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ABSTRACT

Context. Detection of solar gravity modes remains a major challenge to our understanding of the innerparts of the Sun. Their
frequencies would enable the derivation of constraints on the core physical properties while their amplitudes can put severe
constraints on the properties of the inner convective region.
Aims. Our purpose is to determine accurate theoretical amplitudes of solar g modes and estimate the SOHO observation
duration for an unambiguous detection. We also explain differences in derived theoretical amplitudes from previous works.
Methods. We investigate the stochastic excitation of modes by turbulent convection as well as their damping. Input from a
3D global simulation of the solar convective zone is used for the kinetic turbulent energy spectrum. Damping is computed
using a parametric description of the nonlocal time-dependent convection-pulsation interaction. We then provide a theoretical
estimation of the intrinsic, as well as apparent, surface velocity.
Results. Asymptotic g-mode velocity amplitudes are found to be orders of magnitude higher than previous works. Using
a 3D numerical simulation, from the ASH code, we attribute this to the temporal-correlation between the modes and the
turbulent eddies which is found to follow a Lorentzian law rather than a Gaussian one as previously used. We also find
that damping rates of asymptotic gravity modes are dominated by radiative losses, with a typical life-time of 3 × 105 years
for the ℓ = 1 mode at ν = 60 µHz. The maximum velocity in the considered frequency range (10-100 µHz) is obtained for
the ℓ = 1 mode at ν = 60 µHz and for the ℓ = 2 at ν = 100 µHz. Due to uncertainties in the modeling, amplitudes at
maximum i.e. for ℓ = 1 at 60 µHz can range from 3 to 6 mm s−1. The upper limit is too large, as g modes would have been
easily detected with SOHO, the GOLF instrument, and this sets an upper constraint mainly on the convective velocity in the Sun.

Key words. convection - turbulence - Sun: oscillations

1. Introduction

The pioneer works of Ulrich (1970) and Leibacher & Stein
(1971) led to the identification of the solar five-minutes
oscillations as global acoustic standing waves (p modes).
Since then, successful works have enable to determine the
Sun internal structure from the knowledge of its oscillation
frequencies (e.g., Christensen-Dalsgaard 2004). However,
p modes are not well suited to probe the deepest inner-
part of the Sun. On the other hand, g modes are mainly
trapped into the radiative region and are thus able to pro-
vide information on the properties of the central part of
the Sun (r < 0.3 R⊙) (e.g., Christensen-Dalsgaard 2006,
and references therein). As g modes are evanescent in
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the convective region, their amplitudes are expected to
be very low at the photosphere and above, where ob-
servations are made; their detection is thus quite chal-
lenging and has been attempting for more than 30 years.
The first claims of detection of solar gravity modes be-
gan with the work of Severnyi et al. (1976) and Brookes
et al. (1976). After more than ten years of observations
from SOHO, there is still no consensus about detection of
solar g modes. Most of the observational efforts had been
focused on low-order g modes for which the granulation
noise is lowest (Appourchaux et al. 2006; Elsworth et al.
2006). Recently, Garćıa et al. (2007) investigated the low
frequency domain, with the hope of detecting high radial-
order g modes. The method looked for regularities in the
power spectrum, and the authors claim to detect a peri-
odicity in accordance with what is expected from simu-
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lated power spectra. Garćıa et al. (2007)’s work presents
the advantage of exploring a different frequency domain
(ν ∈ [20; 120]µHz), which as we will explain later on, is
more favorable to a reliable theoretical estimation of the
g-mode amplitudes.

Amplitudes of g modes, as p modes, are believed to
result from a balance between driving and damping pro-
cesses in the solar convection zone. Two major processes
have been identified as stochastically driving the reso-
nant modes in the stellar cavity: the first is related to the
Reynolds stress tensor, the second is caused by the ad-
vection of turbulent fluctuations of entropy by turbulent
motions. Theoretical estimations, based on stochastic ex-
citation, have been previously obtained by Gough (1985)
and Kumar et al. (1996). Gough (1985) made an order of
magnitude estimate based on an assumption of equipar-
tition of energy as was proposed by Goldreich & Keeley
(1977b). He found a maximum velocity around 0.5 mms−1

for an ℓ = 1 mode at ν ≈ 100 µHz. Kumar et al. (1996)
used a different approach based on the Goldreich et al.
(1994) modeling of stochastic excitation by turbulent con-
vection as well as an estimation of the damping rates
(Goldreich & Kumar 1991) that led to a surface veloc-
ity near 0.01 mms−1 for the ℓ = 1 mode at ν ≈ 100 µHz.
The results differ from each other by orders of magnitude
as pointed out by Christensen-Dalsgaard (2002b). Such
differences remain to be understood. One purpose of the
present work is to carry out a comprehensive study of
both the excitation and damping rates of asymptotic g
modes. Our second goal is to provide, as reliable as possi-
ble, theoretical oscillation mode velocities. Note however
that penetrative convection is an other possible excitation
mechanism (Andersen 1996; Dintrans et al. 2005), but it
is beyond the scope of this paper.

Damping rates are computed using the Grigahcène
et al. (2005) formalism which is based on a non-local time-
dependent treatment of convection. We will show that con-
trary to p modes and high frequency g modes, asymptotic
g-mode (i.e low frequency) damping rates are insensitive
to the treatment of convection; this then removes most of
the uncertainties in the estimated theoretical oscillation
mode velocities. Consequently, we restrict our investiga-
tion to low-frequency gravity modes. Stochastic excitation
is modeled as by Belkacem et al. (2008), which is a gener-
alization to non-radial modes of the formalism developed
by Samadi & Goupil (2001) and Samadi et al. (2003b,a),
for radial modes. As in the case of p-modes, the excita-
tion formalism requires the knowledge of the turbulent
properties of the convection zone, but unlike p modes, the
excitation of gravity modes is not concentrated towards
the uppermost surface layers. One must then have some
notion about the turbulent properties across the whole
convection zone. Those properties will be inferred from
a 3-D numerical simulation provided by the ASH code
(Miesch et al. 2008).

The paper is organized as follows: Sect. 2 briefly re-
calls our model for the excitation by turbulent convection
and describes the input from a 3D numerical simulation.

Sect. 3 explains how the damping rates are computed.
Sect. 4 gives our theoretical results on surface velocities of
asymptotic g modes and compares them with those from
previous works. Section 5 provides the apparent surface
velocities which takes into account disk integrated effects
and line formation height. These quantities can be directly
compared with observations. We then discuss our ability
to detect these modes using data from the GOLF instru-
ment onboard SOHO as a function of the observing dura-
tion. The discussion is based on estimations of detection
threshold and numerical simulations of power spectra. In
Sect. 6., uncertainties on the estimated theoretical and
therefore apparent velocities due to the main uncertain-
ties in our modeling are discussed. Finally, conclusions are
provided in Sect. 7.

2. Excitation by turbulent convection

2.1. Theoretical formalism

The formalism we use to compute excitation rates of non-
radial modes has been developed by Belkacem et al. (2008)
who extends to non-radial modes the work of Samadi &
Goupil (2001) developed for radial modes. It takes two
sources into account that drive the resonant modes of the
stellar cavity. The first is related to the Reynolds stress
tensor and the second one is caused by the advection of
the turbulent fluctuations of entropy by the turbulent mo-
tions (the ”entropy source term”). Unlike for p modes, the
entropy source term is negligible for g modes. We have nu-
merically verified that it is two to four orders of magnitude
lower than the Reynolds stress contribution depending on
frequency. This is explained by the fact that the entropy
contribution is sensitive to second order derivatives of the
displacement eigenfunctions in the superadiabatic region
where entropy fluctuations are localized. As the gravity
modes are evanescent in the convection zone, the second
derivatives of displacement eigenfunctions are negligible
and so is the entropy contribution.

The excitation rate, P , then arises from the Reynolds
stresses and can be written as (see Eq. (21) of Belkacem
et al. (2008)):

P =
π3

2I

∫ M

0

dm ρ0 R(r)

∫ +∞

0

dk Sk (1)

Sk =
1

k2

∫ +∞

−∞

dω E2(k) χk(ω + ω0) χk(ω) (2)

where m is the local mass, ρ0 the mean density, ω0 the
mode angular frequency, I is the mode inertia, Sk is
the source function, E(k) the spatial kinetic energy spec-
trum and χk the eddy-time correlation function, k is the
wavenumber. R(r) depends on the eigenfunction, its ex-
pression is given in Eq. (23) of Belkacem et al. (2008),
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where we have defined

L2 = ℓ(ℓ + 1) (4)

ζr ≡ dξh

dr
+

1

r
(ξr − ξh) (5)

Fℓ,|m| =
|m|(2ℓ + 1)

2

(

L2 − (m2 + 1)
)

(6)

(7)

and ξr , ξh are the radial and horizontal components of the
fluid displacement eigenfunction (ξ); ℓ, m represent the
degree and azimuthal number of the associated spherical
harmonics.

2.2. Numerical computation of theoretical excitation
rates

2.2.1. Physical input

In the following, we compute the excitation rates of
g modes for a solar model. The rate (P ) at which en-
ergy is injected into a mode per unit time is calculated
according to Eq. (1). Eigenfrequencies and eigenfunctions
are computed using the adiabatic pulsation code OSC
(Boury et al. 1975). The solar structure model used for
these computations is obtained with the stellar evolu-
tion code CESAM (Morel 1997) for the interior, and a
Kurucz (1993) model for the atmosphere. The interior-
atmosphere matching point is chosen at log τ = 0.1
(above the convective envelope). The pulsation compu-
tations use the full model (interior+atmosphere). In the
interior model, we used the OPAL opacities (Iglesias &
Rogers 1996) extended to low temperatures with the opac-
ities of Alexander & Ferguson (1994), and the CEFF equa-
tion of state (Christensen-Dalsgaard & Däppen 1992).
Convection is included according to a Böhm-Vitense
mixing-length (MLT) formalism (see Samadi et al. 2006,
for details), from which the convective velocity is com-
puted. Turbulent pressure is not included (but see discus-
sion in Sect.6).

Apart from the eigenfunctions and the density strati-
fication, Eq. (1) involves both the convective velocity and
the turbulent kinetic energy spectrum. In order to get
some insight into the turbulent properties of the inner
part of the solar convection zone, we chose to use results
from (ASH) 3D numerical simulations. Such a choice is
motivated by the uncertainties inherent to the treatment

Fig. 1. Luminosity flux contributions versus radius, averaged
over horizontal surfaces and in time. The solid line corresponds
to the enthalpy luminosity (Le), the short dashed-line to the
radiative luminosity (Lr), the dotted-dashed line to the ki-
netic energy luminosity ( Lkin), the long-dashed line to the
total luminosity (Ltot) and the dots-dashed line correspond to
the unresolved eddy luminosity (Led) (Brun et al. 2004). We
particularly emphasize the negative kinetic-energy flux that
results in a larger convective flux (see text for details).

of turbulence by the MLT. The MLT indeed gives us only
an estimation of the convective flux but is not able to as-
sess the contributions of all scales involved in turbulent
convection. Thus, in the following, the rms convective ve-
locity is taken from the mixing-length theory while both
the spatial and temporal turbulent properties are inferred
from the 3D simulation. Then, velocity from the numeri-
cal simulation is not used in our calculation. This choice
is motivated by the rigid boundary condition at the top
of the simulation that results in an unrealistic decrease of
the vertical velocity for r > 0.93 R⊙.

2.3. The 3D convection simulation

One way of assessing the dynamical properties of the deep
solar turbulent convection zone is to exploit a high reso-
lution numerical simulation such as those performed with
the anelastic spherical harmonic (ASH) code (Miesch et al.
2008; Brun et al. 2004). The simulation of global scale tur-
bulent convection used in the present work is discussed in
details in Miesch et al. (2008). ASH solves the hydrody-
namic anelastic equations within a spherical shell extend-
ing from r = 0.71 up to r = 0.98R⊙, yielding an overall ra-
dial density contrast of 132. Solar values were assumed for
the rotation rate and the imposed luminosity. Fig. 1 repre-
sents the energy flux balance (converted to luminosity and
normalized to the solar luminosity) in the simulation. We
clearly see how dominant, and overluminous, the convec-
tive (enthalpy) flux is in carrying the heat outward. This
is mostly due to the large density contrast and to the cor-
responding strong asymmetry between up and downflows
yielding a large inward kinetic energy flux (see Miesch et
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Fig. 2. E(kh) computed as detailed in Appendix. B, for three
shell radii that sample the convection zone, as a function of
the local horizontal wave number kh.

al. 2008 for more details). We have seen above that in or-
der to compute the excitation rate of the waves, one needs
some well defined physical quantities, such as the kinetic
energy spectrum (Ek) and the eddy time function (χk).
It is straightforward to deduce these quantities from the
3D simulation as explained in Appendix B. We then di-
rectly use Ek in Eq. (2) to compute the source function,
whereas for χk we perform a fit of the 3-D results with
a simple analytical expression. In the ASH code, the set
of anelastic equations is projected onto spherical harmon-
ics for the horizontal dimensions. This implies that the
kinetic energy spectrum is obtained as a function of the
spherical degree l . The local wavenumber kh is obtained
via the simple expression kh =

√

l(l + 1)/r, with r being
the shell radius.

2.3.1. Kinetic energy spectrum and time-correlation
function

The kinetic energy spectrum of the total velocity (i.e. the
horizontal and vertical components), E(kh) is plotted in
the top panel of Fig. 2 as a function of the local horizontal
wave number kh. The rms convective velocity (u) increases
with r, thus explaining that the deeper the layers, the
smaller is E(k) since

∫

dk E(k) = 1/2 u2. In terms of ex-
citation rates, an important issue is the scale at which the
spectrum peaks. As pointed out by Miesch et al. (2008),
the scale at which the kinetic energy spectrum is max-
imum is the scale between the downwflows. It is about
58 Mm at the top of the simulation (r = 0.98 R⊙) up to
300 Mm at the bottom. This is quite different from what
is found in the upper mostlayers in 3D numerical simu-
lations of the (e.g., Stein & Nordlund 1998), in which
the maximum of E(k) is found at a scale around 1 Mm.
Such a difference is explained by the density that strongly
decreases in upper layers.

Fig. 3. Top: Crosses represent χk(ω) obtained from the 3D
simulation at the wave number k0 that corresponds to the
maximum of E(k), and at the radius r/R⊙ = 0.89. Data are
obtained with a time series of duration ≈ 45.83 days with a
sampling time of 4 · 104 seconds. Analytical functions are nor-
malized so that their integrals are equal to unity. Bottom:

The same as the upper panel except that data are obtained
with a time series of duration ∼ 4.68 days with a sampling
time of 800 seconds. The theoretical curves are normalized so
that their integrals over frequency equal that of the simulated
data.

The time-correlation function (χk) also plays an im-
portant role. Usually, a Gaussian time-correlation function
is used (Goldreich et al. 1994; Chaplin et al. 2005). Samadi
et al. (2003a) demontrated that χk is better reproduced
by a Lorentzian function. They argued that the departure
from a Gaussian function can be explained by the presence
of plumes in the uppermost part of the convection zone.
This result, obtained using 3-D numerical simulations, was
then confirmed by confronting solar-p modes excitation
rates, computed with a Gaussian and Lorentzian func-
tion, with the observational data. It turns out that the
Lorentzian function greatly improves the agreement be-
tween models and observations. However, at deeper layers
the time-correlation function is unknown. The eddy-time
correlation function derived from the 3D numerical simu-
lation provided by the ASH code is therefore compared to
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Gaussian and Lorentzian functions that are respectively
defined as

χk(ω) =
1

ωk
√

π
e−(ω/ωk)2 (8)

χk(ω) =
1

πωk/2

1

1 + (2ω/ωk)
2 (9)

with the condition

∫ +∞

−∞

χk(ω)dω = 1 (10)

where ωk is its linewidth, defined as

ωk ≡ 2 k uk

λ
. (11)

where λ is a parameter as in Balmforth (1992), the velocity
uk of the eddy with wavenumber k is related to the kinetic
energy spectrum E(kh) by (Stein 1967)

u2
k =

∫ 2k

k

dk E(k) . (12)

Figure 3 presents the comparison between analyti-
cal time-correlation functions, computed following the set
of Eqs. (8)-(12), and χk computed from the 3D numer-
ical simulation. The latter is calculated as detailed in
Appendix. B. The Lorentzian function better represents
the eddy-time correlation function than a Gaussian func-
tion in the frequency range we are interested in (ν ∈
[20 µHz; 110 µHz]).

The best fit is found using a sum of a Lorentzian func-
tion with λ = 3 and a Gaussian with λ = 1/3 as shown
in the top panel of Fig. 3. In the frequency range we are
interested in, i.e. at frequencies corresponding to the grav-
ity modes (bottom panel of Fig. 3) the fit reproduces well
the time-correlation given by the 3-D numerical simula-
tion. We also clearly see that the eddy-time correlation
function is very poorly represented by a Gaussian func-
tion, which only reproduces very low frequencies that do
not significantly contribute to the excitation, then it fails
and underestimates χk by many order of magnitudes (see
Sect. 4.2.2).

The results presented in Fig. 3 are for the depth
r ≈ 0.8R⊙, where excitation is dominant, and for an an-
gular degree corresponding to the maximum of the kinetic
energy spectrum (ℓ = 40), whose contribution is dominant
in the excitation rates. Note that those results do not de-
pend on the shell considered but rather on the wavenum-
ber. For very high angular degree (ℓ > 300) we find that χk

becomes more and more Gaussian. Nevertheless, as shown
by Fig. 2, those contributions are negligible compared to
large-scale ones.

The value of the parameter λ is also of interest.
Contrary to the upperlayers where λ = 1 (Samadi et al.
2003b), we find a higher value, λ = 3, that is in accor-
dance with the result of Samadi et al. (2003b) who found
that the deeper the layers, the higher is this parameter.

Fig. 4. The source function is plotted versus the spherical an-
gular degree (l), and the frequency for two radii: r = 0.95R⊙

(top panel) and r = 0.74R⊙ (bottom panel). Bright (red) and
dark (blue) tones indicate high and low intensity of the source
function, respectively. Note also that the color table is loga-
rithmic. The black line corresponds to an arbitrary contour
line that correspond the same for both panels.

2.3.2. The source function

Figure 4 displays the source function (Sk, Eq. (1)) as func-
tion of both the angular degree l involved in the summa-
tion Eq. (B.1) and the mode frequency. Sk evaluated at
two levels, r = 0.95R⊙ and r = 0.74R⊙, is shown in or-
der to emphasize the dependance of Sk with the radius.
Near the top of the convection zone, Sk is non-negligible at
high frequencies (ν > 50µHz) and at small scales. From
top to bottom, the intensity of the source function de-
creases such that at the bottom significant intensities exist
only at large scales (small l values) and low frequencies.
This behavior corresponds to the evolution of convective
elements, i.e turbulent eddies evolve on larger time and
spatial scales with depth. Thus, we conclude that high
frequency g modes are mainly excited in the upper layers
whereas low ones are excited deeper. Note however that
the net excitation rate, Eq. (1), is a balance between the
eigenfunction shape and the source function.
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2.4. Excitation rates

Anticipating the following (see Sect. 3), we stress that
modes with high angular degree will be highly damped,
consequently their amplitudes are very small. Hence, we
restrict our investigation to low-ℓ degrees (ℓ < 4). In Fig 5,
we present the excitation rates for low-frequency gravity
modes (i.e., ℓ = 1, 2, 3). By asymptotic modes we denote
low frequency modes (ν < 100 µHz, i.e high-|n| modes)
while high frequencies (ν > 100 µHz) correspond to low-
|n| modes. At low frequencies (ν < 100 µHz), the exci-
tation rate (P ) decreases with increasing ν, it reaches a
minimum and then at high frequency increases with the
frequency. This can be explained by considering the two
major contributions to the excitation rate P (Eq. (1) and
Eq. (3)) which are the inertia I (in Eq. (1)) and mode
compressibility (∇ · ξ, appearing in R(r), Eq. (3)).

Mode inertia decreases with frequency as shown by
Fig. 6 since the higher the frequency, the higher up the
mode is confined in the upper layers. This then tends to
decrease the efficiency of the excitation of low frequency
modes. On the other hand, mode compressibility (Fig. 6)
increases with frequency and consequently competes and
dominates over the effect of mode inertia. Mode compress-
ibility can be estimated as

∣

∣

∣

∣

∫

Ω

dΩ Y m
ℓ ∇ · ξ

∣

∣

∣

∣

≈
∣

∣

∣

∣

dξr

dr
− ℓ(ℓ + 1)

ξh

r

∣

∣

∣

∣

(13)

The mode compressibility is minimum when both terms in
Eq. (13) are of the same order. Following Belkacem et al.
(2008), one has

∣

∣

∣

∣

dξr

dr
/
ℓ(ℓ + 1)ξh

r

∣

∣

∣

∣

≃ σ4

ℓ(ℓ + 1)
with σ2 =

R3

GM
ω2

0 (14)

where σ is the dimensionless frequency, ω0 is the angular
frequency of the mode, R the Sun radius and M its mass.
According to Eq. (14), mode compressibility is minimum
for ν ≈ 100 µHz depending on ℓ, as shown by Fig. 6. In
contrast, in the asymptotic regime (ν < 100 µHz), the
modes are compressible and this compressibility increases
with decreasing frequency.

It is important to stress that for the asymptotic
g modes, in the frequency range [20; 110]µHz, the hor-
izontal contributions in Eq. (3) are dominant. For low-ℓ
g modes, the dominant contributions come, in Eq. (3),
from the component of the mode divergence (see Eq. (13)).
Then the ratio of the horizontal to the vertical contribu-
tions to Eq. (1) is around a factor five, imposing the use
of a non-radial formalism.

3. Damping rates

To compute theoretical (surface velocities) amplitudes of
g modes, knowledge of the damping rates is required.

3.1. Physical input

Damping rates have been computed with the non-
adiabatic pulsation code MAD (Dupret 2002). This code

Fig. 5. Rate (P ) at which energy is supplied to the modes
versus the frequency for modes with angular degree ℓ = 1, 2
and 3. The computation is performed as detailed in Sect. 2.2.1,
using a Lorentzian eddy-time correlation function.

includes a time-dependent convection (TDC) treatment
detailed in Grigahcène et al. (2005): it takes into account
the role played by the variations of the convective flux,
the turbulent pressure and the dissipation rate of turbu-
lent kinetic energy. This TDC treatment is non-local, with
three free parameters a, b and c corresponding to the non-
locality of the convective flux, the turbulent pressure and
the entropy gradient; we take here the values a = 10,
b = 3 and c = 3.5 obtained by fitting the convective flux
and turbulent pressure of 3D hydrodynamic simulations
in the upper overshooting region of the Sun (Dupret et al.
2006c). According to Grigahcène et al. (2005), we intro-
duced a free complex parameter β in the perturbation of
the energy closure equation. This parameter is introduced
to prevent non-physical spatial oscillation of the eigen-
functions. We use here the value β = −0.5i which leads to
a good agreement between the theoretical and observed
damping rates and phaselags in the range of solar pres-
sure modes (Dupret et al. 2006a). The sensitivity of the
damping rates to β is discussed in Sect. 3.2.1, and we show
in next sections that the values of those parameters have
no influence on the results since we are interested in low
frequency g modes.

We use the TDC treatment as described in Dupret
et al. (2006b), in which the 1D model reproduces exactly
the mean convective flux, the turbulent pressure and the
mean superadiabatic gradient obtained from a 3D hydro-
dynamic simulation by Stein & Nordlund (1998), by in-
troducing two fitting parameters, the mixinglength and a
closure parameter (see Dupret et al. 2006b, for details).
We also stress that, for low-frequency g modes, particular
attention is to be paid to the solution of the energy equa-
tion near the center as explained in Appendix A for the
ℓ = 1 modes since those dipolar modes present a peculiar
behavior near the center that must be properly treated.
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Fig. 6. Top: Absolute value of mode compressibility for ℓ = 1
modes versus the frequency, computed for three different lay-
ers in the convection zone. Bottom: Mode inertia versus fre-
quency for modes with angular degree ℓ = 1, 2, 3.

3.2. Numerical results for a solar model

3.2.1. Sensibility to the time-dependent treatment of
convection

To understand the contribution of each layer of the Sun in
the damping of the g modes, we give in Fig. 7 the normal-
ized work integral in such a way that the surface value is
the damping rate η (in µHz) 1. Results obtained with our
TDC treatment (solid lines) and with Frozen Convection
(FC, dashed line) are compared for 4 different modes with
ν ≃ 60µHz (top panel) and ν ≃ 20µHz (bottom panel).
We see that most of the damping occurs in the inner part
of the radiative core. The work integrals obtained with
TDC and FC treatments are not very different. Hence,
the uncertainties inherent to the treatment of the coher-
ent interaction between convection and oscillations do not
significantly affect the theoretical damping rates of solar
asymptotic g modes. Thus, the frozen convection is well
adapted for low-frequency g modes. This can be explained

1 Note that, regions where the work decreases outwards have
a damping effect on the mode, or a driving effect when it in-
creases outwards.
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Fig. 7. Work integrals for ℓ = 1 and ℓ = 2 modes at ν ≃ 60µHz
(top panel) and ν ≃ 20µHz (bottom panel), the surface values
give the damping rates η in µHz.

by paying attention to the ratio Q = ω0/ωc, where ω0 is
the oscillation frequency and ωc the convective frequency,
defined to be ωc = 2πΛ/umlt where Λ is the mixing length
and umlt the convective velocity. Q is higher than unity
in the whole solar convective zone except near the surface
(the superadiabatic region). However contributions of the
surface layer remain small in comparison with the radia-
tive ones for asymptotic g modes (see Fig. 7).

One can thus draw some conclusions

– for high frequency g modes (ν > 110 µHz), the work
integrals and thus the damping rates are sensitive to
the parameter β that is introduced to model the con-
vection/pulsation interactions because the role of the
surface layers in the work integrals becomes important.
Hence, the results on the damping rates are question-
able for high frequencies since the value of β is derived
from the observed p modes and that there is no evi-
dence it can safely be applied for g modes.

– in contrast, for low-frequency g modes (ν < 110 µHz),
we find that the work integrals and then the damp-
ing rates are insensitive to the parameter β. Note also
that we numerically checked that the damping rates
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Fig. 8. Contributions to the work due to the radial radiative
flux variation (solid line), the transverse radiative flux variation
(dotted line) and the time-dependent convection terms (dashed
line), for the mode ℓ = 1, g10 (top panel) and ℓ = 1, g32

(bottom panel). Details are given in the text.

are insensitive to the non-local parameters, introduced
in Sect. 3.1.

3.2.2. Contributions to the work integral

Fig. 8 allows us to investigate the respective roles played
by different terms in the damping of the mode. More pre-
cisely we consider two modes (ℓ = 1, g10, ν ≈ 60 µHz
and ℓ = 1, g32 , ν ≈ 20 µHz) in the frequency interval of
interest here and give in Fig. 8 the modulus of:

– the contribution to the work coming from the radial
part of the radiative flux divergence variations (solid
line):

dWFRr = ℜ{
(

δT

T

)∗
∂δLR

∂x
} R

GM2σ
, (15)

where T is the temperature, LR the radiative lumi-
nosity, R the solar radius, M the solar mass, x is the
normalized radius, σ the real part of the normalized

Fig. 9. Theoretical damping rates η of g modes of degree ℓ =
1, 2, 3 as a function of the oscillation frequency in µHz.

frequency σ = ω0/(GM/R3)1/2, and x the normalized
radius (see Appendix A). Note that δ denotes the wave
Lagrangian perturbations, ℜ the real part, and ∗ the
complex conjugate.

– the contribution to the work coming from the transver-
sal part of the radiative flux divergence variations
(dotted line):

dWFRh = −ℓ(ℓ+1)ℜ
{

δT ∗

T

(

δT

xdT/dx
− ξr

r

)}

RL

GM2σx
(16)

– the contribution to the work coming from the time-
dependent convection terms (dashed line): dWC (see
section 4 of (Grigahcène et al. 2005)). Note that despite
dominant in the convective region for the g10 mode in
Fig. 8, Fig. 7 shows that this contribution is globally
negligible.

Integration of these terms over the normalized radius gives
their global contribution to the work performed during one
pulsation cycle.

The time-dependent convection terms have a very
small weight for both modes in the frequency range ν <
110 µHz. It confirms the conclusion of Sect. 3.2.1 that the
damping rates of low-frequency g modes are not domi-
nated by the perturbation of the convective flux, then the
nonsensitivity to the modeling of the interaction convec-
tion/oscillation (through the parameter β). The higher the
mode frequency, the higher the integrated convective con-
tribution of the work (WC), that becomes dominant for
ν > 110 µHz.

While the transverse radiative flux term plays a sig-
nificant role near the center, the major contribution to
the work comes from the radial component of the radia-
tive flux variations. Hence, the radiative damping is the
dominant contribution for low-frequency gravity modes.

In Fig. 9, we give the theoretical damping rates η of g-
modes of degree ℓ = 1, 2, 3, as a function of the oscillation
frequency in µHz. We see that for ν < 110 µHz, η is a de-
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creasing function of frequency. We find that the frequency
dependence is η ∝ ω−3

0 . To understand this behavior, we
express the integral expression of the damping rate (see
Grigahcène et al. 2005, for details) as:

η =
1

2 ω0I

∫ M

0

Im

(

δρ

ρ

∗

TδS

)

(Γ3 − 1) dm (17)

with

I =

∫ M

0

dm |ξ|2 and (Γ3 − 1) =

(

∂lnT

∂lnρ

)

s

(18)

where δρ, δS are the perturbations of the density and en-
tropy respectively, ρ, T are the density and temperature, ξ

the eigenfunction, and the star denotes the complex con-
jugate.

Keeping only the radial contribution of the radiative
flux in the energy equation (Eq. (A.1) ) because it is the
dominant contribution, and neglecting the production of
nuclear energy (ǫ = 0), one gets

TδS =
i

ω0

∂δL

∂m
(19)

The latter approximation comes from the fact that the
radial contribution of the radiative flux is dominant. In
addition, in the diffusion approximation

δL

L
=

(

1

(dT/dr)

∂δT

∂r
+ 2

ξr

r
+ 3

δT

T
− δκ

κ
− δρ

ρ
− ∂ξr

∂r

)

(20)
Because of the high wavenumber for low-frequency g
modes, the term in ∂δT/∂r is very high in Eq. (15),
it dominates in Eq. (20) and is the main source of
damping. This term appears as a second-order deriva-
tive in the work integral, and introduces there a factor
k2

r (kr ≈
√

ℓ(ℓ + 1)N/(ω0r) is the vertical local wavenum-
ber). Thus, from Eq. (20), (19), and (17) one obtains that
η ∝ ω−4

0 /I. By using an asymptotic expansion of the
eigenfunctions (Christensen-Dalsgaard 2002a) one gets
I ∝ ω−1

0 , that permits to conclude η ∝ ω−3
0 that explains

the behavior of η in Fig. 9. Concerning the variation of η
with the angular degree at fixed frequency, the argument
is the same, it comes from the wave-number dependence
k2

r .
Above 110 µHz, the role of the radiative zone in the

mode damping is smaller. There, the damping rates be-
gin to increase with frequency simply because the kinetic
energy of the modes decreases faster than the mechanical
work.

4. Surface velocities of g modes

4.1. Theoretical (intrinsic) velocities

We compute the mean-squared surface velocity (v2
s) for

each mode as

v2
s(h) =

〈
∫

Ω

(

v(r, t) · v(r, t)
)

dΩ

〉

(h) (21)

where h is the height in the stellar atmosphere, <> the
time average. Using the expression Eq. (C.3) in appendix
C, one then has

v2
s(h) = A2

[

v2
r(h) + ℓ(ℓ + 1)v2

h(h)
]

(22)

The amplitude A2 = (1/2)
〈

|a(t)|2
〉

is given by (Eq. (C.6)):

A2 =
P

2 η Iω2
0

(23)

where <> denotes the time average, I is the mode iner-
tia,, η is the damping rate and vr,h(h) = ω0 ξr,h(h) with
ξr(h) and ξh(h) being respectively the radial and horizon-
tal displacement eigenmode components.

In this section, we consider the level of the photosphere
h = R with R the radius at the photosphere. Figure. 10
presents intrinsic values of the velocities. The behavior of
the surface velocities as function of the angular degree (ℓ)
is mainly due to the damping rates which rapidly increase
with ℓ: hence, at fixed frequency, the higher the angular
degree, the lower the surface velocities. As a consequence
amplitudes are very low for ℓ > 3 . At fixed ℓ, vs increases
with frequency with a slope resulting from a balance be-
tween the excitation and damping rates. Nevertheless,
modes of angular degree ℓ = 1 exhibit a singular behavior,
i.e. a maximum at ν ≈ 60 µHz. This is due to the variation
of the slope in the excitation rates (see Fig. 5). In term
of amplitudes, the maximum is found to be ≈ 5 mm/s
for ℓ = 1 at ν ≈ 60 µHz which corresponds to the mode
with radial order |n| = 10. It is important to stress that
the velocities shown in Fig. 10, are intrinsic values of the
modulus that must not be confused with the apparent sur-
face velocities (see Sect. 5) which are the values that can
be compared with observed ones.

4.2. Comparison with previous estimations

The theoretical intrinsic velocities obtained in the present
work must be compared to previous estimations based on
the same assumption that modes are stochastically ex-
cited by turbulent convection. Note that all works cited in
the next subsections deal with intrinsic velocities, i.e. not
corrected for visibility effects.

4.2.1. Estimation based on the equipartition of energy

The first estimation of g-mode amplitudes was performed
by Gough (1985). who found a maximum of velocity of
about 0.5 mms−1 for the ℓ = 1 mode at ν ≈ 100 µHz.
Gough (1985) used the principle of equipartition of energy
which consists in equating the mode energy, (E) with the
kinetic energy of resonant eddies whose lifetimes are close
to the modal period. This ”principle” has been theoreti-
cally justified for p modes, by Goldreich & Keeley (1977b)
assuming that the modes are damped by eddy viscosity.
They found that the modal energy to be inversely propor-
tional to the damping rate, η, and proportional to an in-
tegral involving the term Eλ vλ λ where Eλ ≡ (1/2)mλ v2

λ
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is the kinetic energy of an eddy with size λ, velocity vλ

and mass mλ = ρ λ3 (see Eq. (46) of Goldreich & Keeley
1977b). Using a solar model, they show that the damping
rates of solar p modes are dominated by turbulent viscos-
ity and that accordingly the damping rates are propor-
tional to the eddy-viscosity, that is η ∝ vλ λ (see Eq. (6)
of Goldreich & Keeley 1977a). Hence, after some simplify-
ing manipulations, Goldreich & Keeley (1977b) found the
modal energy to be (see their Eq. (52))

E ≈ 0.26 Eλ = 0.13 mλ v2
λ . (24)

This principle then was used by Christensen-Dalsgaard
& Frandsen (1983) for p modes and Gough (1985) for
solar g modes. However, as mentioned above, the result
strongly depends on the way the modes are damped, and
for asymptotic g modes there is no evidence that this ap-
proach can be used and in particular, as shown in this
work, if the damping is dominated by radiative losses.

4.2.2. Kumar et al. (1996)’s formalism

Another study was performed by Kumar et al. (1996),
which was motivated by a claim of g-mode detection in the
solar wind (Thomson et al. 1995). Computations were per-
formed using the Goldreich et al. (1994) formalism; both
turbulent and radiative contributions to the damping rates
were included as derived by (Goldreich & Kumar 1991)
who obtained mode lifetimes around 106 yrs. Note that it
is not so far from our results (see Fig 9). Kumar et al.
(1996) found that the theoretical (i.e. not corrected for
visibility factors) surface velocity is around 10−2 cm s−1

near ν = 200 µHz for ℓ = 1 modes. However, as shown
in Sect. 3, for this frequency range the results are very
sensitive to the convective flux perturbation in the damp-
ing rate calculations. Thus, we do not discuss the result
obtained for those frequencies.

More interesting for our study, Kumar et al. (1996) also
found very low velocities (10−2 mms−1) for ν < 100 µHz.
This is significantly lower than what we find. However,
the efficiency of the excitation strongly depends on how
the eddies and the waves are temporally-correlated. As
already explained in Sect.2.2, the way the eddy-time cor-
relation function is modeled is crucial since it leads to
major differences between, for instance, a Gaussian and
a Lorentzian modeling. The Goldreich & Keeley (1977b)’s
approach, from which Kumar et al. (1996)’s formulation is
derived, implicitly assumes that the time-correlation be-
tween the eddies is Gaussian. The present work (as ex-
plained in Sect. 2.2) assumes a Lorentzian for the time
correlation function χk which results in v = 3 mm/s in
amplitude for ℓ = 1 mode at ν ≈ 60 µHz (Sect. 4.1).

We performed the same computation but assuming
now χk to be Gaussian (Eq. (8)) and using a Kolmogorov
spectrum as in Kumar et al. (1996). In that case (see
Fig. 10), we find velocities of the order of 10−2 mm s−1 for
ℓ = 1 which are in agreement with the result of Kumar
et al. (1996) that is significantly lower than when assum-
ing a Lorentzian.

Fig. 10. Top: Theoretical intrinsic surface velocities of g-
modes of degree ℓ = 1, 2, 3 as a function of the oscillation
frequency in µHz, computed as detailled in Sect. 4.1 using a
Lorentzian χk. Bottom: Surface velocities of gravity modes of
angular degree ℓ = 1 and ℓ = 2 computed using a Gaussian χk

and a Kolmogorov spectrum to reproduce the results of Kumar
et al. (1996).

m 0 1 2 3

ℓ=1 0.117 0.675
ℓ=2 0.346 0.107 0.437
ℓ=3 0.06 0.164 0.0552 0.184

Table 1. Values of the visibility coefficient αm

ℓ of the radial
component of the velocity, corresponding to an inclination an-
gle of θ0 = 83o.

5. Apparent surface velocities

We denote as ”disk-integrated apparent velocities” the val-
ues of amplitudes that take both geometrical and limb
darkening effects into account. Contrary to solar p modes,
one can not neglect the horizontal component of ξ com-
pared to the vertical one.

The observed velocity (Vobs) is given by the appar-
ent surface velocity < |Vapp(r, t)|2 >1/2(see Appendix. C)



Belkacem et al.: Stochastic excitation of nonradial modes II. Are solar asymtotic gravity modes detectable? 11

m 0 1 2 3

ℓ=1 0.094 0.540
ℓ=2 0.833 0.258 1.053
ℓ=3 0.291 0.649 0.268 0.892

Table 2. Values of the visibility coefficient βm

ℓ of the radial
component of the velocity, corresponding to an inclination an-
gle of θ0 = 83o.

evaluated at the observed line formation height h:

Vobs =

(

P

2ηIω2
0

)1/2

(αm
ℓ vr(h) + βm

ℓ vh(h)) (25)

where αm
ℓ and βm

ℓ are the visibility factors defined in
Appendix. C.

In Appendix C we follow the procedure first derived
by Dziembowski (1977) and for asymptotic g modes by
Berthomieu & Provost (1990). We use a quadratic limb-
darkening law following Ulrich et al. (2000) for the Sun
with an angle between the rotation axis and the Equator
of 83 degrees. As mentioned above, the apparent veloci-
ties are evaluated at the level h i.e. the height above the
photosphere where oscillations are measured; h is then set
so as to correspond to the SoHO/GOLF measurements
that use the NaD1 and D2 spectral lines, formed at the
optical depth τ = 5.10−4 (see Bruls & Rutten 1992). The
results are presented in table 1 and 2 for angular degrees
ℓ = 1, 2, 3.

Figure 11 displays the apparent velocities for modes
ℓ = 1, 2, 3 and ℓ = m. For a given angular degree, the
azimuthal order degree is chosen such that the apparent
velocity is maximal. The velocities of the m = 0 modes are
strongly attenuated by the visibility effects, while the m =
ℓ modes are less sensitive to them. For ℓ = 1 modes, the
amplitudes are divided by a factor of two with respect to
the intrinsic velocities, while the ℓ = 2, 3 mode velocities
remain roughly the same. Consequently, our calculations
show that both the ℓ = 1 and ℓ = 2 (m = ℓ) are the
most probable candidates for detection with amplitudes
≈ 3 mm s−1.

5.1. Detectability of g modes; only a matter of time

To compare our calculated apparent velocities with obser-
vations, we have used data from the GOLF spectrometer
(Gabriel et al. 2002) onboard the SOHO platform which
has performed Doppler-like measurements on the disc in-
tegrated velocity of the Sun, using the Na D lines. We have
used here a series of 3080 days to estimate the background
noise level and compare it to the apparent velocities de-
termined in this work.

A first possible approach is to use some analyti-
cal and statistical calculations as the ones developed by
Appourchaux et al. (2000) (Eq. 10). Once a length of ob-
servation T (in units of 106s), a frequency range ∆ν (in
µHz) and a level of confidence pdet are set, this gives the

Fig. 11. Apparent surface velocities for g modes of degree
ℓ = 1, 2, 3 as a function of the oscillation frequency in µHz
(visibility factors are taken into account).

corresponding signal to noise ratio

sdet

< s >
≃ ln(T ) + ln(∆ν) − ln(1 − pdet) (26)

where sdet is the power of the signal to be detected, < s >
the local power of the noise. This means that any peak in
the frequency range ∆ν above this ratio has a probabil-
ity pdet of not being due to noise. Choosing a frequency
range of ∆ν = 10µHz centered on the frequency of the
highest expected velocities (60µHz) sets the background
level at ≈ 500 (m s−1)2/Hz. Eq. (26) gives an amplitude of
5.2 mm s−1 for a detection with a confidence level pdet of
90% for 15 years of observation, 4.6 mm s−1 for 20 years,
and 3.8 mm s−1 for 30 years.

However, this approach has to be repeated for each
mode (with its own proper noise level) in order to have
a global view of detection possibilities. To do so, we use
simulations. Again relying on the GOLF data to estimate
the noise spectrum, we have simulated synthetic data in-
cluding noise and g modes with the apparent velocities as
above (and with random phases). Several durations of ob-
servation were simulated, from 10 to 30 years. A hundred
simulations were performed in each case. The noise level
is estimated locally and so is the detection level, following
Eq. (26), on the frequency range [30 µHz,100 µHz]. Thus,
with a confidence level of 90% and having 7 independent
subsets of 10µHz, noise is expected to show no peak above
the global detection level with a probability of 48%, and
to show 1 peak above the global detection level with a
probability of 32% (and even 2 peaks in 12% of the real-
izations). Table 3 lists the average (over 100 simulations)
number of peaks detected above the detection level for dif-
ferent observation durations. These simulations have been
performed using amplitudes Amax assuming three differ-
ent cases:

• Case 1: we assume for Amax the apparent surface
velocity amplitudes calculated above, A.

Due to uncertainties in the theoretical modeling (as
discussed in Sect.6), we also assume:
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Fig. 12. Simulated spectrum for an observation length of 30
years, in Case 1. The dashed line indicates the level of de-
tection (see text and Eq. 26). The vertical lines indicate the
frequencies of the simulated modes. Here, only one mode is
above the detection level. Bottom: Average number and stan-
dard deviation (from the 100 realizations) of modes detected
in simulations versus the length of observation for the three
cases (see text). Above the hashed region (less than four peaks
detected), one can consider the detection to be unambiguous.
The upper curve corresponds to the case 3 (Amax = 2A), the
middle one to case 2 (Amax = 1.5A), and the lower one to case
1 (Amax = A).

• Case 2: that amplitudes are larger than the above
estimated amplitudes by 50% i.e. Amax = 1.5 A

• Case 3: that amplitudes are larger than the above
estimated amplitudes by a factor 2 i.e. Amax = 2 A

Case 1 and 3 are the two limits of this exercise. The
number of detected peaks in Case 3 shows that the pre-
dicted amplitudes cannot be overestimated by a factor of
two as in this case, the solar g modes would have been
already detected without doubt. Case 1 sets a lower limit,
as in this case, even with longer (30 years) observation, g
modes would not be detected. Case 2 shows that if real
solar amplitudes are just a few tens of percent higher than
the present estimations, then g modes could be detected
with no doubt after say 15 to 20 years of observation (to be
compared to the present status of observation: 12 years).
The results are summarized in Figs. 12.

Amax 10 years 15 years 20 years 25 years 30 years

A 0.8 1.6 0.8 1.4 1.7

1.5A 1.4 2.9 4.5 6.5 8.8

2A 4.6 8.5 13.4 20.0 21.7

Table 3. Number of peaks above the detection level in the
simulated power spectra versus the duration of observation in
three cases. In the simulated signal, the modes are given an
amplitude Amax. The 3 cases respectively correspond to Amax

being the apparent amplitudes A readily stemmed from our
calculation, Amax = 1.5A and Amax = 2A. The last two cases
take into account the fact that uncertainties in the modeling
globally tend to underestimate the amplitudes as discussed in
Sect.6.

We must stress that apart from visibility effects and
height of line formation, we took no other instrumental
effects on the apparent amplitude determination into ac-
count as those ones depend on the instrument. The impact
likely is a decrease of the measured amplitudes compared
to the apparent amplitudes as computed here. This does
not change the above conclusion for Case 1. We expect
that the instrumental uncertainty is smaller than the the-
oretical uncertainties discussed in Sect. 6 below and which
led to Case 2 and 3.

6. Discussion

In Sect. 5 above, we explained why estimates of g-
mode amplitudes obtained by previous author differ from
each other by orders of magnitude (Christensen-Dalsgaard
2002b). We propose an improved modeling based on the
input of 3D numerical simulations and on a formalism that
had successfully reproduced the observations for p modes
(Belkacem et al. 2006). Nevertheless, several approxima-
tions remain; they lead to uncertainties that can reach
a factor two in the estimation of g-mode apparent veloci-
ties (overestimation). We next discuss the most important
ones.

6.1. Equilibrium model: description of convection

Convection is implemented in our equilibrium models
according to the classical Böhm-Vitense mixing-length
(MLT) formalism (see Samadi et al. 2006, for details).

6.1.1. Convective velocities

Values of the MLT convective velocity, u, are by far the
most important contributions to mode amplitude uncer-
tainties as the mode surface velocities depend on u3 . First,
we verified that a non-local description of turbulence does
not modify the convective velocities by more than a few
per cent except near the uppermost part of the convec-
tion zone which does not play any role here. Second, we
have compared the rms velocities from the 3D numerical
simulation with MLT velocities to obtain an estimation
of the uncertainties. The MLT underestimates the veloc-
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ity, relative to the more realistic numerical simulation (far
from the boundaries). Indeed, it comes from the negative
kinetic energy flux that results in a larger enthalpy flux in
order to carry the solar flux to the surface. A direct conse-
quence is that in 3-D simulations the velocities are larger
than the ones computed by MLT by a factor of about 50 %.
This may in turn result in a possible underestimation of
the amplitudes of the modes by a factor 2, when, as here,
MLT is used to estimate the velocities.

6.1.2. Anisotropy

The value for the velocity anisotropy, that is the ratio
between the square of the vertical velocity to the square
of the rms velocity parameter, Φ, is derived from the MLT,
its value is 2. However, this is not fully consistent since we
assume, in the excitation model, isotropic turbulence (i.e.
Φ = 3). Nevertheless, increasing the value of Φ from two
to three results in an increase of only 15 % of the mode
surface velocities: this is smaller than the uncertainties
coming from χk (see Section. 6.2

6.1.3. Turbulent pressure

Our solar equilibrium model does not include turbulent
pressure. However, unlike p modes, low frequency (high
radial order) gravity modes, i.e. those considered in this
work, are only slightly affected by turbulent pressure. The
reason is that such modes are excited in the deepest lay-
ers of the convection zone, i.e. between r = 0.7 R⊙ and
r = 0.9 R⊙ where turbulent pressure has little influence
on the equilibrium structure since the ratio of the turbu-
lent pressure to the gas pressure increases with the radius.

6.2. Stochastic excitation: the role of the eddy-time
correlation function

A Gaussian function is commonly used to describe the
frequency dependence of the turbulent kinetic energy
spectrum, χk , (e.g., Samadi & Goupil 2001; Chaplin
et al. 2005). However, Samadi et al. (2003a) have shown
that, for p modes, a Lorentzian function better repre-
sents the results obtained using 3D numerical simulations.
Furthermore, the latter function yields a theoretical mod-
eling in accordance with observations, while the use of a
Gaussian function fails (Samadi et al. 2003b). This led us
to investigate χk(ω) for g modes. We find that different
choices of the functional form for χk(ω) result in order of
magnitude differences for the mode amplitudes.

Uncertainties inherent in the eddy-time correlation
function are related to the value of the λ parameter
(Sect. 2.3.1) and to the contribution of low frequency com-
ponents in the 3D simulation. As a rough estimate, de-
creasing λ from 3 to 2 leads to an increase of 20 % for the
surface velocity. Fig. 3 shows that low-frequency compo-
nents in the turbulent kinetic energy spectrum are better
fitted using a Gaussian function. However, the source of

such low-frequency components remains unclear as they
can originate from rotation; in particular, it is not clear
whether they must be taken into account when estimating
the mode excitation rates. By removing those contribu-
tions, the resulting surface velocities decrease by around
25 %.

6.3. Mode damping: the convection-pulsation coupling

Last but not least, modeling damping rates of damped,
stochastically excited modes remains one of the most chal-
lenging issues. The strong coupling between convection
and oscillation in solar-like stars makes the problem dif-
ficult and still unsolved since all approaches so far devel-
oped failed in reproducing the solar damping rates without
the use of unconstrained free parameters (e.g., Dupret et
al. 2005, Houdek 2006). Such descriptions fail to correctly
describe the interaction between convection and oscilla-
tions when both are strongly coupled, i.e. when the char-
acteristic times associated with the convective motions are
of the same order as the oscillation periods. This explains
why we do not use an extrapolation based on a fit of p
mode damping rates but rather consider a frequency do-
main in which the damping is dominated by radiative con-
tributions. A reliable computation of the damping rates at
higher frequencies, beyond the scope here, would require
a sophisticated analytical or semi-analytical theory of the
convection-oscillation interaction, which will not be lim-
ited to first order in the convective fluctuations and which
will take the contribution of different spatial scales into
account.

7. Conclusions

We performed a theoretical computation of surface oscil-
lation velocities of asymptotic gravity modes. The calcula-
tion requires the knowledge of excitation rates which were
obtained as described in Belkacem et al. (2008) with input
of 3D numerical simulations of the solar convective zone
(Miesch et al. 2008). Damping rates, η , are also needed.
As mentioned in Sect. 6, we restrict our investigation to
the frequency domain for which η is dominated by ra-
diative contributions (i.e. ν ∈ [20; 110]µHz). For higher
frequencies, the coupling between convection and oscilla-
tion becomes dominant making the theoretical predictions
doubtful. For asymptotic g-modes, we find that damping
rates are dominated by the modulation of the radial com-
ponent of the radiative flux by the oscillation. In particular
for the ℓ = 1 mode near ν ≈ 60 µHz, η is around 10−7 µHz,
then the mode life-time is ≈ 3.105yrs. Maximum velocity
amplitude at the photosphere arises for for this same mode
and is found at the level of 3 mm s−1 (see Fig. 11). Modes
with higher values of the angular degree ℓ present smaller
amplitudes since the damping is proportional to ℓ2.

Amplitudes found in the present work are orders of
magnitude larger than those from previous works which
themselves showed a large dispersion between their respec-
tive results. In one of these previous works, the estimation
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was based on an equipartition principle derived from the
work of Goldreich & Keeley (1977a,b) and designed for p
modes; its use for g modes is not adapted as the damping
rates of these modes are not dominated by turbulent vis-
cosity. Kumar et al. (1996) carried another investigation
of g mode amplitudes, its calculation is rather close to our
modeling; most of the quantitative disagreement with our
result lies in the use of a different eddy-time correlation
function. Kumar et al. (1996) assumed a Gaussian func-
tion as is commonly used. Our choice relies on results from
3D simulations and is closer to a Lorenzian function.

Taking visibility factors as well as the limb-darkening
into account, we finally find that the maximum of appar-
ent surface velocities of asymptotic g-modes is ≈ 3 mms−1

for ℓ = 1 at ν ≈ 60 µHz an ℓ = 2 at ν ≈ 100 µHz. Due
to uncertainties in the theoretical modeling, amplitudes
at maximum i.e. for ℓ = 1 at 60 µHz can range from 3 to
6 mms−1. By performing numerical simulations of power
spectra, it is shown that with amplitudes of 6 mm s−1, the
modes would have been already detected by the GOLF in-
strument while in the case of an amplitude of 3 mm/s the g
modes would remain undetected even with 30 years of ob-
servations. The theoretical amplitudes found in this work
are then close to the actual observational limit. When de-
tected, the amplitude detection threshold of these modes
will for instance establish a strict upper limit to the con-
vective velocities in the Sun.
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Appendix A: Energy equation near the center

For the full non-adiabatic computation of g-mode damp-
ing rates, much care must be given to the solution of the
energy equation near the center of the Sun for the modes
of angular degree ℓ = 1. We give in Eqs. (A.1) and (A.2)
the perturbed energy and transfer equations in a purely
radiative zone:

i ω0 T δS = −d δL

dm
+ ǫ

(

δǫ

ǫ
+

δρ

ρ
+

1

r2

d (r2ξr)

dr

)

+ ℓ(ℓ + 1)
L

4πρr3

(

δT

r dT/dr
− ξr

r

)

, (A.1)

δL

L
= 2

ξr

r
+3

δT

T
− δκ

κ
− δρ

ρ
+

1

dT/dr

dδT

dr
− dξr

dr
. (A.2)

The radial part (first term of Eq. (A.1)) and transverse
part (last term of Eq. (A.1)) of the perturbed flux diver-
gence are both singular at the center. But this singularity
is lifted when the two terms are joined and an appropriate
change of variables is carried out:

σ =
ω0

√

GM/R3

ξr

r
= ζ xℓ−2

δs

cv
= η xℓ ;

δT

T
= ϑ xℓ ;

δρ

ρ
= γ xℓ

δǫ

ǫ
= δǫx xℓ

k = (GM/R3)−1/2 L(r)

4πρr3cv

ǫ1 = (
4πρr3

3

ǫ

L(r)
− 1)

3

x2

T1 =
x

d lnT/dx

T2 =
x2

L

d

dx

(

L

x2

1

d lnT/dx

)

x =
r

R
(A.3)

All of these variables and quantities are regular at the
solar center, where the perturbed energy equation takes
the following form:

i σ η

k
= 3 δǫx + 2 γ

− (ℓ + 3) ( (4 − κT )ϑ − (1 + κρ) γ )

− ℓ T2 ϑ − (2ℓ + 3) T1
d2ϑ

dx2

+ 2(ℓ − 1)ǫ1 ζ + (2ℓ + 3)
d2ζ

dx2
. (A.4)

For a precise solution of the non-adiabatic problem by
a finite difference method, it is crucial to use a discrete
scheme that tends continuously towards Eq. (A.4) at the
center. If not, the eigenfunctions diverge towards the cen-
ter; and in the particular case of the solar g modes, this
can lead to an overestimate of the damping rates by a
factor of about 2.
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Appendix B: Computation of the kinetic energy

spectrum from the ASH code

The ASH code solves for the hydrodynamical equations
in spherical coordinates (r, θ, φ). Each component of the
velocity is decomposed in terms of spherical harmonics as:

Vp(t, r, θ, φ) =
∑

l,m

Vl,m,p(t, r)Yl,m(θ, φ) (B.1)

where p = r, θ, φ. The spherical harmonic Yl,m(θ, φ) is
defined as:

Y m
l

(θ, φ) ≡ Nl,m Pm
l

(cos θ) eimφ (B.2)

where Pm
l

is the associated Legendre function and the
normalization constant Nl,m

Nl,m =

√

2l + 1

4π

√

(l − m)!

(l + m)!
(B.3)

is chosen such that:
∫

dΩ Yl,m(θ, φ)Yl′,m′(θ, φ) = δl,l′ δm,m′ (B.4)

where dΩ = sin θdθdφ.
The kinetic energy spectrum which is averaged over

time and the solid angle is defined following Samadi et al.
(2003b) as:

E(ℓ, r) ≡ 1

2

∑

m,p

〈

(Vl,m,p − 〈Vl,m,p〉)2
〉

(B.5)

where 〈(.)〉 refers to time average. Note that as in Samadi
et al. (2003b), density does not enter in the definition
of the kinetic energy spectrum. Indeed Samadi & Goupil
(2001)’s formalism assumes an homogeneous turbulence.
This assumption is justified when the turbulent Mach
number is low. This is the case in most part of the con-
vective zone except at the top of convective region.

The mean kinetic energy spectrum, E(l , r), verifies the
relation:

∑

l

E(l , r) =
1

2
u2(r) (B.6)

where u(r) is the root mean square velocity at the radius
r.

Following Samadi et al. (2003a), we also define a ki-
netic energy spectrum as a function of frequency (ν) and
averaged over the solid angle, E(l , ν, r) such that:

∑

l

E(l , ν, r) ≡ 1

2

∫

dΩ

4π

∑

p

∥

∥

∥
V̂p(ν, r, θ, φ)

∥

∥

∥

2

(B.7)

where V̂p(ν, r, θ, φ) is the time Fourier transform of
Vp(t, r, θ, φ) − 〈Vp〉. Using Eq.(B.1) and Eq. (B.4),
Eq. (B.7) yields:

E(l , ν, r) =
1

2

∑

m,p

∥

∥

∥
V̂l,m,p(ν, r)

∥

∥

∥

2

(B.8)

where V̂l,m,p(ν, r) is the time Fourier transform of
Vl,m,p(t, r) − 〈Vl,m,p〉. As in Samadi et al. (2003a), we de-
compose E(l , ν, r) as:

E(l , ν, r) = E(l , r) χl(ν, r) (B.9)

where the function χl (ν, r) satisfies the normalization con-
dition:

∫ +∞

−∞

dν χl(ν, r) = 1 (B.10)

Note that according to the Parseval-Plancherel relation,
one has:

∑

l

∫ +∞

−∞

dν E(l , ν, r) =
∑

l

E(l , r) =
1

2
u2(r) (B.11)

We consider a short time series of duration ≈ 4.68 days
with a sampling time of 800 seconds. Accordingly the
Nyquist frequency is ≈ 1 mHz and the frequency resolu-
tion reachs ≈ 2.5 µHz. In addition, we use a longtime se-
ries of duration ≈ 45.83 days with a sampling time of 4 104

seconds that permits us to get χk at very low frequencies.
In practice, E(l) is derived from Eq. (B.5) and is directly
implemented into Eq. (1), while χk(ν) inferred from the
simulation is computed using Eq. (B.9) and Eq. (B.5).

Note that by using E(l) from the numerical simula-
tion, we assume a planparallel approximation (E(k) dk =
E(l) dl) since the maximum of kinetic energy spectrum
occurs at scales ranging between l ≈ 20 and l ≈ 40.

Appendix C: Visibility factors

Visibility factors have been first computed by of
Dziembowski (1977). Berthomieu & Provost (1990) stud-
ied the case of g modes which, for convenience, we re-
call below in our own notation. We denote by (r, θ, φ)
the spherical coordinate system in the observer’s frame
where r = 0 corresponds to the center of the star and the
θ = 0 axis coincides with the observer’s direction. At a
surface point (r, θ, φ), the unit vector directed toward the
observer, is n = cos θ er − sin θ eθ. The apparent surface
velocity is obtained as

Vapp(r, t) =

∫

h(µ) (v(r, t) · n) d Ω
∫

h(µ) dΩ
(C.1)

v(r, t) is the intrinsic mode velocity and h(µ) the limb-
darkening function which is normalized such that:

∫ 1

0

µ h(µ)dµ = 1 (C.2)

To first order in linearized quantities in Eq. (C.1), the
effect of the distorted surface is neglected, and dΩ =
R2 sin θdθdφ is the solid angle around the direction of the
observer n with R the stellar radius.

For slow rotation, the oscillation velocity can be de-
scribed in a pulsation frame with a single spherical har-
monics. The coordinate system (r, Θ, Φ) in the pulsation
frame is chosen such that the pulsation polar axis coincides
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with the rotation polar axis. The velocity vector at a level
r in the atmosphere of the star for a mode with given ℓ, m
and pulsation frequency ω0 can then be written with no
loss of generality as

v(r, t) =
1

2
a(t) ω0 ξ(r) eiω0t + c.c. (C.3)

where cc means complex conjugate and with the displace-
ment eigenvector defined as

ξ(r) = ξr(r) Y m
ℓ (Θ, Φ) er + ξh(r) ∇HY m

ℓ (Θ, Φ) (C.4)

with

∇H = (0,
∂

∂Θ
,

1

sinΘ

∂

∂Φ
) (C.5)

The dimensionless complex velocity amplitude av(t)
is assumed to be a slowly varying function of time for
a damped stochastically excited mode (Samadi & Goupil
2001; Samadi et al. 2003b; Belkacem et al. 2008). The
theoretical expression is given by

< |a(t)|2 >=
P

ηIω2
0

(C.6)

where the power P is defined in Eq. (1), I is the mode
inertia, η the damping rate and <> represents a statistical
average or equivalently here a time average.

In order to obtain the apparent velocity from Eq. (C.1)
using the expressions Eq. (C.3) and Eq. (C.4), one must
compute the scalar product: ξ(r) · n.

ξ(r) · n = ξr(r) Y m
ℓ (Θ, Φ) (er · n) + ξh(r) (∇HY m

ℓ · n)
(C.7)

A change of coordinate system shows that er ·n = cos θ
and

∇HY m
ℓ (Θ, Φ) · n = − sin θ

∂Y m
ℓ (Θ, Φ)

∂θ

We use the spherical harmonics as defined in Eq. (B.2) and
the following property

Pm
ℓ (cosΘ)eimΦ =

ℓ
∑

m′=−ℓ

qℓ
m,m′(Θ0, Φ0)P

m′

ℓ (cos θ) eim′φ

(C.8)

which for convenience we use under the form

Y m
ℓ (Θ, Φ) = Nℓ,m

ℓ
∑

m′=−ℓ

qℓ
m,m′(Θ0, Φ0) Pm′

ℓ (cos θ) eim′φ

(C.9)

where Nℓ,m is defined in Eq. (B.3). where (Θ0, Φ0) are the
coordinates of the line of sight direction in the pulsation
frame. The scalar product Eq. (C.7) becomes:

ξ(r) · n = Nℓ,m

ℓ
∑

m′=−ℓ

qℓ
m,m′(Θ0, Φ0) eim′φ

× ( ξr(r) Pm′

ℓ cos θ − ξh(r) sin θ
dPm′

ℓ

dθ
) (C.10)

As emphasized by Dziembowski (1977), only the qℓ
m,0

coefficients survive the φ integration in Eq. (C.1). Its ex-
pression is

qℓ
m,0(Θ0, Φ0) = Pm

ℓ (cosΘ0) eimΦ0 (C.11)

Note that Θ0 the angle between the observer and the ro-
tation axis is often denoted i.

Integration over the solid angle leads to :
∫

h(µ)(ξ(r) · n)dΩ = Y m
ℓ (Θ0, Φ0) ×

(

ξr(r)

∫ 1

0

µ2 h(µ) Pℓ(µ)dµ +

ξh(r)

∫ 1

0

µ h(µ) (1 − µ2)
dPℓ(µ)

dµ
dµ

)

(C.12)

Finally, using properties of spherical harmonics, one
obtains:
∫

h(µ)(ξ(r) · n)dΩ
∫

h(µ)dΩ
= Y m

ℓ (Θ0, Φ0) (ξr(r) uℓ + ξh(r) wℓ)

(C.13)
where we have defined

uℓ =

∫ 1

0

dµ µ2h̃(µ)Pℓ(µ) (C.14)

wl = ℓ

∫ 1

0

dµ µ h̃(µ) (Pℓ−1 − µPℓ) (C.15)

with

h̃(µ) =
h(µ)

∫ 1

0
h(µ)dµ

Collecting Eq. (C.3) and Eq. (C.13), the apparent ve-
locity is then given by:

Vapp(r, t) =
1

2
a(t) ω0 Nℓ,m Pℓ(cosΘ0) (C.16)

× (ξr(r)ul + ξh(r)wl) ei(ω0t+mφ0) + cc (C.17)

We assume a quadratic limb-darkening law of the form

h(µ) = 1 + c1 X2 + c2 X2 + c3 X3 (C.18)

where X = 1 − µ, ci={1,2,3} are the associated limb-
darkening coefficients, which respective values are −0.466,
−0.06 and −0.29 for the NaD1 spectral line, as derived
by Ulrich et al. (2000). We find that our conclusion de-
pends neither on the adopted limb-darkening law nor on
the limb-darkening coefficients, those results are in accor-
dance with Berthomieu & Provost (1990).

Using Eq. (C.6), the rms velocity is obtained as:

(< |Vapp(r, t)|2 >)1/2 =

(

P

2ηIω2
0

)1/2

ω0 Nℓ,m |Pℓ(cosΘ0)|

(C.19)

× |ξr(r) ul + ξh(r) wl|
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which we finally rewrite as:

(< |Vapp(r, t)|2 >)1/2 =

(

P

2ηIω2
0

)1/2

(C.20)

× |vr(r) αm
ℓ + vh(r) βm

ℓ |

where we have defined

αm
ℓ = Nℓ,m Pℓ(cosΘ0) ul (C.21)

βm
ℓ = Nℓ,m Pℓ(cosΘ0) wl (C.22)

and
vr(r) = ω0 ξr(r) ; vh(r) = ω0 ξh(r)


