivity and we thus see much fewer small structures in the lower
panel of Fig. 4. We nevertheless note that we keep very strong
values for the polar field at the surface, which was also the case
for the reference model.

Adding a new cell in radius modifies the magnetic advective
path and thus the link between the two source regions (the sur-
face and the base of the convection zone). As a consequence,
the time-delay between the reversal of the polar field at the sur-
face and the maximum of toroidal field at the base of the CZ is
also modified. Indeed, the phase shift between the 2 components
of the magnetic field is here about π/3: we observe that as the
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Fig. 4. Case 1b: butterfly diagram (time-latitude cut at r = cst) of case
1b with v0 = 1916 cm.s−1 and ηt = 1.49 × 1011 cm2.s−1. The format is
the same as Fig. 1.

poloidal field reverses at the pole, the toroidal field has not yet
reached its maximum, thus lagging the poloidal field.

In Fig. 5, we show the field evolution in the meridional plane
of the 22-year cycle model. We see that the field configuration
tends to follow the complex nature of the MC. Indeed, we clearly
see that we are in the advection-dominated regime as the major
field concentration areas follow the meridional flow streamlines.
Figure 2 indicates that we have an upper cell with a poleward
flow very concentrated in a thin layer near the surface which
we recover on the magnetic patterns especially on panels c) and
d) where a small part of the toroidal field is being advected to-
wards the pole near the surface. Between 0.73 and 0.94R� (i.e in
more than 60% of the CZ), where the flow is equatorward, most
toroidal field of a chosen polarity is advected toward the equator
and amplified by the latitudinal shear of the poloidal field. As it
reaches the equator, it splits in two parts as we see on panel d),
one being redirected towards the surface where it will be driven
in the direction of the pole by the top of the upper meridional
cell and the other part, containing most of the toroidal field, be-
ing advected towards the base of the CZ. As the toroidal field
reaches the base of the CZ, the poleward flow advects the field
towards the pole [panels e) and f )] where it is amplified by the
radial shear of poloidal field which at the same time makes the
opposite polarity of the preceeding cycle decay away. We can
also see that the poleward branch of the toroidal field of one cy-
cle (cycle n) is “pushed” towards the pole both by the field of
cycle n − 1 and cycle n − 2, all present at the base of the CZ at
the same period of time. Panels d), e) and f ) show that the fields
of cycle n and n − 2, of the same polarity, even reconnect with
each other at a given time and stay connected during almost half
a magnetic cycle, before being split back by the diverging cells
of meridional flow.

We thus see that having many cells in radius impacts signif-
icantly BL models. We now turn to studying the coupled effect
of having two cells in radius and latitude.

b)
t=75.7

pB

a)

φB

t=73.4

t=80.4

t=84.3

t=82.7

t=78.0c)

d)

e)

f)

Fig. 5. Case 1b: temporal evolution of the poloidal potential (left panel)
and the toroidal field contours (right panel) in a meridional plane for
case 1 during half a magnetic cycle. The blue contours indicate an an-
ticlockwise orientation for Bp and a negative orientation for Bφ (i.e the
field is directed towards the reader in this case) and the red ones clock-
wise orientation for Bp and a positive orientation for Bφ (directed away
from the reader).
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3.2.2. Case 2: 2 cells in radius and 2 cells in latitude per
hemisphere

In this model, the stream function ψ is a product of polynomials
of higher order (degree 5 in z and x) that we have to multiply by
a function of x which enables us to choose the relative velocity
amplitude in each cell. We set the 2 top cells to the same maxi-
mum value which implies that ψ has the following expression:

ψ(x, z) = K2z(z − 0.65)(500(z − 0.825)3 − 500 × (0.175)2

× (z − 0.825)) × (7x5 − 10x3 + 3x) × (1 − x2)(1/3.75)

if z > 0.65 and 0 otherwise (see fig 6).

Fig. 6. Stream function and components of the meridional flow multi-
plied by v0 = 643 cm.s−1 for case 2.

For the 4 cells model, the butterfly diagram corresponding to
the exact same parameters ηt, s0 and v0 as the unicellular model
is shown in Fig. 7. The most obvious property of this model is
that it can sustain two magnetic cycles, one near the equator and
the other at high latitudes with significantly different periods. In
both equator and polar branches, the cycle period is strongly in-
creased, up to 44.7 years near the equator and reaching a period
of 124 years at high latitudes. This behaviour is due to the pres-
ence of 2 cells in radius which significantly increases the period
probably because, as in case 1, the magnetic flux is not trans-
ported from the surface to the interface as fast as it was in the
unicellular model because a return flow is present at mid depth.
However, adding cells in latitude decreases the time for the fluid
to travel along the “conveyor belt” for the low-latitude region,
hence the flux is transported faster from the surface to the base
of the convection zone and thus the regeneration of each com-
ponent of the magnetic field is faster, as shown by Dikpati et al.
(2004). Here, by having cells both in radius and in latitude, we

Fig. 7. Case 2a: butterfly diagram (time-latitude cut at r = cst) of case 2
with v0 = 643 cm.s−1. The format is the same as Fig. 1.

Fig. 8. Case 2b: Butterfly diagram (time-latitude cut at r = cst) and field
phase relation of case 2 with a period close to the solar period.

get a cycle faster than the two radial cells case but still slower
than the unicellular case. Consequently, the influence of hav-
ing several radial cells seems to be much stronger than that of
adding cells in latitude. We can see on this butterfly diagram
that the patterns are quite complex in the time-latitude plane. We
clearly see on the toroidal field at the base of the CZ and on the
poloidal field at the surface the imprint of the 2 counter-cells at
45◦. Once again the magnetic field behaviour strongly depends
on the direction of the flow. Indeed, at the base of the CZ, the
toroidal field at high latitudes (where the flow is equatorward) is
drifting from 60◦ to 45◦ where it encounters the counter latitudi-
nal cell. At low latitudes (where the flow is poleward), the field
is advected polewards from the equator to the zone of vanish-
ing vθ (i.e. around 45◦). For the radial field, the patterns are also
very intricate. We again find the small equatorward branch as in
case 1. We also clearly see the generation of new poloidal field
structures just above 50◦ embedded in the structure of opposite
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polarity. It is then moving down to 45◦, meeting a branch of the
same polarity coming from the preceeding cycle and from the
equator. The main part of the radial field at the surface is then
advected towards the pole, creating a significant polar branch in
the high-latitudes part. One interesting feature of this model is
that the intensity of the polar field is diminished by a factor 10
compared to the unicell model, which could be in better agree-
ment with the solar observations.

We tested the sensitivity of the multicellular model’s charac-
teristics to variations of the physical parameters. Using a least
square fit to get the exponents of each parameter, we note that
the dependance of the cycle period at low latitudes on s0, v0 and
ηt is as follows:

T ∝ s0.05
0 v−0.35

0 η−0.4
t

The dependance of the period of this model to a variation of
the velocity amplitude is reduced in comparison to the previous
models. The cycle period will thus be less disturbed by tempo-
ral fluctuations of the MC amplitude, which is a very attractive
feature of this model. For any value of s0, we expect that an in-
crease in the intensity of the meridional flow enables the field to
travel faster along the ‘conveyor belt’ so that both poloidal and
toroidal fields head faster towards their reversals. This is why we
have a negative dependance of the period on v0.

As soon as the Reynolds number becomes too high (Re above
800), i.e. when the strength of the meridional flow is increased,
ηt remaining constant, a strong polar branch with a longer period
is appearing. This property is due to the advection by meridional
flow of the magnetic field in the whole convection zone dom-
inated by its poleward component (see below). When the field
reaches the base of the CZ, the strong toroidal structure is thus
concentrated near the pole, trapped in the slowly moving merid-
ional cell at high latitudes. As we do not get this feature of two
coexisting branches of different periodicity in the Sun, we seek
to recover a unique cycle period, taking into account the depen-
dance on parameters. We have seen that it is not sufficient to act
on the strength of the meridional circulation to recover the 22-yr
cycle period, but as the least square fit shows, turbulent diffusiv-
ity plays a crucial role in this multicellular model.

The strong negative dependance of the cycle period on the
turbulent magnetic diffusivity is characteristic of the fact that
we have multiple cells of meridional flow in each hemisphere.
The magnetic field follows the configuration of the meridional
flow as long as it is advected by the circulation but the magnetic
diffusivity enables the field to cross the strong velocity gradi-
ents present at the borders of each cell. Magnetic diffusivity thus
provides the field a way to short-circuit the complex “advection
path” of this model and to allow for a faster link between one
meridional cell and another. As a consequence, if ηt is too low,
the poloidal field created at the surface will cross the strong ve-
locity gradients that we have at the borders between the vari-
ous cells in a much longer time and the classical mechanism
of regeneration of toroidal field from this existing poloidal field
will be less efficient. Consequently, to obtain a 22-yr cycle pe-
riod for this model, we have to increase the magnetic diffusiv-
ity (without of course losing the advection-dominated regime)
to 1.5 × 1011 cm2.s−1 (so that the magnetic field is enabled to
get from one circulation cell to another quickly enough) and in
agreement with the least-square fit which indicates a neglige-
able dependance of the period on s0 and a negative dependance
on the velocity amplitude, we keep the source term intensity to

s0 = 20 cm.s−1 , and slightly increase v0 to 1071 cm.s−1. Figure 8
shows the butterfly diagram and the phase relationship between
the poloidal and toroidal fields for this 22-yr period case. The
first positive result of this model is that no second cycle period
appears, we get a unique cycle due to the dynamo action in the
whole CZ. Here again, as the link between the 2 source regions
of poloidal and toroidal fields is complex, the field relation is
not that which we observe in the Sun and it is even more per-
turbed than in case 1. Indeed, the poloidal field here reverses
approximately where the toroidal field of the opposite polarity
reverses, meaning that we have a phase shift of about π between
the 2 components of the field, with the toroidal field leading
the poloidal field. We note that in this case, unlike case 1, the
shape of the butterfly diagram is slightlydifferent from that using
the parameters of the single cell model. Indeed, increasing the
magnetic diffusivity caused the sharp magnetic structures to be
smoothed, especially for the radial field in which the small equa-
torward branch of opposite polarity is not visible anymore and
where the branch at 50◦ drifting to 45◦ is thicker and smoother.

Figure 9 shows the temporal evolution of the magnetic field
in the meridional plane for the same case 2b. The first appear-
ance of a new poloidal field occurs at a latitude of about 30◦,
created by the BL source term. The creation of poloidal field at
such latitudes is a direct consequence of the non-locality of our
source term whose latitudinal dependance is linked to the latitu-
dinal dependance of the toroidal field existing at the base of the
CZ at the same time. This poloidal field structure is then both
slowly dragged towards the 45◦ latitude by the MC and ampli-
fied by the source term which is still active in this region. The
poloidal field is here latitudinally sheared to create and amplify
toroidal field [see panels a) and b)]. After the reconnection, MC
has dragged the field deeper down to regions of both poleward
and equatorward flow so the field is located at the particular con-
vergence point between the 4 cells. This inward advection due
to the meridional flow configuration at 45◦ is also acting on the
toroidal field to drive it down to the middle of the CZ and should
not be mistaken with diffusive effect. It is really the strongly neg-
ative radial velocity at this latitude (see panel 2 of Fig. 6) which
advects the field inward to the point of convergence of the 4 cells.
We see on panels c), d) and e) that even if some of the field is
advected towards the equator, the north branch is dominant and
thus most of the field goes up to the pole, while the older field of
opposite polarity is being advected to the base of the CZ. This
poloidal field of opposite polarity (the negative field on panels
d), e) and f )) is then heading back to the 45◦ region where it
meets another poloidal structure of the same polarity. If we look
at the toroidal field, we see it is created and amplified in the
whole convection by the latitudinal shear of the differential ro-
tation. At the same time, Bφ is being advected by the flow, first
inward to the middle of the CZ and then mainly to the polar re-
gions. It is finally dragged down to the base of the CZ where
the field of the preceeding cycle is cancelled by the creation of a
new field of opposite polarity. Unlike case 1, the suppression of
the field of the preceeding cycle seems thus to be mainly due to
the advection of the present Bφ (which was created before by the
shear in latitude of the poloidal field) than to the radial shear of
Bp in the tachocline. In this case, only cycle n and n − 1 seem to
really interact since the toroidal field of cycle n − 2 has already
completely vanished at the bottom of the CZ when Bφ of cycle n
is being created in the upper part of the CZ.

This 4 cells model is thus very intriguing for many impor-
tant solar dynamo properties. The butterfly diagram as well as
the field lines evolution during a cycle become very complex,
the field phase relationship is not corresponding anymore to the
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e)

f)

t=228.7

t=230.9

t=237.7

t=233.2

t=235.5

t=240.0

b)

d)

c)

a)

φp BB

Fig. 9. Case 2b: temporal evolution of the poloidal field lines with its
potential extrapolation (left panel) and the toroidal field contours (left
panel) in a meridional plane for case 2 for half a magnetic cycle. The
format is identical to Fig. 5.

solar observations but the dependance on the MC amplitude is
reduced and the strength of the polar field is decreased, which
constitute attractive characteristics of the model.

4. Parity selection in multiple meridional cells
dynamo models

As we said before, Dikpati & Gilman in 2001 showed that with
a set of parameters they found appropriate to give a solar-like
solution, their pure BL flux transport model had difficulties re-
producing the persistent antisymmetry of the toroidal field we
observe in the Sun.

Several solutions were proposed to solve this problem,
Dikpati & Gilman (2001) as well as Bonanno et al. (2002) man-
aged to get rid of this field parity drift by imposing an α-effect
at the base of the CZ, thus imposing two spatially separated
source terms for the poloidal field. Another solution was pro-
posed by Chatterjee et al. (2004): they keep the regular sur-
face source term of BL type but they impose a small diffusivity
(2.2 × 108 cm2.s−1) in the overshoot layer to prevent the toroidal
field from diffusing across the equator and a very large diffusiv-
ity (2.4 × 1012 cm2 .s−1) for the poloidal field in the convective
zone to allow diffusive coupling of the poloidal field between
the two hemispheres.

We now seek to characterise the influence of multicellular
flows on parity selection and we consider its sensitivity to vari-
ations of different parameters. The results are summarized in
Tables 2 and 3.

Computing the critical dynamo numbers (the threshold value
of Cs for which the magnetic energy begins to grow), starting
from a dipolar configuration and then from a quadrupolar one,
enables us to test the influence of the MC amplitude and of the
diffusivity on the parity selection in our various cases. In a rel-
atively low range of MC amplitude (v0 < 1000 cm.s−1) and at a
magnetic diffusivity of 5.1010 cm2.s−1 , dipolar solutions are eas-
ily excited in the unicellular case. On the contrary, for the mul-
ticellular models, the symmetric parity is already appearing at
lower values of v0. Indeed, the magnetic field has switched to
a quadrupolar parity at v0 = 785 cm.s−1 for the two radial cell
model and the difference between Ccr

s (A) and Ccr
s (S ) is already

very small at v0 = 643 cm.s−1 (0.84 compared to 0.85). The 4-
cell model always favours the quadrupolar configuration, even
for low velocities.

Table 2. Critical values of Cs starting from a dipole (A) or a quadrupole
(S) for various values of v0 and at ηt = 5.1010 cm2.s−1 for the 3 configu-
rations of meridional circulation. The favoured symmetry (the smallest
values of Cs) is indicated in bold characters. In the first line the Ccrit

s for
the reference case, case 1a and case 2a are shown.

Single Cell Two radial cells 4 cells
v0 CCr

s (A) CCr
s (S ) CCr

s (A) CCr
s (S ) CCr

s (A) CCr
s (S )

643 1.88 1.92 0.84 0.85 1.16 1.01
785 2.34 2.37 1.05 1.04 1.19 1.05
1000 3.07 3.05 1.40 1.35 1.55 1.38
1500 4.51 4.49 2.50 2.20 3.00 2.73

To obtain a smaller Ccrit
s for the dipolar mode in the multiple

cell models, we need to increase the magnetic diffusivity. Indeed,
for all cases, increasing the diffusivity widens the range for v0 in
which we stay in the dipolar configuration. In case 1, at ηt =
5.1010 cm2.s−1 and v0 = 1000 cm.s−1, Ccrit

s = 1.4 for the dipole
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and Ccrit
s = 1.35 for the quadrupole, which explains the drift of

parity we observe in this case in Table 2. When we increase the
magnetic diffusivity up to ηt = 8.1010 cm2 .s−1, the dipole be-
comes the most easily excited solution with Ccrit

s (dipole) = 1.29
and Ccrit

s (quadrupole) = 1.3. In the same way, the systematic
parity switching in the 4-cell model disappear when we go from
ηt = 5.1010 cm2.s−1 to ηt = 8.1010 cm2.s−1 and for example at
v0 = 785 cm.s−1, the solar symmetry is favoured. We thus con-
firm the work of Chatterjee et al. (2004) which shows that in-
creasing the diffusivity in the convection zone, thus allowing
diffusive coupling of the poloidal field between the two hemi-
spheres improves the parity conservation.

Table 3. Critical values of Cs starting from a dipole (A) or a quadrupole
(S) for various values of v0 and at ηt = 8.1010 cm2.s−1 for the 3 configu-
rations of meridional circulation. The favoured symmetry (the smallest
values of Cs) is indicated in bold characters.

Single Cell Two radial cells 4 cells
v0 CCr

s (A) CCr
s (S ) CCr

s (A) CCr
s (S ) CCr

s (A) CCr
s (S )

643 2.72 2.81 0.79 0.85 2.10 2.14
785 2.79 2.95 0.99 1.03 2.11 2.15

1000 2.89 3.08 1.29 1.30 1.80 1.50
1500 4.41 4.43 1.96 1.94 2.12 1.92

However, as soon as we increase the amplitude of the ve-
locity field via an increase of the MC amplitude, we recover
the parity drift from a dipolar to a quadrupolar configuration,
the quadrupole becomes the easiest solution to excite. Figure 10
shows a typical representation of a parity shift in the case of 4
cells of meridional circulation per hemisphere: the toroidal field
at the base of the CZ is switching from an antisymmetric con-
figuration with respect to the equator to a symmetric one. As
Dikpati & Gilman (2001) showed, it is the connection at the
equator of the sufficiently strong poloidal fields of each hemi-
sphere that enables the cancellation of Br and the creation of an
antisymmetric Bθ . The shear of this antisymmetric Bθ by dif-
ferential rotation is then responsible for the creation of anti-
symmetric toroidal field which we observe in the Sun. Thus it
is very likely that increasing the velocity amplitude makes the
magnetic field travel faster along the conveyor belt and prevents
the poloidal field from staying in the same location enough time
to connect with its counterparts in the opposite hemisphere. As
a consequence, models with faster flows shift to quadrupolar so-
lution since they prevent these reconnection phenomena.

This particular property of parity selection explains why it is
not sufficient to act on the MC amplitude in case 1 to recover a
satisfying model with a 22-yr cycle. Indeed, increasing the ve-
locity causes the magnetic field to become symmetric with re-
spect to the equator. On the contrary, we saw that increasing
the diffusivity tends to favour dipolar symmetry. As a conse-
quence, cases 1b and 2b, which have relatively strong values of
the diffusivity are able to reproduce the field antisymmetry we
observe in the Sun, even with significant meridional flow am-
plitudes. For case 1b, the values of the Ccrit

s are CCr
s (A) = 2.47

and CCr
s (S ) = 2.48 and for case 2b, we get CCr

s (A) = 3.36 and
CCr

s (S ) = 3.39. These cases are thus able to sustain a 22-yr cycle
period without drifting from a dipolar to a quadrupolar configu-
ration.

Fig. 10. Zoom on the epoch of parity drift of the toroidal field for
the 4-cell model with u0 = 2000 cm.s−1, s0 = 20 cm.s−1 and ηt =
5.1010 cm2.s−1.

5. Conclusion and perspectives

In this paper, we have discussed 2D BL flux transport type solar
dynamo models with various profiles of meridional flows.

We have first tested the influence of introducing the parame-
ters giving a solar-like solution in the reference unicellular case
in the muticellular models. These cases, denoted 1a and 2a,
show that the presence of a multicellular circulation has a strong
perturbing impact on the behaviour of solar dynamo models.
Adding cells in radius (case 1a) leads to a complex advective
path and thus causes the cycle period to be more than tripled
compared to the reference case (the cycle is here of 84.6 years
instead of 22 years in the reference model) and in this case, a
strong poleward branch appears on the butterfly diagram, due to
the poleward advection by the MC at the base of the CZ. The ra-
dial field at the surface seems to show very fine and small struc-
tures during its whole cyclic evolution. In this model, we notice
that the cycle period is moreover strongly linked to the ampli-
tude of the meridional flow, which indicates that the cycle will
be significantly sensitive to the observed fluctuations in the MC
amplitude. In the 4-cell model (case 2a), the most obvious prop-
erty is that we seem to get two magnetic cycles, with different
periods, both longer than in the reference case (44.7 years near
the equator and 124 years near the poles). Moreover, the phase
relationship between the poloidal and toroidal parts of the field
does not match the solar observations anymore. However, unlike
case 1a, the dependance on the amplitude of the MC is reduced,
which could make the model and thus the cyclic activity more
robust and less sensitive to temporal fluctuations observed in the
Sun.

The set of parameters were in these cases clearly not adapted
to recover a 22-yr cycle period, we thus modified the appropri-
ate parameters to get a solar-like solution. Relying on the least-
square fits, cases 1b and 2b were thus computed with higher
diffusivities and higher MC amplitudes and a 22-yr cycle was
indeed recovered. It should be noted that we stay in these cases
in realistic values for both magnetic diffusivity and MC ampli-
tude and that our models are still all dominated by advection,
as shown on the evolutions of the field lines in the meridional
plane. For these cases, we note that the butterfly diagrams are
smoothed out probably thanks to the increase of magnetic diffu-
sivity, the small structures visible on the radial field on cases 1a
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and 2a vanish, we thus seem to obtain a globally less perturbed
behaviour for these models. In case 2b, we moreover decrease
the intensity of the polar surface field, which is in better agree-
ment with observations. But we still obtain properties such as
the phase relationship between the poloidal and toroidal parts of
the field that are not that which we observe in the Sun. Since
parity selection is one of the major concerns in BL flux transport
dynamo models, we focus in Sect. 4 on the parity issue in these
models. We show that adding cells both in radius and in latitude
seems to favour the quadrupolar parity, which we do not observe
in the Sun. However, if the magnetic diffusivity is sufficiently
high, we get diffusive coupling of the poloidal field across the
equator and thus the dipolar parity conservation is improved. On
the contrary, if the MC amplitude is increased, the major trend
of all cases is to switch from a dipolar to a quadrupolar magnetic
field configuration. We can nevertheless recover cases with com-
plex meridional flow with a 22-yr cycle period and a favoured
dipolar parity, staying in realistic values of both MC amplitude
and magnetic diffusivity, this is the case for models 1b and 2b.

As far as the meridional flow amplitude is concerned, we
shall note that our relatively small velocities at the solar surface
are related to the small stratification we have in our models (our
density is proportional to 1/r) which implies a small velocity
contrast between the surface and the bottom of the convection
zone. Indeed, the density profile used by Dikpati & Charbonneau
(1999) was proportional to

√
R�/r − 1 which has a strong vari-

ation in radius especially near the surface. Thus, the most im-
portant velocity amplitude (that at the base of the CZ, which ad-
vects the strong toroidal field created by differential rotation) can
be identical with very different velocities at the surface in these
two models using different density profiles. We also note that
since there was a factor 2 between v0 and max(vθ) in the work
of Dikpati & Charbonneau (1999), a direct comparison with our
work (where v0 = max(vθ)) is not straightforward.

Even if cases 1b and 2b seem to allow a 22-yr cycle com-
bined with persistent solar-like dipolar parity and a smooth
cyclic butterfly diagram, we show that introducing a complex
MC in our models has a strong perturbing impact, for exam-
ple on the phase relationship between the poloidal and toroidal
parts of the magnetic field which does not correspond to the so-
lar observations. We are thus heading to the hypothesis that the
BL mechanism may not be the only source of poloidal field in
the solar dynamo cycle, especially if the Sun happens to show a
persistent multicellular meridional flow which seems to be quite
destructive for several solar cycle features in the pure BL flux-
transport framework. Of course we now need to check the influ-
ence of a less monolithic meridional flow structure, with extra
cells more concentrated in a particular area of the CZ and vary-
ing in time since the position and strength of each meridional
cell seem to influence quite significantly the global properties of
the solar dynamo.

It is thus now a real challenge for local helioseismology to
probe the Sun deeper to give better constraints on the meridional
flow in the convection zone.
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Appendix A: Numerical approach

To solve the equations, we use a code adapted by P. Charbonneau
and T. Emonet from Finite Element Analysis by D.S.Burnett
(1987). This code enables us to solve a general partial differen-
tial equation (PDE) using a finite element method in space and
a third order scheme in time. We adapted it to problems such as
α2 − Ω, flux transport or multicellular flux transport solar dy-
namos and we implemented new boundary conditions (radial or
potential field at the top) and initial conditions.

A.1. Spatial method

The finite element method is a very efficient way to obtain ap-
proximate solutions to linear or non linear PDEs in any kind of
geometry. Our code STELEM (STellar ELEMents) solves Eqs. 1
and 2 with this method, ie seeking the approximate solutions Ãφ
and B̃φ as linear combinations of trial functions ψi (to be more
specific these trial functions are Lagrange polynomials of degree
1 (linear functions) and serendipity shape functions for second
order interpolation (quadratic functions), depending on the com-
plexity of our equations).

Ãφ(r, θ, t) =

N∑

i=0

ai(t)ψi(r, θ)

B̃φ(r, θ, t) =

N∑

i=0

bi(t)ψi(r, θ)

The main steps of the method are the following:

– Our domain (the annular meridional cut) is divided
into smaller regions called elements. In our case, they
are straight-sided quadrilaterals when we use first order
Lagrange polynomials, with a node at each corner of the
quadrilateral and with a node at each corner and one extra
node per side and without any interior node if we use second
order interpolation (see Fig. A.1).

– In each element, the PDEs are transformed into ordinary dif-
ferential equations (ODE) in time involving the coefficients
ai(t) and bi(t) of the linear combinations.

– The terms in the element equations are numerically evalu-
ated for each element in the mesh. The resulting numbers
are assembled into a much larger set of equations called the
system equations.

– The boundary conditions are taken into account. They can
be of Dirichlet type (we impose the value of the function
at the boundary) or of Neumann type (we impose the nor-
mal derivative of the function at the boundary). In particu-
lar for the potential extrapolation, we proceed as the follow-
ing, we were largely inspired by the procedure of Dikpati &
Choudhuri 1994.
The top boundary condition is that we have to match
smoothly our magnetic field B(r, θ, t) to a field satisfying the
free space equation:

∇ × B(r, θ, t) = 0

As we work in spherical axisymmetric geometry, we write
that:

B(r, θ, t) = ∇ × (Aφ(r, θ, t)êφ) + Bφ(r, θ, t)êφ

And the equation of free space leads to two equations, one
concerning Bφ(r, θ, t) and the other one concerning Aφ(r, θ, t),
which are:

Biquadratic element

Bilinear element

Fig. A.1. Sketch of the quadrilateral mesh we are using in the meridian
plane, uniformly spaced in r and more accurate in the polar regions.
As we work with the variables cos θ,r, we get a rectangular grid in the
r,cos θ plane. On the right, we show a zoom on a single rectangular cell
with the 4 nodes at each corner in the case of the first order interpola-
tion and with one extra node per side in the case of the second order
interpolation. Note that the cells in the quadratic case do not contain
any interior node.

∂(sin θBφ)

∂θ
=
∂(rBφ)

∂r
= 0

(∇2 − 1

r2 sin2 θ
)Aφ = 0

As we are dealing with a finite element method, the most
convenient and natural procedure is to seek to express these
boundary conditions as either Dirichlet or Neumann condi-
tions for Aφ and Bφ .
Equation for Bφ very easily leads to the solution Bφ =
C/(r sin θ), C being a constant. We fix this constant value to 0
so that our top boundary condition on Bφ is the homogenous
Dirichlet condition: Bφ(R� , θ, t) = 0.
We now have to deal with the more difficult condition on Aφ.
A general solution to this equation can be written in the form

Aφ(r ≥ R�, θ, t) =

+∞∑

n=1

an(t)
rn+1

P1
n(cos θ)

where P1
n(cos θ) is the associated Legendre polynomial. We

find that truncating the sum at Nθ/2, half of the number of
grid points in θ always result in an error in the projection of
less than 10−3. Hence, the coefficients an(t) are the coeffi-
cients of the expansion of Rn+1Aφ(R�, θ, t) on the associated
Legendre polynomials. Thus, the value of an(t) is calculated
by the scalar product of Rn+1Aφ(R� , θ, t) with P1

n(cos θ), di-
vided by the norm of Pn, leading to:

an(t) =
Rn+1�

∫ π

0
Aφ(R� , θ, t)P1

n(cos θ) sin θdθ
∫ π

0
[P1

n(cos θ)]2 sin θdθ

By the variable change x = cos(θ) in the upper integral, we
are led to calculate the integral on [−1, 1] of the product of
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two smooth functions. Thus we calculate this integral using a
Gauss-Chebyshev quadrature formula which uses the weigh-
ing functions 1/

√
1 − x2 . The lower integral is the norm of

the associated Legendre polynomials, we know that its value
is: 2n(n + 1)/(2n + 1).
From the coefficients an(t), we can deduce the derivative of
Aφ at the solar surface:

∂Aφ
∂r
|r=R� = −

Nθ/2∑

n=1

(n + 1)an(t)

Rn+2�
P1

n(cos θ)

and from a simple finite difference scheme, we impose a
Dirichlet condition on the poloidal potential, calculating the
new value of Aφ at the surface, using the points of the layer
immediately below the surface. It leads to:

Aφ(R� , θ, t) = Aφ(R� − ∆r, θ, t) + ∆r
∂A
∂r
|r=R� (A.1)

= Aφ(R� − ∆r, θ, t) − ∆r
∑

n

(n + 1)an(t)

Rn+2�
P1

n(cos θ)

Inside the same time step, we have then to recalculate the co-
efficients an(t) with the new value of Aφ(R� , θ, t) until we get
a sufficiently small difference between two successive values
of Aφ(R�, θ, t) in order to make the procedure converge, we
usually do not need more than 10 iterations to get a conver-
gence with a relative error of 10−3.

– We get a final set of ODEs in time which we solve with a
third order scheme we describe below.

A.2. Temporal scheme

The scheme that we use is adapted from Spalart et al. 1991. We
have to solve the following ODE:

∂Aφ
∂t

= N(Aφ)

N being the non linear operator evaluated in the preceeding
step (the finite element method).

The three steps of this explicit scheme enable us to get an
error as small as o(∆t3), the different steps are:

If un = u(t) and un+1 = u(t + ∆t), it leads to:

u′ = un + ∆tγ1N(un)

u′′ = u′ + ∆t[γ2N(u′) + ζ1N(un)]

un+1 = u′′ + ∆t[γ3N(u′′) + ζ2N(u′)]

The coefficients γ1, γ2, γ3, ζ1 et ζ2 are deduced from the
Taylor expansion of u(t + ∆t) and thus leads to: γ1 = 8/15, γ2 =
5/12, γ3 = 3/4, ζ1 = −17/60 and ζ2 = −5/12.

A.3. Code validation

The STELEM code was validated thanks to an international dy-
namo benchmark in Jouve et al. 2007.

All data and notes can be found at the address:
http://www.nordita.dk/ brandenb/tmp/benchmark


