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1 IntrodutionThe measurement of the ross setion for hadroni or leptoni �nal states inthe experiments on olliding e+e� beams, with a preision of 1 or 2% is aurrent problem, at di�erent world aelerators: Frasati, Novosibirk, Bejing..This work aims to alulate the ross setion of di�erent proesses with apreision of this level. This paper is omposed by six Setions followed byConlusions.In the �rst part we alulate �rst order orretions to the amplitudes for theproess of reation of a pion pair: e+ + e� ! �+ + ��(+) we onsider theemission of soft photons and derive the di�erential ross setion as a funtionof the energy, of the angles of the photons with respet to the diretion of thebeam: � = d~q� � ~p� ( ~q� (~p�) is the three momentum of the photon (beam),and of the parameter ��=�, (�� is the maximum energy of the soft photonswhih esape the detetion,� is the beam energy). Charge{odd and harge{even ontributions of the orretions to the ross setion are alulated. Theirasymptoti expressions are also given and shown that they are in agreementwith a result previously found. For the alulation of the ontribution of thebox-diagram, we make the assumption that the pions are without struture.We also onsider the ross setion of pion pair reation, with emission of anadditional hard photon, taking into aount the form fators of pions. Wealulate the ross setion in two ases: for �� � 1 and in the ultrarelativistiase 1� �� � 1.In the seond part, we alulate in a similar way the proess e+ + e� !�+ + ��(). The ontributions of virtual and soft photons in the harge-oddand in harge{even parts of the ross setion is given for � � 1 and for � ! 1.The di�erential ross setion of this proess is also derived.The third part is devoted to the proess e+ + e� ! e+ + e�() with emis-sion of virtual and soft photons and to the alulation of the ross setion ofthis proess when additional hard photon are emitted in ultrarelativisti kine-matis. The ross setion of the proess e+ + e� with subsequent emission ofany number of emitted photons (virtual, soft, and hard as well), is alulatedin the large logarithm (LLA) approximation. We express the ross setion inform of a Drell-Yan proess [1℄:d� = Z dx1 Z dx2D(x1; �q)D(x2; �q)d~�0D yy1 ; �q!D � zz1 ; �q� 1y1z1 ; (1)where D(x; �) is the lepton struture funtions (LSF) whih desribes theprobability to �nd an eletron (positron) of a given energy and four-momentumsquared q2 in the initial eletron (positron). For the emission at large angles2



one obtains:�q � � 2�� (�e � 1); �e = ln sm2e ; s = 4�2; d~�0 � �1� �3��e��2 d�̂0;where d�̂0 is the Born ross setion for the sattering e+ + e� ! e+0 + e�0.In setions IV and V we derive the formulas similar to Eq. (1), whih hold forthe proesses e++e� ! �++��() and e++e�(). We disuss the expressionof the ross setion, and ompare it with the exat result at �rst order of theperturbation theory as well as with the ontribution of higher order terms inthe large logarithm approximation:���e = 1: (2)The evaluation of the error on the term:����2 �e � 0:01% (3)de�nes the preision obtained in this model (whih is largely suÆient for mostpratial appliation).If the alulation is limited only to the orretions at the lowest order in PT(as obtained in Setions 1-3), then the preision is determined by the nextterms of this approah, whih are of the order of:���e� �2 � 1400 � 0:2%; (4)whih is suÆient for the omparison of the results of the urrent experiments(exept in the region of narrow resonanes, where formula (1) does not apply).In Setion VI we disuss the annihilation proess of eletron{positron in two(three) gammas, and give the ross setion in frame of the LSF method.In Conlusions we disuss and develop a method for integrating the rosssetion, based on the method of quasi-real eletrons [2℄, in the kinematialregion where the photon is emitted at small angle from one of the hargedpartiles. 3



2 The proess e+ + e� ! �+ + ��()2.1 First order orretion to the Born amplitudeThe orresponding Feynman diagrams are shown in Fig. 1. In order to alu-late the ross setion, it is neessary to alulate the moduli squared of theamplitudes, summed over the spin states.The ontribution of the diagram of Fig. 1a to the ross setion is:d�0d
 = �2�2s sin2 � jF�(s)j2 ; (5)� = d~q� � ~p�; � =  1� m2��2 !1=2 ; s = 4�2; m = m�;where F�(s) is the pion form fator. We show below that, negleting the termsof fourth order, the ontributions of the squares of the one{loop diagrams (Fig.1b-i) to the ross setion anel. Suh ontributions an be taken into aountat higher order with the method of LSF, that will be disussed in Setion III.Let us start from the harge-odd part of the ross setion. The matrix element,orresponding to the diagrams Fig. 1a-d has the form:M=�8��is vQ̂u+ i�2v Z d4ki�2 "(k̂ � Q̂� q̂+)(k̂ � �̂)(k̂ � Q̂+ q̂�)(+)(�)(�)(Q) +(k̂ + Q̂� q̂�)(k̂ � �̂)(hatk + Q̂+ q̂+)(+)(�)(�)( ~Q) � 2�(k̂ � �̂)�(+)(�)(�) # u: (6)with the following notations:�= 12(p+ � p�); p = 12(p+ + p�) = 12(q+ + q�);Q= 12(q+ � q�); s = (p+ + p�)2 = 4�2; q2+ = q2� = m2; p2+ = p2� = 0;(�)= (k � p)2 � �2; (Q) = (k �Q)2 �m2; ( ~Q) = (k +Q)2 �m2;(�)= (k ��)2 �m2e; � = m2 � t; t = (p� � q�)2; u = (p� � q+)2: (7)v, u are the spinors whih represent the initial positron and eletron:vp̂+ = p̂�u = 0: (8)Performing the loop-integral over the four-momentum, the following integrals,4



whih oinide with the orresponding ones for the proess e++e� ! �++��,need to be alulated:Z d4ki�2 f1; k�g(+)(�)(Q)(�) = fJ ; J��� + JQQ�g;Z d4ki�2 f1; k�g(Q)(�)(�) = fH;�H��� +H��� +HQQ�g;Z d4ki�2 f1; k�g(Q)(+)(�) = fFQ;Q�GQg; Z d4ki�2 f1; k�g(�)(+)(�) = fF�;G���g: (9)where:
J =� 2s� ln s�2 ln �mme ; F� = 1s  �26 + 12�2e! ;FQ= 1s� "�26 + 12�2 + 2� ln 1 + �2 � 4Li2  1� �2 !� 2Li2  �1� �1 + �!# ;H =� 12� "2 ln �mme ln m2�2 + ln2 �m2 � 12 ln2 m2m2e � 2Li2 �� t� �# ;J�= 12d [(�Q�Q2)F +�QF� �Q2FQ℄;JQ= 12d [(�Q��2)F +�QFQ ��2F�℄;G�= 1s (�2�e + sF�) ; GQ = 1s�2 (�2�+ sFQ) ; H� = H + 2� ln �mme ;HQ= 1t ln �m2 ; H� = �1� ��t ln �m2 + 2 ln �mme � ;F = 12sJ �H; d = �2Q2 � (�Q)2; � = ln sm2 ; �e = ln sm2e ;Li2(z) = � Z z0 dxx ln(1� x):First of all, let us note that in Eq. (6) the ontribution of the last term of thesum in the square parenthesis is of the order of � me=m� ! 0, whih followsfrom the form of the orresponding integrals (8), (9). The ontribution of theseond term in Eq. (6), an be obtained from the �rst term, with the help ofthe substitution: t$ u and hanging all signs. As a result of straightforward,but lengthy alulations, we �nd the following expression for the modulussquared of the matrix element, summed over the spin states:5



Xs jMj2=32�2�2�2(1� os2 �) + 32��31sRe[�4d(�8�QJ +GQ � 4H) + (F + F�)(�16(�Q)2 + 16(�2(�Q) +8�2Q2 � 8�4) + (F + FQ)�Q(8Q2 � 16�Q+ 8�2)�(Q$ �Q)℄: (10)The oeÆient of harge asymmetry, � an be built from Eq. (10) as the ratioof di�erential ross setions at orresponding angles:� = d�d
()� d�d
(�)d�d
() + d�d
(�) ;  = os � = os( d~q�; ~p�): (11)The denominator an be alulated if the Born ross setion is known (5). Theone loop orretion to the variable � , after simplifying Eq. (10), and with thehelp of Eq. (9), is:�virt= �� (2 ln 2�� ln 1 + �1� � + 1�2 sin2 � n(1� �) h�l2� + 2�L� + 2`�L��2Li2  1� �22(1� �)!� (1� �)22�  12�2 + �26 !++1 + �2�  � ln 21 + � � Li2  �1� �1 + �!+ 2Li2  1� �2 !!#+(1� �2) "12 l2� � L�(�+ `�) = LI � 2 1� �22(1� �)!#)�($ �)g ; (12)where L� = ln "1� 1� �22(1� �)# ; `� = ln (1� �)2 :In the ultrarelativisti limit, 1� �2 = m2=�2 � 1 :�virtas = �� 2664�8 ln�2�� � ln tan �2 � 2ln2 sin �2os2 �2 + 2ln2 os �2sin2 �2 3775 : (13)Let us onsider now the diagrams Fig. 1d,i. Their ontribution to the rosssetion is an even funtion of os � and it is written as:d�virtevend
 = 2d�0d
 �ReF (e)1 +ReF (�) � Re�� : (14)The quantities 6



ReF (e)1 = �� "�me� � 1� (1� �e)� 14�2e + �23 � 14�e# ;ReF (�)= �� "12�� �1� 13�2�� ln 1� ��1 + �� � 89 + 13�2�# = ����;�Re�= �� �13�e � 59�+ Æ� + ÆH ; �� =  1� m2��2 !1=2 ; (15)are known expressions [3℄ for the orretions to the Dira part of the eletronform fator to the vauum polarization, due to eletrons and muons. Thequantity ÆH represents the ontribution of the vauum polarization:ÆH = � s4�2�P Z 14m2� ds0�h(s0)s0 � s � ���H ; (16)where the symbol P means that the integral is taken in prinipal sense; �h(s)is the ross setion for hadron prodution in e+e� ollisions. If one refers onlyto the hannel e+ + e� ! �+ + ��, then Eq. (16) an be approximated to:�h(s)! pi�23s �3�; ÆH ! Æ� = ��  112 ln 1 + ��1� �� � 23 � 2�2�! � ����: (17)Finally, let us onsider the diagrams in Fig. 1g-i,, whih ontain the orretionsto the LSF of the pion:F �(q�; q+) = (q� � q+)�e h1 + F (2)(q2)i ; q = q� � q+; F (2)(0) = 0: (18)The standard proedure onsists in joining the denominators of the Feynmandiagrams and in integrating over the four-momentum loop. After regulariza-tion, one obtains:F (2)(q2)= �4� ((q2 � 2m2) Z 10 dx lnm2=�2 � 2 + ln [(1� q2=m2)x(1� x)℄m2 � q2x(1� x)+2 ln m2�2 � 2!) == �4� (2 lnm2�2 � 2!+ 1 + �2� " ln q2�2 � 2! ln 1� �1 + ��12 ln2  1 + �2 !+ 12 ln2 1� �2 + ln� ln 1� �1 + � �Li2  �1� �2� !+ Li2  1 + �2� !#) : (19)Inserting this expression, Eq. (14) takes the form:7



 d�d
!evenvirt = d�0d
 2�� (�ln me� � 1� (1� �e)� 14�2e + �23 � 14�e+�ln m� � 1� 1� 1 + �22� ln 1 + �1� �!� 1 + �28�  �2 � �23 !+13�e � 59 + 1 + �22� "�� ln � + 12 ln2  1 + �2 !� 12 ln2 ��ln� ln 1 + �2 � Li2  �1� �1 + �!#+�� +�H�: (20)
3 Emission of an additional photonThe Feynman diagrams orresponding to the proesse+(p+) + e�(p�)! �+(q+) + ��(q�) + (k); (21)in the Born approximation, are shown in Fig. 2. Let us start from the ase ofa soft photon in CMS: k0 = ! < ��� �: (22)The modulus squared of the amplitudes of the proess (21), summed over thespin states of all partiles, P jMj2, di�ers from the orresponding quantity forthe proess e+ + e� ! �+ + �� in the Born approximation, P jM0j2, due tothe emission of the aompanying photon:X jMj2 = �4�� p�p�k � p+p+k + q+q+k � q�q�k!2X jM0j2 (23)Let us onsider �rst, the part that hanges sign when interhanging the four-momenta of the mesons:p+q�p+k � q�k � p�q�p+k � q�k � p+q+p+k � q+k + p�q+p�k � q+k :Its ontribution to the oeÆient of harge asymmetry:�soft = 4�� 4��16�3� Z�<�� d3k! � q�k  p+q�p+k � p�q�p�k !oinides with the orresponding expression, given below, for the proess e++e� ! �+ + ��(), after replaing m� ! m�. Let us give the result for thetotal ontribution � = �soft + �virt: 8



�= 2�� (ln 1� �1 + � ln ��� + 12 l2� � Li2  � �2(1� 2)1 + �2 + 2�!� (1� �)l2�2�2(1� 2)+"�Lie  1� �22(1� �)!+ (� + `�)L�# "�1 + 1 + �2 � 2�2�2(1� 2) #+4�2(1� 2) "(1� �)2  12�2 + �26 !� 2(1 + �)2  � ln 21 + ��Li2  �1� �1 + �!+ 2Li2  1� �2 !!# + (1� �2)l2�4�2(1� 2) +Z 1��20 dxx  1� x�t!�1=2 f(x)� ($ �)�; (24)with: �t= (1� �)21 + �2 � 2�;f(z)= 12  1p1� z � 1! ln z4 � 1p1� z ln p1� z + 12 ;and the other notations were given in (12). In the ultrarelativisti limit, thisresult oinides with the one previously found in [4,5℄:
�as= 2�� (4 ln tan �2 ln ��� +  2� 1os2(�=2)! ln2 sin �2� 2� 1sin2(�=2)! ln2 os �2 + Z sin2(�=2)os2(�=2) dxx ln(1� x)) ; �� m�: (25)Note that the expression (19) is obtained within the assumption of a point(strutureless) pion. The e�et of the internal struture an be taken intoaount by introduing a form fator:� ! 1jF�(s)j�: (26)The loop diagrams ontribution were alulated supposing a strutureless pion.The harge-even ontribution to the ross setion, taking into aount softphoton emission, has the expression: 9



� 4��16�3 Z!<�� d3k! ( m2(q�k)2 ; m2e(p�k)2 ; p+p�p+k � p�k ; q+q�q+k � q�k) =��� (ln�2��� �� 12� ln 1 + �1� � ; ln�2��� �� 12�e;�e ln�2��� �� 14�2e � �26 ; 1 + �22� "ln�2��� � ln 1 + �1� ��14 ln2  1 + �1� �!+ ln 1 + �1� � ln 1 + �2� � �26 + Li2  1� �1 + �!#) : (27)From Eqs. (23) and (27) one obtains the �nal result for the harge{even one{loop ontribution to the ross setion (20). The orretion for the emission ofa soft photon takes the following form:d�evend
 = d�0d
 � 2�� ( �e � 2 + 1 + �22� ln 1 + �1� �! ln���� � + 1312�e+�26 � 239 + 1 + �22� "�� �212 + Li2  1� �1 + �!+�Li2  �1� �1 + �!+32 ln2  1 + �2 !� 3 ln 1 + �2 ! ln� � 12 ln2 � + � ln 1 + �2�2 +3 ln 1 + �2 #+ 1� �2� "� + (1 + �) ln 1 + �2 # +�� +��) : (28)In the ultrarelativisti limit we obtain:d�evend
 = d�0d
 �2�� ((� + �e � 2) ln�2��� �+ 1312�e + � + �212 � 239 + �� +��) :(29)Let us onsider now the ase when the additional photon in (21) is hard. Theorresponding matrix element takes the form :Me+e�!�+�� = i(4��)3=2(me +m�);me= 1s1F�(s1)(q� � q+)��v "� p̂� � k̂�2p�k ê+ ê(�p+ + k)�2p+k �# u;m� = 1sF�(s)�v�u "(2q� + k)�(k + q� � q+)�2q�k +(q� � q+ � k)�(�2q+ � k)�2q+k � 2q��# e�: (30)It is easy to be onvined that Eqs. (30) satisfy the relation of gauge invariane:eah term me and m�, when taken separately, vanishes under replaemente ! k. The expression (30) is also in agreement with (23), when k ! 0.10



Omitting straightforward alulations, the expression for the ross setion ofthe proess (21) is:�e+e�!�+�� = �32�2s2Rd3q+d3q�d3k�+��! Æ(4)(p+ + 2p� � q+ � q� � k); (31)where R = R0 +�R, withR0=( ss21 jF�(s1)j2 " p+p��+�� � 2�� � m2e�2� + �+p+p�  1�� + m2e�2�!+ (q+ $ q�)# +2s1Re[F�(s)F �� (s1)℄ p+�+ � p���! q+�0+ � q��0�!) (p+Qp�Q); (32)
�R= ss21 jF�(s1)j2 " 1�� (p+Qk�Q) + 1�+ (p�Qk+Q) + 2Qk�+�� (p+Qp�k)# +1s jF�(s)j2 ( q+q��0+�0� [�+�� � 2(p+Qp�q)℄ + m24�02+ (p+(k + 2Q)p�(k + 2Q))�1�0+ [�+ � p�q+ + �� � p+q+ + 2(p�Qp+q+) + p+p� �Q2℄ + (q+ $ q�))+1s1Re[F�(s)F �� (s1)℄((p+Qp�k) p+�+ � p���! q+�0+ � 2(p+ � p�)Q�1�0+ (k(p+ � p�)Qq+) + 2Qk �Qp+ � p�q+���0+ � 2Qk �Qp� � p+q+�+�0+ +Q2 "��+ � q+p����0+ + �� � q+p+�+�0+ + q�(p+ � p�)�0+ #� (q+ $ q�)) ; (33)andQ = 12(q+ � q�); (abd) = ab � d+ ad � b� a � bd; k� = k � p� kp�p+p� :The quantity �R does not ontain ollinear divergene, i.e. it is �nite when�� ! 0. In the ultrarelativisti limit we obtainR= jF�(s)j2 "tu+ t1u1ss1 4s1�0+�0� � 8m2s2  tu1�02+ + t1u�02� !# + (34)jF�(s1)j2 " tu+ t1u1ss1 4s�+�� � 4m2ess1 (tu1 + t1u) 1�2+ + 1�2�+!# +[tu+ t1u1℄ss1 [ss1(t + t1 � u� u1) + (s+ s1)(tt1 � uu1)℄�+�0+���0� Re[F�(s)F �� (s1)℄;11



wheres=(p+ + p�)2; s1 = (q+ + q�)2; t = (p� � q�)2; t1 = (p+ � q+)2;u=(p� � q+)2; u1 = (p+ � q�)2; �� = kp�; �0� = kq�: (35)4 The proess e+ + e� ! �+ + ��()We limit our onsiderations to the energy region where one an neglet largeorretions to the alulation of the ross setion, due to the intermediatestate with exhange of a partile of mass Ml suh that:sM2l � 10�3: (36)Therefore we do not onsider the Z-boson ontribution. Part of the followingresult has already been given earlier in the literature, but it is rederived ithere for ompleteness. The ross setion of the proess e+(p+) + e�(p�) !�+(q+) + ��(q�) in the Born approximation an be written as:d�0d
 = �2�4s (2� �2 sin2 �); � =  1� m2��2 !1=2 ; s = 4�2; � = d~q�; ~p�: (37)Let us look the the harge{even part of the ross setion, determined by theFeynman diagrams Figs. 3a-e.In the ase of � � 1, the ontribution of the muon form fator F2 must betaken into aount, too:��(q) = �F1(q2)� 14m [�; (q̂++q̂�)℄F2(q2); F1(q2) = 1+F (2)1 (q2); F (2)1 (0) = 0:Let us start from the interferene with the Born amplitude14Trp̂+�p̂��O 14Tr(q̂� +m) �F1 � [�; (q̂+ + q̂�)℄4m F2! (q̂+ �m) �F1 + [�(q̂+ + q̂�)℄4m F2! == s24 (2� �2 sin2 �) "F 21 + 42� �2 sin2 �F2F1# �� s24 (2� �2 sin2 �) "1 + 2F (2)1 + 42� �2 sin2 �F2# :12



Introduing the the expression of the form fators:F (2)1 = �� (�ln m� � 1� 1� 1 + �22� ln 1 + �1� �!+1 + �22� "�23 � 14 ln2  1 + �1� �!+ln 1 + �1� �! ln 1 + �2� !+ Li2  1� �1 + �!#� 14� ln 1 + �1� �!) ;F2= �� � 1� �24� ln 1� �1 + �! ;and deriving the ontribution of soft photon emission (with the same prei-sion with respet to the hange �� ! �� � �) similarly to the ase of pionprodution: d�d
!softeven= 2�� d�0d
 ((�e � 1) ln�2��� �� 14�2e � �26 + 12�e+12� ln 1 + �1� � + ln�2��� � 1 + �22� ln 1 + �1� � � 1!+1 + �22� "�14 ln2  1 + �1� �!+ ln 1 + �1� � ln 1 + �2� � �26 +Li2  1� �2� !#) ; (38)we obtain the following expression for the harge{even ontribution to theross setion: d�d
!even= 2�� d�0d
 ( �e � 2 + 1 + �22� ln 1 + �1� �! ln���� ��(1� �2) ln 1 + �1� �! [2�(2� �2 sin2 �)℄�1 +1312�e + �26 � 319 + 13�2 + � �12 + 34� + � � 16�3!+ 12� + 2� � 13�3! ln 1 + �2 + 1 + �22� "�26 + 2� ln 1 + �2� +2 ln 1 + �2 ln 1 + �2�2 + 2Li2  1� �1 + �!#+�H) : (39)Let us note that Ref. [4℄ ontains a mistake: a fator two is missing in theseond term in parenthesis of Eq. (39).13



In the ultrarelativisti limit we obtain: d�d
!even= �32�s(1 + 2) "(�e + �� 2)�ln ��� + 1312�+ �23 �1718 + �H� : (40)Let us onsider now the harge{odd part of the reation e+ + e� ! �+ + ��.The one{loop ontribution is desribed by the diagrams 3d{e and has the form[4,5℄ d�d
!virtodd = �3�2�s ((2� �2 sin2 �) ln 1 + �1� � ln�2�� ��1� �2(1 + sin2 �)1 + �2 � 2� (� + `�) + � "� 12�2�� 12sF�+12sFQ  �1� �22 + 12�2!+ 14(�2e + �2) + �26 � 12`2� +L�(� + `�)� Li2  1� �22(1� �)!#� (1� �2) �14`2��12L�(�+ `�) + 12Li2  1� �22(1� �)!#� ($ �)) : (41)All quantities, entering in (41), are de�ned above (see Eqs. (9,12)). The or-responding ontribution of soft photon emission (within the preision in per-muting �� ! �� = � with the orresponding one for the proess e+ + e� !�+ + ��) has the form: d�d
!softodd = �3�2�s (2� �2 sin2 �)(� ln 1 + �1� � ln�2��� �+ 12`2��L�(�+ `�) + Li2  1� �22(1� �)!+ Li2  �2(1� 2)1 + �2 � 2�!�Z 1��20 dxx  1� x�t!�1=2 f(x)� ($ �)9=; (42)Finally we derive the expression for the harge{odd part of the ross setion(d�=d
)odd and for the related oeÆient of the harge asymmetry,� =  d�d
!odd = d�0d
 ! ; (43)where 14



 d�d
!odd= �3�2�s ((2� �2 sin2 �) "ln 1 + �1� � ln� ����+ 12`2��L�(�+ `�) + Li2  1� �22(1� �)!+ Li2  �2(1� 2)1 + �2 � 2�!�Z 1��20 dxx f(x) 1� x�t!�1=235� 1� �2(1 + sin2 �)1 + �2 � 2� (�+ `�)�14(1� �2) "`2� � 2L�(�+ `�) + 2Li2  1� �22(1� �)!#+� "� 12�2� + �212 + 14�2 + 12�  �1� �22 + 12�2! �26 + � ln 1 + �1� � � 12 ln2  1 + �1� �!� 4Li2  1� �2 !�2Li2  �1� �1 + �!� 2 ln 1� �2 ln 1 + �2 !� 12`� +L�(�+ `�)� Li2  1� �22(1� �)!#� ($ �)) : (44)In the ultrarelativisti limit this relation oinides with the result �rstly de-rived by I. B. Kriplovith[6℄ :
 d�d
!asodd= �3�s (2(1 + os2 �) "ln ot �2 ln� ����+ 12 ln2 sin �2� (45)12 ln2 os �2 + 14 Z sin2 �=2os2 �=2 dxx ln(1� x)# + os2 �2 ln sin �2 �sin2 �2 ln os �2 �  ln2 os �2 + ln2 sin �2! os �) ; � = d~q�; ~p�:

4.1 The proess e+(p+) + e�(p�)! �+(q+) + ��(q�) + (k)The ross setion of this proess has the following form [4,5℄:15



d�= �32�2s2Rd3q+d3q�d3k�+��! Æ(4)(p+ + p� � q+ � q� � k);R=�12s(uu1 + tt1)a2 + a�r + ss1 q�+ 2s1 (t+ t1 � u� u1)�1s�0� (t1�� + u�+)� 1s�0+ (u1�� + t1�+)�ss21�� (u1�0+ + t1�0�)� ss21�+ (u�0� + t1�0+);where the determination of the invariants oinides with (35). Moreover thefour vetors a, r, q an be expressed as:a= 1s (n0� � n0+) + 1s (n+ � n�); n� = p��� ; n0� = p��0� ;q= q�(u� t1) + q+(t� u1) + n�(�0+u1 + �0�t1)� n+(�0�u1 + �0+t);r= p+(t� u) + p�(u1 � t1) + n0�(��t1 + �+u)� n0+(��u1 + �+t): (46)In the ultrarelativisti limit 1 � �� � 1, the expression for the ross setiontakes the form:d�= �32�2sXd
�dq0+dq0�d� = �32�2s jq+j!2�� !(1� os �)Xd
�d
d!;X =�m2e2s21  t21 + u21�2� + t2 + u2�2+ !� m2�2s2  t21 + u2�02� + t2 + u21�02+ !+(t2 + t21 + u2 + u21) " 14s1�+�� + 14s�0+�0�+14ss1  u1�+�0� + u���0+ � t1�+�0+ � t���0�!# : (47)5 The proess e+ + e� ! e+ + e�(+)5.1 Bhabha sattering: e+ + e� ! e+ + e�The expression for the ross setion of Bhabha sattering: e+(p+)+ e�(p�)!e+(q+) + e�(q�) taking into aount the orretion for the emission of softphoton, in the one{loop approximation takes the formd�d
 = d�0d
 (1 + Æ); d�0d
 = �24s  3 + 21�  !2 ;  = os � = os d~q�; ~p�: (48)16



Æ= 2�� "2 1� � + 2 ln ot �2! ln ��� + Z sin2(�=2)os2(�=2) dxx ln(1� x)�239 + 116 ��+ �� (3 + 2)�2 (�23 (24 � 33 � 15)+2(24 � 33 + 92 + 3+ 21) ln2 sin �2 �4(4 + 2 � 2) ln2 os �2 � 4(3 + 42 + 5+ 6) ln2  tan �2!+23(113 + 332 + 21+ 111) ln sin �2 + 2(3 � 32 + 7� 5) ln os �2 +2(3 + 32 + 3+ 9)Æt � 2(3 + 3)(1� )Æs�;with Æs = (�� +�H); Æt = (�� +�H)s!� s2 (1�):5.2 The proess e+(p+) + e�(p�)! e+(q+) + e�(q�) + (k)The ross setion of the proess e+(p+) + e�(p�) ! e+(q+) + e�(q�) + (k)was �rstly obtained in Ref. [8℄ in a ompat form:d�e+e�!e+e� = �38�s�e+e� d3q+d3q�d3kq0+q0�! Æ(4)(p+ + p� � q+ � q� � k);
�e+e� =W [ss1(s2 + s21) + tt1(t2 + t21) + uu1(u2 + u21)℄ss1tt1 �4m2�02+ �st + ts + 1�2 � 4m2�02� �s1t1 + t1s1 + 1�2 �4m2�2+ �s1t + ts1 + 1�2 � 4m2�2� � st1 + t1s + 1�2 ; (49)W = 14�+�0+���0� [u(st+ s1t1) + u1(s1t + st1) + 2ss1(t + t1) +2tt1(s+ s1)℄ = �0� p��� � p+�+ � q+�0+ + q��0�!2������m2e=0 ;where the invariants were previously de�ned in (35). Below, we will try togeneralize the results obtained in (48) and (49) taking into aount higherorder orretions. Conserving in (48) only the terms of the sum of the order17



�=�� ' 1 (whih do not vanish in the limit (2)), we rewrite Eq. (48) as:d� = d�0 �1 + � �2 ln ��� + 116 �� ; � = 2�� (�� 1) � 1: (50)This result an be reprodued in a general form, as an exat funtion of the� parameter, with the help of the formalism of the renormalization group (8).It is possible to see, indeed, that the funtionsD(x; �q) = �q2 �(1� x)�q=2�1 �1 + 38�q�� 12(1 + x)� ; (51)with �q = 2��  ln ����� q2m2 ������ 1! ; Z 10 dxD(x; �q) = 1;desribe the (parton{like) probability to �nd, in the initial eletron (positron),an eletron (positron) with an energy fration x of the initial energy andfour{momentum squared jq2j � s, and write the ross{setion of the proesse+ + e� ! e+0 + e�0 + ::: in the form of a Drell{Yan proess:d�(�n�; �n+; �yn0�; �zn0+) = Z 1 dx1 Z 1 dx2D(x1; �q)D(x2; �q)d�0(�x1n�; �x2n+; �y1n0�; �y2n0+) Z 1 dyy1D yy1 ; �q!Z 1 dzy2D zy2 ; �q!(1� �)�2; (52)where n�, n0� are unit four{momenta of the initial and �nal e+, e�. The result(50) is obtained by setting (1��)�2 = [1� (�=(3�)�℄�2 and hoosing the lowlimit of the integration over the energy fration y0 = x0 = [1� (��=�)℄, where�� orresponds to the preision of the energy measurement of the eletronand the positron.It is neessary to point out, that the desription of the proess in frame of thepartoni model (52) is only true for a quasi{two{partile kinematis: whenthe �nal partiles group themselves into a jet moving along the beam axis(emitted by the initial e+, e�) or along the diretion of the �nal eletron andpositron, sattered at large angles. In suh ase, the ross setion appears to bea funtion of the parameter (�=�)�, (2): (we set ln(��=�) � 1, ln(��=�) � 1)and it an be alulated from Eq. (52). It is known that the ross setion fore+e� sattering in a partiular kinematis (forward or bakward sattering)appears as a funtion of the parameter (�=�)�2 [3℄ and an not be desribedby a formula of type (52).We note that here we negleted the e�et of the formation of an additional paire+e� (it represents less than 0.2% in the energy range 200 MeV� ps � 3 GeV,and, moreover it an be alulated. In most of the experiments, the events with18



pair prodution are rejeted, whih allows us to write a simple interpolatedformula (52) for D(x; �q). In the leading logarithm approah (2), (�=�)� � 1,the initial eletron and positron keep their diretion, up to the momentum ofthe proess of hard sattering at large angle. This last emission also does nothange their diretion, de�ned in the subproess of hard sattering of partons:the eletrons with energy fration x1 and the positrons with energy fration x2going to eletrons with energy fration y1 emitted at an angle �� with respetto ~p� and to positrons with energy fration y2, sattered at an angle �+ withrespet to ~p�. Applying onservation laws for the subproesses, one �nds thefollowing relations:x1 + x2 = y1 + y2; y1 sin �� = y2 sin �+; x1 � x2 = y1 os �� + y2 os �+: (53)In Eq. (53) we use the fat, harateristi for the soft proess, that in Eq. (2)the emission does not hange the diretion of motion of the partons, whihmeans that the three{momentum of the emitted e+, e� lies in the plane on-taining the axis of the beams, i.e., the angle between the planes ~p0�~p� and ~p0+~p�is 1800. When the energies and sattering angles of eletrons and positrons aremeasured, Eq. (52) an be written in the following form (with the help of (53)):d�e+e�!e+0e�0+:::d���+dydz = ��2(2� 2+� + s+s�)2(1� )(1� �)2(1� 2+) � s Z 1 dxx31D(x1; �) (54)D(x2; �)D( yy1 ; �)D( zy2 ; �) �K � (1� �)�2;with x2 = x1 tan ��2 tan �+2 ; � = �+ + ��;y1 = x1 sin �+2sin �2 os ��2 ; y2 = x1 sin ��2sin �2 os �+2 :�y = ��, �z = �+ are the energies of the deteted eletron and positron, �� theangles of emission with respet to the diretion of ~p�,  = os �, � = os ��,s� = sin ��:The quantity K in Eq. (54) is alled K-fator, whih an be alulated asymp-totially for the non leading terms, as it does not ontain terms of the orderof ��=�. We write it in the following form:K = 1 +Ks +Kh: (55)The quantityK an be obtained from Æ, Eq. (48), setting � = 1. The expressionof the quantity Kh depends on the requested preision. In the ase when theenergy of the undeteted photon is small, ��=�� 1, then Kh = 0. When it is19



not small or when it is not measured, then:Kh = Z!>�� d�e+e�!e+e�d�0 ; d�0 = ��22s d 3 + 21�  !2 : (56)The lower limit of the integration over x1 in Eq. (54) is determined by theonditions: 1� ��� > x1; x2 < 1; y < y1; z < y2; (57)i.e., by the experimental onditions.6 Annihilation hannel e+ + e� ! 2; 3The ross setion for eletron positron annihilation in two photone�(p�) + e+(p+)! (k1) + (k2); (58)for s = (p� + p+)2 >> m2e = m2 isd�BdO1 = �2s� "1 + �221� �22 + 2�2(1� �2) 1� 2(1� �22)2 # ; (59)with � = q1� 4m2=s,  = os � (� being the polar angle between the dire-tions of the initial eletron and of the photon in the enter of mass frame). Inthe relativisti limit one obtains:d�BdO1 = �2(1 + 2)s(1� 2) : (60)The theorem on fatorization of hard and soft momenta [1℄ in the expressionof the ross setion for exlusive proesses, allows one to express the radiativeorretions in the leading logarithmi approximation:�� � 1; ��L � 1; L = log sm2 (61)in terms of LSFs of eletron and positron:d�(p�; p+; k1; k2)= 1Z0 dxD(x; L) � 1Z0 dyD(y; L)d�B(xp�; yp+; k1; k2)(1 + ��K2); (62)20



where the "shifted" Born ross setion has the form:d�B(xp�; yp+; k1; k2) = 2�2sxy x2(1� )2 + y2(1 + )2[x(1� ) + y(1 + )℄2 dO1: (63)The expliit knowledge of theK-fatorK = 1+(�=�)K2 allows one to inreasethe auray of the theoretial predition up to 10�3 level. Suh fator takesinto aount the non-leading ontributions arising from the emission of virtualsoft photons and hard real photons : K2 = KSV + Kh. The �rst ones wasobtained many years ago [9℄. The result in relativisti ase has the form:KSV = �23 + 14(1 + 2) [(5� 6+ 2) ln 1 + 2 + (5 + 2+ 2) ln2 1 + 2 +(5 + 6+ 2) ln 1� 2 + (5� 2+ 2) ln2 1� 2 ℄: (64)The ontribution due to the emission of a hard photon lose to the diretionof the momentum of the eletron or the positron, i.e., within a small one� < �0; � � � < �0, an be obtained using the "quasi-real eletrons" method.The last part of theK fator,Kh, is built by extrating the terms depending onln �0 and adding the ontribution form the so alled non-ollinear kinematialregion (when the hard photon is emitted outside the small ones around thebeams axes). The experimental onditions for the detetion of the photonsan be imposed as well.The ross setion in non-ollinear kinematis an be obtained using the hiralamplitudes method. The result isd�hard = 16�33�2sRd�; (65)withR= �23(1 + 23)�21�22(1� 21)(1� 22) + �22(1 + 22)�21�23(1� 21)(1� 23) +�21(1 + 21)�23�22(1� 23)(1� 22) : (66)The phase volume element of three photon �nal state isd� = 1s d3q12!1 d3q22!2 d3q32!3 Æ4(p� + p+ � k1 � k2 � k3): (67)It an be expressed in the form: 21



d�= 116 1� �1[2� �1(1� 13)℄2 �1d�1dO1dO3= 116 1� �3[2� �3(1� 13)℄2 �3d�3dO1dO3 :::; (68)The �nal expression of Kh is [10℄:��d�B (xp�; yp+; k1; k2)Kh = Z d�hard�+ �2� 1�4EEZ0 dx1� x [(1 + x2) ln �204+(1� x)2℄ � [d�(xp�; p+) + d�(p�; xp+)℄:(69)Here the symbol � represents the onstraints on the manifold of integrationvariables d�. The three energy frations must exeed �E=E (hardness ondi-tion). Moreover, onservation laws require k1 + k2 + k3 = 0. In partiular,1�1 + 2�2 + 3�3 = 0; �1 + �2 + �3 = 2; �i = !iE ; 4EE < �i < 1: (70)The non-ollinear kinematis onditions must also be put on: �0 < �i < ���0:Moreover, the experimental uts onneted with detetion of the �nal photonsan be inluded in this set of uts. These onditions depend on the experi-mental set-up. This is the reason why we do not do numerial estimationshere.7 ConlusionsIn ase of heavy partile prodution (�++ ��, �++ ��), in eletron{positronannihilation at energies up to several GeV, it is possible to alulate the rosssetion of the �nal partiles and the interferene terms not as asymptotiquantities, as a K fator, whih takes into aount all high order orretions.The ross setion takes the formd�e+e�!q�q+1 d
� = Z 1 dx1 Z 12 dx2D(x1; �)D(x2; �)(1� �)�2 �Ki � d�̂i(x1; x2��)d
 ;(71)with Ki = 1 + �i + Æeveni (�e = 1) +Kih: The di�erential ross setions for thesubproesses d�̂�;�=d
� have the form:d�̂��d
� = jF�(sx1x2)j2 �22�2 sin2 ��[x1 + x2 � �(x1 � x2)℄4 ;d�̂��d
� = �22�2 x21(1� �)2 + x22(1� �)2[x1 + x2 � �(x1 � x2)℄4 : (72)22



In the alulation of the integral of the ross setion with emission of a hardphoton, diÆulties appear when the photon is emitted along in the diretionof the momentum of one of the harged partiles ( initial or �nal). Theseso alled divergenes' of the integrated expression orrespond to small valuesof the invariants whih appear in the denominators. We give a sheme, inthe following alulation, whih allows to overome these diÆulties. Let usonsider the proess e+ + e� ! �+ + ��. Let us hoose a small angle (inradiants) �0 suh that: me� � �0 � 1: (73)Simulating the four-vetor kinematis (with Monte-Carlo methods) if the angleof emission of the photon � with respet to any of the harged partiles, islarge, � > �0 it is possible to apply use the exat formulas whih were givenabove. In suh ase divergenes do not appear sine the invariants kpi are notsmall and therefore we an neglet those terms in �e+e� whih are proportionalto m2e.In the ase when one of the angles �i � �0, simpli�ed formulas an be derived,whih allows a simple analytial alulation in this kinematial region [2℄.When the photon is emitted along the diretions of the beams: kpi = !�i(1��i os �i), one has:d� = d�0(p� � k; p+)dWp�(k) + d�0(p�; p+ � k)dWp+(k); (74)with dWp�(k) = �4�2 "1 + (1� x)2x � kp� � (1� x) m2e(kp�)2 # d3k! ; x = !� ; (75)and d�0 is the Born ross setion of the proess e+e� ! e+0e�0. In this asethe three-momenta of the initial eletron and positron are no more equal inmagnitude. In the ase when the eletron is emitted:d�0 = 2��2s2 s4 + t4 + u4s2t2 dt; s+ t+ u = 0;setting s = 4�2(1� x), t = �4(1� x)2(1� )2� x(1� ) one obtains:d�0(p� � k; p+) = 2��2�2 (3� 3x+ x2 + 2x(2� x)+ 2(1� x + x2)(1� x)(1� )[2� x(1� )℄2 )2 d;(76)where  = os( d~p�; ~p0�) is the osine of the sattering angle in the laboratorysystem. For ompleteness, we introdue the following terms for the energy andthe angle of the sattered e+(e�):�+� = 1a [2� 2x + x2 + x(2� x)℄; ��� = 2(1� x)a ;23



sin �+ = ���+p1� 2; a = 2� x(1� ):In the ase when the photon is emitted from the initial positron, the rosssetion has the same expression under exhange of  ! ~ = os( d~p+; ~p0+). Inase of photon emission by the sattered eletrons and positrons, the rosssetion has the form  � ~d� = d�0[dWp0+(k) + dWp0�(k)℄; d�0 = ��28�2  3 + 21�  !2 : (77)The integration of dWp(k) over the angle, in the region � < �0 gives:dWp(k) = �2� dxx ([1 + (1� x)2℄ ln �2�20m2e !� (1� x)) : (78)The sum of the ontributions in the regions �i > �0 and �i < �0 does notdepend from �0, for �0 suÆiently small. In the region lose to the thresholdof �+��(�+��), prodution, �� � �� � 1, the divergene of the ross setionappears only from the radiation of the initial e+ and e�. The formula for theross setion takes the form (74), where s = 4�2(1�x), t = m2�2(1�x)p�q�,u = 2m2 � s� t, x = !=�:d�e+e�!�+��0 (p� � k; p+)= ��2dts2 "1� 4m2s � �t� us �2# ; (79)d�e+e�!�+��0 (p� � k; p+)= 2��2dts2 24 t2 + u2s2 + 4m2s � 2 m2s !235 : (80)In the ultrarelativisti limit the emission of photon along the �nal partilesan be alulated with the help of (77):d�e+e�!�+�� = ��216�2�3� sin2 �d;d�e+e�!�+�� = ��28�2 ��(2� �2� sin2 �)d: (81)In onlusion, we have alulated the ross setion for di�erent proesses in-dued by e+e� annihilation, in the energy range 200 MeV � 2E � 3 GeV,where the ontribution of heavy bosons an be safely negleted. We have takeninto aount �rst order orretions to the amplitudes and the orretions dueto soft emitted photons. The harge{odd and harge{even ontributions to theross setion for the �nal hannels �+��() and �+��() have been expliitlygiven. In ase of pions, form fators are taken into aount. The omparisonwith the lepton struture funtion method allows to estimate the ontributionof higher orders of perturbation theory. The preision of the obtained results is24
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(h)Fig. 1. Feynman Diagrams for the proess e+ + e� ! �+ + ��.
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(e)Fig. 2. Feynman Diagrams for the proess e+ + e� ! �+ + ��().better than 0.5%, in the energy region outside narrow resonanes. Finally wehave desribed a method to integrate the ross setion, avoiding the diÆultieswhih may arise from singularities in spei� kinematial regions.Referenes[1℄ A. Bassetto, M. Ciafaloni and G. Marhesini, Phys. Rep. 100 (1983) 201.[2℄ V. N. Baier et al. Nul. Phys. B 65 (1973) 381.25
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Fig. 3. Feynman Diagrams whih ontribute to the harge{even part of the rosssetion for the proess e+ + e� ! �+ + ��().[3℄ A. I. Akhiezer and V. B. Berestezki, "Quantum Eletrodynamis", Mir Edition,Mosow, (1981).[4℄ F. A. Berends et al., Nul. Phys. B 57 (1973) 381.[5℄ E.A. Kuraev and G.V. Meledin, Nul. Phys. B 122 (1977) 485; INP Preprint76-91 (1976).[6℄ I. B. Kriplovih, Yad. Fizika B 103 (1982) 124.[7℄ E. A. Kuraev and V. S. Fadin, Sov. J. Nul. Phys. 41 (1985) 466 [Yad. Fiz. 41(1985) 733℄.[8℄ F. A. Berends et al., Nul. Phys. B 177 (1981) 237; Nul. Phys. B 206 (1982)61.[9℄ L. Brown and R. Feynman, Phys. Rev. B 85 (1952) 231;J. Harris and L. Brown, Phys. Rev. B 105 (1957) 1656;F. Berends and R. Gastmans, Nul. Phys. B 61 (1973) 414.[10℄ E. Bartosh, S. Bakmaev, E. Kuraev, M. Shatnev and M. Sehansky, Pis'ma vZhETF, 87 (2008) 81.

26


