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ABSTRACT

Among the tools available for the study of the dark energy driving the expansion of the Universe, Baryon Acoustic Oscillations (BAO)
and their effects on the matter power spectrum are particularly attractive. It was recently proposed to study these oscillations by map-
ping the 21cm emission of the neutral hydrogen in the redshift range 0.5 < z < 3. We discuss here the precision of such measurements
using radio-interferometers consisting of arrays of dishes or north-south oriented cylinders. We then discuss the resulting uncertainties
on the BAO scales and the sensitivity to the parameters of theDark Energy equation of state.
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1. Introduction

One of the goals of current cosmological research is to fully
characterize the “dark energy” that drives the apparent accelera-
tion of the expansion of the Universe. Among the available tools
(Albrecht et al. 2006), much interest has been generated by the
features in the matter power spectrum that result from Baryon
Acoustic Oscillations (BAO) in the pre-recombination Universe.
These oscillations cause a peak in the matter correlation function
at a comoving distance,s ∼ 105h−1Mpc, equal to the acoustic
horizon at recombination. Equivalently, the BAO induce “wig-
gles” in the matter power spectrum with peaks at comoving wave
numbersk = (n + 1/2)π/s for n = 2, 4, ..... The theoretical po-
sitions of these peaks are known to a precision of order 1% so
they can be used as reliable standard rulers to study the expan-
sion history.

After first being seen in the CMB anisotropy spectrum
(Mauskopf et al. 2000; Hinshaw et al. 2008), BAO effects were
subsequently observed in the low-redshift (z < 1) galaxy cor-
relation function and power spectrum by the SDSS survey
(Eisenstein et al. 2005; Percival et al. 2007) and the 2dGFRS
survey (Cole et al. 2005). With future data in the redshift range
0.5 < z < 3, it is hoped to provide precise constraints on dark-
energy parameters. It has been proposed to do this with redshift
surveys using galaxy optical spectra (Basset et al. 2005) orHI
emission (Abdala & Rawlings 2005) or by mapping in three di-
mensions the pattern of Lyman-α absorption of distant quasars
(Wolf et al. 2005).

An alternative elegant approach was recently proposed by
Peterson et al. (2006) and further developed by Chang et al.
(2008). They propose to use neutral hydrogen (HI) as a tracer
of matter and simply map out the 21cm emission with an an-
gular resolution that is insufficient to detect individual galax-
ies (where most HI is concentrated) but sufficient to observe the
BAO wiggles. At redshiftz = 1.5, the acoustic horizon subtends
0.0334rad on the sky which can be resolved with telescopes of

size of order 100m. These would be considerably smaller and
cheaper than the 1km elements necessary to detect individual
high redshift galaxies (Abdala & Rawlings 2005).

Mapping the matter distribution using HI 21 cm emis-
sion as a tracer has been extensively discussed in literature
(e.g. Furlanetto et al. (2006); Tegmark & Zaldarriaga (2008)).
Several projects, such as LOFAR (Rottgering et al. 2006) or
MWA (Bowman et al. 2007) aim at detecting the reionization
epic (z ∼ 10). Detecting BAO features aroundz ∼ 1 using HI
radio emission has also been discussed by Wyithe et al. (2007).

In Section 2 we review the expectations for the HI power
spectrumPHI(k) and its relation to the large-scale structure mat-
ter power spectrumPLS S (k). Section 3 describes the interfero-
metric observations that are assumed for this study and Section
4 presents a simplified procedure to use these observations to
reconstruct the HI power spectrum in a small volume near the
zenith. While this procedure is not entirely realistic, it allows
us to give estimates of the reconstructed noise power spectrum,
Pnoi(k) (Fig. 5). Section 5 discusses the problem of subtraction of
foreground and background radio sources. Finally, in Section 6
we describe the constraints on the cosmological parametersthat
can be derived from the determination of the BAO peaks in the
power spectrum.

2. The HI power spectrum

The mean HI brightness temperature (assumed to be much
greater than the CMB temperature) is (Barkana & Loeb 2007)

T̄HI(z) = 0.0466mK
(1+ z)2 fHI(z)

[ΩΛ + (1+ z)3ΩM]1/2

ΩHIh70

3.5× 10−4
(1)

whereΩHI ∼ 3.5× 10−4 (Zwaan et al. 2005) is the current mean
cosmological HI density and

fHI(z) =
(HI/H)z

(HI/H)z=0
(2)
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is the fraction of hydrogen in atomic form relative to this fraction
at z = 0. Studies of Lyman-α absorption (Wolf et al. 2005) indi-
cate thefHI (z = 1.5) ∼ 3 implying T̄HI(z = 1.5) = 0.00033K.
This is three orders of magnitude below the brightness of ex-
tragalactic radio source emission,∼ 3400Jy sr−1, corresponding
to T̄rs ∼ 0.3K. However, these sources, as well as Milky Way
emission and CMB radiation, have smooth frequency distribu-
tions, allowing them, in principle, to be subtracted.

We are interested in the spatial variations of the HI temper-
ature about the mean. Consider a small cube of volumeV at
mean redshiftz corresponding to a HI frequencyν = ν0/(1+ z).
The cube covers a solid angle∆Ω = ∆α × ∆δ (α = r.a., δ =
dec.∼ 0) and redshift range∆z corresponding to a frequency
range∆ν = ν0∆z/(1+ z)2. The present volume of the cube is

V = d2
T dH∆Ω∆z =

(c/H0)d2
T∆Ω∆z

√

ΩΛ + ΩM(1+ z)3
(3)

where for a flatΛCDM universe, the comoving angular distance
dT and Hubble distancedH are

dT =

∫ z

0

(c/H0) dz
√

ΩΛ + ΩM(1+ z)3
dH =

c/H0
√

ΩΛ + ΩM(1+ z)3
.

Inside the cube, the sky brightness can be expanded using
functions that satisfy periodic boundary conditions. For small
cubes (∆α, ∆δ, ∆z ≪ 1) the functions can be taken to be com-
plex exponentials of (α, δ, z):

THI(α, δ, z) =
T̄HI√

V

∑

n

ΓHI(n) e2πi(nαα/∆α+nδδ/∆δ+nzz/∆z) (4)

where theΓHI (n = (nα, nδ, nz)), are defined for integernα, nδ, nz.
The wave vectork is related ton by

kα =
2πnα
dT∆α

kδ =
2πnδ
dT∆δ

kz =
2πnz

dH∆z
(5)

The HI power spectrum is:

PHI(k) = 〈|ΓHI(k)|2〉 (6)

the average being over the modesk with wave numbers neark.
The number of such modes in the cube and in the interval∆k is:

N∆k =
Vk3

4π2

∆k
k
=

(c/H0)dT (z)2∆Ω∆zk3

4π2
[

ΩΛ + (1+ z)3ΩM
]1/2

∆k
k

= 7.25× 104

(

dT (z)
c/H0

)2
∆Ω∆z
2π/5

(

k
0.075h Mpc−1

)3
∆k/k
0.2

×
[

ΩΛ + (1+ z)3ΩM

]−1/2
(7)

Since the|Γ(k)|2 are random number with variance equal toP(k)
the precision with whichP(k) can be measured isP(k)/

√
N∆k.

The HI power spectrum is expected to be similar to the
galaxy power spectrum. Figure 5 shows the expected galaxy
spectrum normalized to agree with that measured by SDSS at
z ∼ 0.1 (Tegmark et al. 2004). Also shown is this spectrum ex-
trapolated toz = 1.5 assumingΩM,ΩΛ = 0.27, 0.73. The spec-
trum has BAO peaks at

kn = (n + 1/2)π/s = 0.075hMpc−1n + 1/2
2.5

n = 2, 4, 6..... (8)

wheres = 105h−1Mpc is the sound horizon at recombination.
The relative crest to trough amplitudes at the first three peaks are
expected to be∆P/P ∼ 0.13,∆P/P ∼ 0.09, and∆P/P ∼ 0.05.

3. Interferometric Observations

Observations of GHz radiation can be performed with interfer-
ometers consisting of arrays of reflectors and receivers. Inthis
paper, we consider two types of arrays. The first, drawn schemat-
ically in Fig. 1, consist of north-south oriented cylindrical re-
flectors pointing towards the zenith. The reflectors have dipole
receiving antennae deployed along their axes. The information
to be extracted from a pair of such cylinders is illustrated in Fig.
1. The amplitude for each receiver is sampled over a timetint
after which a Fast-Fourier Transform (FFT) is performed to sep-
arate frequency components. We taketint to be sufficiently long
(∼ 35µsec) to give excellent resolution on the BAO features in
the radial direction. The receivers within a given cylinderare
then combined by a FFT to form beams covering pixels in dec-
lination of width∼ λ/Dδ for a wavelengthλ and cylinder length
Dδ. This requires that receivers be spaced byλ/2 in order to
avoid large side-lobe contamination. The number of receivers
per cylinder is thus of order 500 forDδ = 100m. The amplitudes
from two cylinders separated inuλ in the east-west direction
can than be correlated to form a “visibility”,V(α(t), δ, ν, u) that
is defined for discrete values of declination,δ, and frequency,ν,
defined by the two FFT’s. The right ascension,α(t) is defined by
the time of observation,t.

sec
FFT
35µ N−S

FFT

sec
FFT
35µ N−S

FFT

S

∆α
=1

/20

W
N

V

u λ

(α (t), δ, ν)

∆ν
=ν

/10
00

∆δ
=1

/20
0

(α (t), δ, ν,u)

Fig. 1. Two cylinders instrumented with dipole receiving an-
tennae along their axes. After a sampling timetint (taken here
to be 35µsec), an FFT is performed for each receiver to sepa-
rate frequency,ν, components. Receivers within a given cylinder
are then combined by (north-south) FFT to form beams in dec-
lination, δ. The amplitudes from the two cylinders can then be
combined to form visibilities,V(α(t), δ, ν, u) whereα(t) is the
right-ascension determined by the time of the observation and
where the cylinder separation isuλ.

The second type of array considered in this paper consists
of dishes the are orientable in declination. The readout forpairs
of dishes is the same as for the cylinders in Figure 1 except that
there is no north-south FFT so that the declinationδ is defined
by the common dish pointing. Additionally, the dish separation
has components in the north-south and east-west directionssou
is a vector.

The cylinders of Fig. 1 give high resolution information in
the declination and frequency directions. In order to provide high
quality information in the right-ascension direction, it is nec-
essary to have several cylinders with a range of reflector sepa-
rationsλu. Schematics of the three arrays considered here are
shown in Figure 2. Two arrays,a andb, are arrays of fixed cylin-
drical reflectors of widthDα = 10m and lengthDδ = 100m. The
east-west configuration of the five cylinders in configuration a is
chosen to give uniform sensitivity over thek range necessary for
BAO studies. As such, they are placed at positions that are inte-
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100m

10m

100m

10m

b c

a

N

E

5m

Fig. 2. The three telescope configurations considered: a: “un-
packed cylinders”; b: “packed cylinders”; c: “packed dishes”.
In the unpacked array, the five cylinders are separated from
the most western cylinder by distances ofn × 10m with n =
0, 4, 5, 7, 13.

α

uαλ uδλ

uαλ
uδλ

sin

α
δ δ

sin(δ+δ)

Fig. 3. The pointing configuration of telescope pairs (at the ter-
restrial equator for simplicity). The left panel shows two cylin-
ders separated in the east-west direction and pointing toward the
zenith. The right panel shows two dishes separated in the north-
south direction and pointing in a directionδ from the zenith.

gral multiples of the cylinder width as shown in the figure. On
the other hand, the ten cylinder in configurationb are adjacent
to form a “packed array” giving redundant information over the
interestingk range.

The third system, c, is an array ofDα ×Dδ = 5m×5m dishes
(taken to be squares for mathematical convenience). Each dish
is instrumented with one receiver. The field-of-view in bothan-
gular directions is∼ λ/Dα. In order to survey the sky, the dishes
must be pointable in declination. As for the cylinder arrays, the
right-ascension is determined by the time of observation.

As illustrated in Fig. 1, each readout-FFT sequence gener-
ates a set of amplitudesS ad f c indexed by the four integers:a
giving the right ascension,αa, determined by the time of obser-
vation; (d, f ) denoting the set of amplitudes generated by FFT
corresponding to pixels in declination-frequency space centered
on δd, ν f (only oned per readout for dishes); andc defining the
reflector (dish or cylinder). The amplitudes are the sum of signal
and noise:

S ad f c = S noi
ad f c + S sig

ad f c (9)

The angular and frequency response are determined by the
lobe functions,Lad f c(α′, δ′, ν′), peaked atα′ = δ′ = ν′ = 0 and
normalized so that the expectation value of the squared signal is

〈|S sig
ad f c|

2〉 =
∫

dα′dδ′dν′L(α′, δ′, ν′)T (α′ + αa, δ
′ + δd, ν

′ + ν f )

For the rest of this note we make the approximation thatLad f c is
independent of (a, d, f , c). The noise contribution is normalized
so that the mean signal-to-noise is given byT̄/T sys

〈|S noi
ad f c|

2〉 = T sys

∫

dα′ dδ′ dν′ L(α′, δ′, ν′) (10)

The visibility for direction (a, d) and frequencyf for cylin-
ders (or dishes)c andc′ separated in space byuλ f is:

Vad f u = S ad f cS ∗ad f c′ (11)

The noise-noise contribution is a random number of vanishing
mean and variance determined byT sys:

〈

|Vnoi
ad f u|

2
〉1/2
= T sys

∫

dα′ dδ′ dν′ L(α′, δ′, ν′) (12)

Following Fig. 3, the signal-signal contribution to the visibility
has an expectation value

〈V sig
ad f u〉 =

∫

dα′dδ′dν′L(α′, δ′, ν′) T (α′ + αa, δ
′ + δd, ν

′ + ν f )

× exp [−2πi(uα sinα′ + uδ sin(δd + δ
′))] (13)

Forα′, δ′ ≪ 1 andδd ≪ 1 this simplifies to

〈V sig
ad f u〉e

2πiuδδd = (14)
∫

dα′ dδ′ dν′ L(α′, δ′, ν′) T (α′ + αa, δ
′ + δd, ν

′ + ν f )e−2πiu·θ′

where (θ′ = (α′, δ′)).

4. Reconstruction of HI Power spectrum

The visibilities,Vad f u can be combined to give information on
the HI distribution. For a given readout, a Fourier transform of
Vad f u overu yields a map of the field of view. We are more inter-
ested in the power spectrum which is related to the Fourier trans-
form of Vad f u over right-ascension, declination and frequency:

Ṽ(k, u) ≡ 1
NdN f Na

∑

ad f

e−i(dT kααa+dT kδδd+dHkzz f )Vad f ue2πiuδδd (15)

where there areNd × N f × Na pixels densely and uniformly cov-
ering the cube (∆α,∆δ,∆ν). In the absence of noise, substituting
the expansion (4) into (14) shows thatṼ(k, u) is proportional to
the product ofΓHI(k) and the Fourier transform of the lobe func-
tion. More generally, the visibilities are due to noise and signal
so we have

Ṽ(k, u) =
T̄Γ(k) F(k, u)

√
V

∫

dα′ dδ′ dν′L(α′, δ′, ν′) (16)

whereΓ(k) = ΓHI(k)+Γnoi(k) (plus foreground/backgroundcon-
tributions) and where the dimensionless “form factor” for the
modek is

F(k, u) =

∫

dα′ dδ′ dν′L(α′, δ′, ν′)eikzdH (1+z)2ν′eiθ′·(dT k−2πu)

∫

dα′ dδ′ dν′L(α′, δ′, ν′)
. (17)
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If L is symmetric,F is a real function.
The estimate ofΓ(k) based on the visibility of one reflector

pair with separationu is denotedΓ(k, u). From (16), it is given
by

Γ(k, u) = C
Ṽ(k, u)
F(k, u)

(18)

where the “calibration constant”,C, relates the power spectrum
to the measurements and form factors:

C =

√
V

T̄
∫

dα′ dδ′ dν′L(α′, δ′, ν′)
(19)

Since more than one value ofu can be used to estimateΓ(k),
one can make a weighted average of theΓ(k, u) derived with
(18). In the next subsection, we will show that the noise power
is inversely proportional toF(k, u) so it is reasonable to have
weights that are increasing functions of|F(k, u)| ∼ F(k, u). It is
most convenient to take the weights to be equal toF(k, u):

Γ(k) =
∑

u F(k, u)Γ(k, u)
∑

u F(k, u)
= C

∑

u Ṽ(k, u)
∑

u F(k, u)
(20)

where the sum is over those values ofu with F(k, u) , 0 (Other
choices of weighting may give slightly lower noise power butat
the price on introducing wiggles in the noise power spectrum.)

4.1. The noise

The noise contribution to thẽV(k, u) (15) is the mean of
NaNdN f random numbers of variance given by (12). This gives
〈

Ṽnoi(k, u)
〉

= 0 and

〈

|Ṽnoi(k, u)|2
〉1/2
=

〈

|Vnoi
ad f u|

2
〉1/2

√

NaNd N f

(21)

The noise,Γnoi(k, u) reconstructed using (18) is inversely pro-
portional toF(k, u) with an expectation value,P0, given by

P0 ≡
〈

|Γnoi(k, u)F(k, u)|2
〉

=
T 2

sys

T̄ 2

V
NdN f Na

. (22)

The survey volume to pixel ratioV/NaNd N f depends on the
interferometer configuration. In all cases the number of pixels
along the frequency direction isN f = tint∆ν wheretint is the in-
tegrating time between electronic readouts. In the angulardirec-
tions, cylinders and dishes differ. Dishes have only one angular
beam, so we haveNaNd = ttot/tint wherettot is the total obser-
vation time of the survey. Cylinders, with FFT beam-forming,
haveNa = ttot/tint andNd = ∆δ/(λ/Dδ) whereDδ is the cylinder
length. Combining with (3) this gives

V
(1+ z)2NaNdN f

=
d2

T dH∆Ω

ttotν0
(dishes)

=
d2

T dH∆Ω

ttotν0

λ/Dδ
∆δ

(cylinders) (23)

The values ofP0 thus differ for cylinders and dishes. For
cylinders we have

P0 = 2.4× 104(h−1Mpc)3

(

T sys

50K

)2 (

dT

c/H0

)2 (

λ/Dδ
0.525/100

)

×
(

∆α/ttot

2π/3× 107sec

)

√

ΩΛ + ΩM(1+ z)3

(1+ z)2 fHI(z)2

(

ΩHIh70

3.5× 10−4

)−2

(24)

For dishes we have a much largerP0 because of the smaller sky
coverage:

P0 = 4.6× 106(h−1Mpc)3

(

T sys

50K

)2 (

dT

c/H0

)2

×
(

∆Ω/ttot

2π/3× 107sec

)

√

ΩΛ + ΩM(1+ z)3

(1+ z)2 fHI(z)2

(

ΩHIh70

3.5× 10−4

)−2

(25)

Using (20), the expectation value of the noise for the mode
k is

〈|Γnoi(k)|2〉 =
P0Nu(k)

(∑

u |F(k, u)|
)2
=

P0

Nu(k)〈|F(k, u)|〉2u
(26)

whereP0 is given by (24) or (25) andNu(k) is the number of vis-
ibilities available for estimatingΓ(k). The noise is thus inversely
proportional toNu(k)〈F〉2. We will see that the large value ofP0
for dishes compared to cylinders will be compensated for by the
larger value ofNu.

4.2. The form factor

To estimate the form factor, we use the lobe function

L(α′, δ′, ν′) =

(

sinπα′Dα/λ
α′

)2 (

sinπδ′Dδ/λ
δ′

)2 (

sinπν′tint

ν′

)2

For a cylinder,Dα is the width,Dδ is the length, andtint is the
integrating time. This lobe function is a reasonable approxima-
tion both for the diffraction limited beam in right-ascension and
for the FFT formed beams in declination and frequency (if high
frequency components are filtered out). The form factor for this
lobe is a product of triangle functionsΛ(x) (Λ(0) = 1,Λ(x) = 0
for |x| > 1). For tint > 30µsec, the frequency lobe is sufficiently
narrow that its Fourier transform is near unity for interesting val-
ues ofk. In this case, the form factor is the product of the two
angular factors:

F(k, u) = Λ

(

dT kα/2π − uα
Dα/λ

)

Λ

(

dT kδ/2π − uδ
Dδ/λ

)

(27)

For cylinder arrays,uδ = 0. The most important characteristic of
this form factor is that it vanishes ask → 0 (i.e.k ≪ 2πDα/λdT ).
This is because only correlations between separated pairs of
cylinders are used (no self-correlations) which makes the tech-
nique insensitive to noise drifts but at the price of insensitiv-
ity to structure on high angular scales. Because of the trian-
gular form of the form factor, for the unpacked cylinder array,
there are generally two values ofuα that have non-vanishing
F(k, u) for a givenk: the ones withuα just above and just be-
low kα/[2πDα/(λdT )]. For the other two arrays, there are more
than two combinations.

Figure 4 plotsNu(k) and
∑

u F(k, u) averaged over orienta-
tion of k for the three telescope configurations. The dish array
has many more pairs for a givenk than the cylinder array and
this works to compensate for its higher noise.

4.3. The power spectrum

The power spectrumP(k) = PLS S + Pnoi can be found by calcu-
lating a weighted average of the|Γ(k)|2 for k in an interval∆k:

P(k) =
∑

k W(k)|Γ(k)|2
∑

k W(k)
(28)
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Fig. 4.
∑

u F(k, u) (solid lines) andNu(k) (dotted lines) both av-
eraged over the orientation ofk. The top pair of curves is for the
dish array (configurationc in Figure 2), the middle pair for the
packed cylinder array (configurationb in Figure 2), the bottom
pair for the unpacked cylinder array (configurationa in Figure
2). The vertical lines give the positions of the first four BAO
peaks.

whereΓ(k) is given by (20). A reasonable choice isW(k) =
(
∑

u F(k, u))2 in which case

P(k) =
∑

k |
∑

u F(k, u)Γ(k, u)|2
∑

k (
∑

u F(k, u))2
(29)

Using (26) we find a simple expression for the noise:

Pnoi(k) =
P0 〈Nu(k)〉

〈

(
∑

u F(k, u))2
〉 (30)

where the averages are overk. As expected from (26),Pnoi(k) is
inversely proportional toNu〈F〉2.

Figure 5 shows thePnoi(k) calculated in the three configura-
tions for a four-month observation of 2πsr at z = 1.5 (∆z = 0.2).
The noise for the packed array is considerably smaller than that
for the unpacked array because of the higher value ofNu. The
larger value ofP0 for the dishes is compensated by the larger
value ofNu so the noise is comparable to that for the cylinder
arrays. Note that the dishes accomplish this with fewer electron-
ics channels, 400, than the 2500 (5000) channels needed for the
unpacked (packed) cylinders.

For all configurations, the noise diverges ask → 0 because of
the filtering by the lobe, resulting in decrease in the form factor
and an increase inPnoi(k). The minimumk with full sensitivity
is

kmin =
2πDmin/λ

dT (z)
= 0.038h Mpc−1 Dmin/λ

10m/0.525m
3.1Gpc

dT
(31)

whereDmin is the minimum cylinder or dish separation. For the
numerical values ofdT and λ in this formula we have taken

PLSS(z=0)

PLSS(z=1.5)

Pnoi (c)
Pnoi (b)

(a)

Pnoi (a)

(b)

105

k (h Mpc−1)

σP

0.40

P
(k

) 
(h

−
1

100

10

1

3
M

pc
)

0.1 0.2

BAO amplitude

σPBAO1 2

Fig. 5. The P(k) and uncertainties for a four-month observation
of 2πsr at z = 1.5 (∆z = 0.2). The solid lines labeledPnoi give
the noise power calculated with (30) for the three configurations
of Figure 2. The dashed lines shows the SDSSP(k) at z ∼ 0
and extrapolated toz = 1.5. The dotted line shows the peak-to-
peak amplitude of the BAOs atz = 1.5. The solid lines labeled
σP shows the uncertainty in the measured power spectrum for
∆k/k = 0.2 calculated with (32) for configurationa andb. The
vertical lines show the positions of the first four BAO peaks.

z = 1.5 (ΩM,ΩΛ = 0.27, 0.73) and theDmin value for config-
urations b and c of Fig. 2. Figure 6 plotskmin(z) for Dmin = 10m
andDmin = 5m. To have good sensitivity at the first BAO peak,
10m elements are acceptable atz = 1.5 but smaller elements are
needed atz = 0.5.

The uncertainty,σP, in the measured power spectrum aver-
aged over an interval∆k is

σP =

〈

W(k)2|Γ(k)|4
〉1/2

√
N∆k 〈W(k)〉

(32)

whereN∆k is the number of modes in range∆k given by (7). If
the noise dominates the power spectrum, this is

σP =
P0

〈

Nu(k)2
〉1/2

√
N∆k

〈

(
∑

u F(k, u))2
〉

(33)

Figure 5 shows the resolutionσP calculated for a four-month
observation of 2πsr at z = 1.5 (∆z = 0.2) for the two cylinder
configurationsa andb, the dish configuration giving intermedi-
ate results. The resolution is less than the BAO amplitude shown
in the figure. For the packed arrayb, Pnoi < PLS S at the first BAO
peak so no improvement can be made by increasing the observ-
ing time. For the unpacked arrayc, increasing the observing time
by a factor 10 would leak to a resolution similar to that for the
packed array.

If Pnoi > PLS S , σP is of order (P0/Nu(k))/
√

N∆k. The value
of this quantity for unpacked cylinders and calculated at the first
BAO peak is plotted as a function of redshift in Fig. 6. Also
shown is the peak-to-peak amplitude of the BAO oscillation.The
resolution relative to the BAO amplitude rises slowly with red-
shift.

5. Radio sources

Extragalactic radio sources and Milky Way Synchrotron radia-
tion have power law frequency spectra that allow them to be sub-
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Fig. 6. The top panel shows thez dependence ofkmin =

2πD/(λdT ) for D = 10m (solid line) andD = 5m (dashed line).
The two horizontal lines show the position of the first two BAO
peaks. In the bottom panel, the solid line showsP0/

√
N∆k for an

exposure of 2πyr − sr cylinders in configurationa. The dashed
line shows the BAO peak-to-peak amplitude at the first peak
(lower panel).

tracted, in principle, from the HI spectrum. We consider here ra-
diation for extragalactic sources because their random positions
on the sky lead to a flux highly dependent on angular position.
The radio source contribution to the sky brightness (4) is

Trs(α, δ, ν) =
c2

2kbν2

∑

i

Φi

(

ν

ν0

)−γi

δ(α − αi)δ(δ − δi)

where the sum is over radio sourcesi of angular position (αi, δi),
1.42GHz flux (in Jy) Φi, and spectral index isγi. The radio
source power spectrum is determined by the Fourier transform:

Γrs(k) =
d2

T dH(1+ z)2

T̄HI

√
Vν0

(34)

×
∫

dαdδdνTrs(α, δ, ν)e
−i(dT kαα+dT kδδ+dH (1+z)2kzν/ν0)

Theν integral can be done by developingν−γ to first order around
the mean frequency in the box,ν = ν0/(1+ z). The result is

Γrs(k) = −i(−1)n exp(−idzkz/(1+ z)) (35)

d2
T

kz

√
V

∆ν

ν0
(γ + 2)(1+ z)γ+3 c2

2kbν
2
0T̄HI

η(kα, kδ)

wheren = nz is defined by (4),γ ∼ 0.7 is the mean spectral
index (Binney & Merrifield 1998), andη is a sum over the radio
sources in the angular region∆α∆δ:

η(kα, kδ) = (γ + 2)−1
∑

i

(γi + 2)(1+ z)γi−γΦie
−idT (kαα+kδδ) (36)

(Note:z is the redshift of the box, not of the radio source). The
power in the modek is then

|Γrs(k)|2 =
d2

T

k2
z dH
∆z (γ + 2)2

(1+ z)2(γ+1)













c2

2kbν
2
0T̄HI













2

∆Ω−1 |η(kα, kδ)|2 (37)

This spectrum is highly anisotropic because fluxes are correlated
in frequency but not in angular direction.

The expectation value of|η|2 is

∆Ω−1
〈

|η(kα, kδ)|2
〉

=

∫ ∞

0
dΦ

dN
dΦdΩ

Φ2 ∼ 67.7 Jy2 sr−1 (38)

where we use the spectrum from Jackson (2004). Half of the
integral comes from the∼ 5000 sources per steradian with fluxes
greater than 0.06Jy. This gives

c2

2kbν
2
0

(

∆Ω−1
〈

|η(kα, kδ)|2
〉)1/2

∼ 0.000133K (39)

For z = 1.5,γ = 0.7,∆z = 0.2 we then have

〈

|Γrs(k)|2
〉

= 7.0× 106(h−1Mpc)3

(

0.075h Mpc−1

kz

)2

(40)

where the average is over (kα, kδ) at fixedkz. Since this is consid-
erably larger thanPnoi andPLS S , Γrs(k) must be subtracted from
the measuredΓ(k) for eachk. This can be done by fitting the ob-
servedΓ(k) with the f (kα, kδ)/kz form given by (35). In princi-
ple, this subtraction can be done with a precisionσΓ ∼ Pnoi/

√
Nz

whereNz is the number of radial modes over which the determi-
nation ofΓrs is made. If this precision can be reached in practice,
the subtracted power spectrum is not degraded below the spec-
trum in the absence of radio sources.

6. Sensitivity to cosmological parameters

In Sec. 4, we studied the impact of the various telescope con-
figurations on power spectrum reconstruction. Fig. 5 shows the
various power spectra, and it allows us to rank visually the con-
figurations in terms of electronics noise fraction. The differences
in Pnoi will translate into differing precisions in the reconstruc-
tion of the BAO peak positions and in the estimation of cosmo-
logical parameters.

6.1. BAO peak precision

In order to estimate the precision with which BAO peak posi-
tions can be measured, we have generated power spectra that are
the sum of the expected HI power spectra and the noise spectra
calculated in the Section 4.1. The peaks in the generated spec-
tra were then determined by a fitting procedure and the recon-
structed peak positions compared with the generated peak posi-
tions.
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To this end, we used a method similar to the one established
in Blake and Glazebrook (2003). We generated power spectra
for slices of Universe with a half-sky coverage and a redshift
depth,∆z = 0.2 for 0< z < 1.6. The power spectrum used in the
simulation is the sum of HI signal term, corresponding to (41)
and noise term derived from (26). The simulated power spectra
HI is:

PHI(k⊥, k‖)

Pre f (k⊥, k‖)
= 1 +

A k exp
(

−(k/τ)α
)

sin





















2π

√

√

k2
⊥

k2
BAO⊥

+
k2
‖

k2
BAO‖





















(41)

wherek =
√

k2
⊥ + k2

‖ , the parametersA, α andτ are adjusted to

the formula presented in Eisenstein and Hu (1998).Pre f (k⊥, k‖)
is the envelop curve of the HI power spectrum without baryonic
oscillations. The parameterskBAO⊥ andkBAO‖ are the inverses of
the oscillation periods in k-space. In the simulations, we used the
following values for these parameters:A = 1.0,τ = 0.1hMpc−1,
α = 1.4 andkBAO⊥ = kBAO‖ = 0.060hMpc−1.

Each simulation is performed for a given set of param-
eters which are: the system temperature,T sys, an observation
time, Tobs, an average redshift and a redshift depth,∆z = 0.2.
Then, each simulated power spectrum is fitted with a two di-
mensional normalized functionPtot(k⊥, k‖)/Pre f (k⊥, k‖) which is
the sum of the signal power spectrum of (41) and the normal-
ized noise power spectrum defined by (26) multiplied by a lin-
ear term,a0 + a1k. The upper limitkmax in k of the fit cor-
responds to the approximate position of the linear/non-linear
transition. This limit is established on the basis of the crite-
rion discussed in Blake and Glazebrook (2003). In practice,we
used for the redshiftsz = 0.5, 1.1 and 1.5 respectivelykmax =

0.145hMpc−1, 0.19hMpc−1 and 0.23hMpc−1.
Figure 7 shows the result of the fit for one of theses simu-

lations. Figure 8 histograms the recovered values ofkBAO⊥ and
kBAO‖ for 100 simulations. The widths of the two distributions
give an estimate the statistical errors.

In addition, in the fitting procedure, both the parameters
modeling the signalA, τ, α and the parameter correcting the
noise power spectrum (a0, a1) are floated to take into account
the possible ignorance of the signal shape and the uncertainties
in the computation of the noise power spectrum. In this way, we
can correct possible imperfections and the systematic uncertain-
ties are directly propagated to statistical errors on the relevant
parameterskBAO⊥ andkBAO‖. By subtracting the fitted noise con-
tribution to each simulation, the baryonic oscillations are clearly
observed, for instance, on Fig. 9.

In our comparison of the various telescope configurations,
we have considered the following cases for∆z = 0.2 slices with
0 < z < 1.6.

– Simulation without electronics noise: the errors of power
spectrum are directly related to the number of modes in the
∆z = 0.2 slice of 2πsr (7).

– Unpacked cylinder array (configuration a)
– Packed cylinder array: (configuration b).
– Dish array: (configuration c).

Table 1 summarizes the result. The ranking of the three con-
figurations is the same as that which we can deduce from the
noise levels in Fig. 5: the best sensitivity is obtained withthe
packed cylinder array, then with the packed dish array and fi-
nally with the unpacked cylinder array. However, none of the
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Fig. 8. Distributions of the reconstructed wavelengthkBAO⊥ and
kBAO‖ respectively, perpendicular and parallel to the line of sight
for simulations as in Fig. 7. The fit by a Gaussian of the dis-
tribution (solid line) gives the width of the distribution which
represents the statistical error expected on these parameters.

three configurations is limited by the cosmic variance with a
four-month observation. As the errors scales with 1/Tobs, con-
figurations a) and c) could be significantly improved if the ob-
servation time is increased up to one year.

6.2. Expected sensitivity on w0 and wa

The observations give the HI power spectrum in angle-angle-
redshift space rather than in real space. The inverse of the peak
positions in the observed power spectrum therefore gives the an-
gular and redshift intervals corresponding to the sonic horizon.
The peaks in the angular spectrum are proportional todT (z)/s
and those in the redshift spectrum todH(z)/s. The quantitiesdT ,
dH ands all depend on the cosmological parameters. Figure 10
gives the angular and redshift intervals as a function of redshift
for four cosmological models. The error bars on the lines for
(ΩM,ΩΛ) = (0.27, 0.73) correspond to the expected errors on
the peak positions taken from Table 1 for the four-month runs
with the packed array. We see that with these uncertainties,the
data would be able to measurew at better than the 10% level.
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Table 1.Sensitivity on the measurement ofkBAO⊥ andkBAO‖ as a function of the redshiftz for various telescope configurations. 1st

row: simulations without noise with pure cosmic variance; 2nd row: simulations with same electronics noise for a telescope in an
unpacked cylinder array configuration a); 3th row: simulations with same electronics noise for a telescope in a packed cylinder array
configuration b); 4th row: simulations with same electronics noise for a telescope in a packed dish array configuration c).

z 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
No Noise σ(kBAO⊥)/kBAO⊥ (%) 16 4.5 2.3 1.6 1.1 0.90 0.79 0.73

σ(kBAO‖)/kBAO‖ (%) 18 5.8 3.1 2.3 1.6 1.3 1.2 1.1
a) Unpacked cylinder array σ(kBAO⊥)/kBAO⊥ (%) - - 19 16 12 9.8 9.3 9.8
(4-months/redshift) σ(kBAO‖)/kBAO‖ (%) - - 24 24 15 12 11 11
b) Packed cylinder array σ(kBAO⊥)/kBAO⊥ (%) - 9.0 3.2 2.1 1.6 1.6 1.7 1.9
(4-months/redshift) σ(kBAO‖)/kBAO‖ (%) - 15 6.3 3.8 2.4 2.2 2.4 2.6
c) Packed Dish array σ(kBAO⊥)/kBAO⊥ (%) - 11 7.2 6.5 5.7 5.5 5.5 5.6
(4-months/redshift) σ(kBAO‖)/kBAO‖ (%) - 24 11 8.6 6.7 6.4 6.9 6.9
b) Packed cylinder array σ(kBAO⊥)/kBAO⊥ (%) - - 2.0 1.5 1.1 1.1 1.0 1.1
(4-year optimized) σ(kBAO‖)/kBAO‖ (%) - - 4.3 2.7 1.7 1.6 1.4 1.4

)-1k  (h Mpc
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

(k
)

re
f

P
(k

)/
P

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Fig. 9. 1D projection of the power spectrum averaged over 100
simulations of the packed cylinder arrayb. The simulations are
performed for the following conditions: a system temperature,
T sys = 50K, an observation time,Tobs = 1year, a solid angle of
2πsr, an average redshift,z = 1.5 and a redshift depth,∆z = 0.2.
The HI power spectrum is divided by an envelop curveP(k)re f

corresponding to the power spectrum without baryonic oscilla-
tions and the background estimated by a fit is subtracted. The
errors are the RMS of the 100 distributions for eachk bin and
the dots are the mean of the distribution for eachk bin.

To estimate the sensitivity to parameters describing dark en-
ergy equation of state, we follow the procedure explained in
Blake and Glazebrook (2003). We can introduce the equation of
state of dark energy,w(z) = w0 + wa · z/(1+ z) by replacingΩΛ
in the definition ofdT (z) anddH(z), (2) by:

ΩΛ = Ω
0
Λ exp

[

3
∫ z

0

1+ w(z′)
1+ z′

dz′
]

(42)

whereΩ0
Λ

is the present-day dark energy fraction with respect to
the critical density. Using the relative errors onkBAO⊥ andkBAO‖
given in Tab. 1, we can compute the Fisher matrix for five cos-
mological parameter: (Ωm,Ωb, h,w0,wa). Then, the combination
of this BAO Fisher matrix with the Fisher matrix obtained for
Planck mission, allows us to compute the errors on dark energy
parameters. The Planck Fisher matrix is obtained for the 8 pa-
rameters (assuming a flat universe):Ωm, Ωb, h, w0, wa, σ8, ns

(spectral index of the primordial power spectrum) andτ (opti-
cal depth to the last-scatter surface). The expected errorsand the
Figure of Merit, the inverse of the area in the 95% confidence
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Fig. 10. The two “Hubble diagrams” for BAO experiments.
The four falling curves give the angular size of the acoustic
horizon (left scale) and the four rising curves give the red-
shift interval of the horizon (right scale). The solid linesare for
(ΩM,ΩΛ,w) = (0.27, 0.73,−1), the dashed for (1, 0,−1) the dot-
ted for (0.27, 0,−1), and the dash-dotted for (0.27, 0.73,−0.9),
The error bars on the solid curve correspond to the four-month
run (packed array) of Table 1.

level contours (see Fig. 11) are summarized in Tab. 2. The rank-
ing between the various configurations in terms of performances
is consistent with the level of electronics noise observed on the
power spectra of Fig. 5.

For an optimized project over a redshift range, 0.4 < z < 1.6,
with a total observation time of 4 years, the packed cylinders
have a precision of 6% onw0 and 25% onwa. Finally, Fig. 12
shows a comparison of different BAO projects, with a set of pri-
ors on (Ωm,Ωb, h) corresponding to the expected precision on
these parameters in early 2010’s. This BAO project based on HI
intensity mapping is clearly competitive with the next generation
of optical surveys such as SDSS-III (SDSS-III 2008) or WFMOS
(Basset et al. 2005).

7. Conclusion

In this paper we have discussed the measurement of the HI
power spectrum with interferometric surveys. By presenting a
simplified procedure for reconstructing the Fourier space map of
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Table 2.Sensitivity onw0 andwa and Figure of Merit (FoM) for
various telescope configurations. 1st row: simulations without
noise with pure cosmic variance; 2nd row: simulations with same
electronics noise for a telescope in an unpacked cylinder ar-
ray configuration a); 3th row: simulations with same electronics
noise for a telescope in a packed cylinder array configuration b);
4th row: simulations with same electronics noise for a telescope
in a packed dish array configuration c); 6th row: Configuration
b) for an optimized 4-year survey with 0.4 < z < 1.6.

σ(w0) σ(wa) FoM (95%)
No Noise 0.059 0.24 136
a) Unpacked cylinder array 0.17 0.69 10.1
b) Packed cylinder array 0.091 0.36 69.1
c) Packed Dish array 0.15 0.64 13.6
Packed cylinder array - 4 years 0.063 0.25 119

the GHz sky, we derived expressions for the noise power spec-
trum. Adding this spectrum to the expected HI power spectrum,
we determined with what precision the positions of the BAO
peaks can be measured. This led to a sensitivity to cosmologi-
cal parameters that is competitive with other BAO projects.

In calculating the noise power spectrum, we considered three
interferometer arrays using cylinders or dishes. Packed-cylinder
and packed-dish arrays have comparable noises so the choicefor
one or the other must be based on cost and technical considera-
tions, with cylinder arrays having simpler mechanical design but
requiring more receivers.
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