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ABSTRACT

A perturbative analysis is used to investigate the effect of rotation on the

instability of a steady accretion shock (SASI) in a simple toy-model, in view of

better understanding supernova explosions in which the collapsing core contains

angular momentum. A cylindrical geometry is chosen for the sake of simplicity.

Even when the centrifugal force is very small, rotation can have a strong effect on

the non-axisymmetric modes of SASI by increasing the growth rate of the spiral

modes rotating in the same direction as the steady flow. Counter-rotating spiral

modes are significantly damped, while axisymmetric modes are hardly affected

by rotation. The growth rates of spiral modes have a nearly linear dependence on

the specific angular momentum of the flow. The fundamental one-armed spiral

mode (m = 1) is favoured for small rotation rates, whereas stronger rotation rates

favour the mode m = 2. A WKB analysis of higher harmonics indicates that the

efficiency of the advective-acoustic cycles associated to spiral modes is strongly

affected by rotation in the same manner as low frequency modes, whereas the

purely acoustic cycles are stable. These results suggest that the linear phase of

SASI in rotating core-collapse supernovae naturally selects a spiral mode rotating

in the same direction of the flow, as observed in the 3D numerical simulations

of Blondin & Mezzacappa (2007). This emphasizes the need for a 3D approach

of rotating core-collapse, before conclusions on the explosion mechanisms and

pulsar kicks can be drawn.

Subject headings: hydrodynamics — shock waves — instabilities — supernovae:

general



– 2 –

1. Introduction

Despite extensive studies, the explosion mechanism of core-collapse supernovae is still

elusive. According to the delayed explosion scenario, the shock is first stalled at a distance of

a few hundred kilometers, and then revived after neutrinos diffuse out of the proto neutron

star. Unfortunately, numerical simulations suggest that neutrino heating may not be efficient

enough, at least in spherical symmetry (Liebendörfer et al. 2005).

Recent studies have shown that the spherical stalled shock is unstable against non radial

perturbations with a low degree l = 1, 2 even if the flow is convectively stable. This result

was demonstrated using axisymmetric numerical simulations (Blondin et al. 2003; Blondin &

Mezzacappa 2006; Scheck et al. 2006, 2008; Ohnishi et al. 2006) and linear stability analyses

(Galletti & Foglizzo 2005; Foglizzo et al. 2007; Yamasaki & Yamada 2007). Some numerical

simulations have shown that this hydrodynamical instability, often called SASI, may assist

the revival of the shock and trigger a successful explosion, powered either by neutrino heating

(Marek & Janka 2007) or by acoustic waves (Burrows et al. 2006). Some observed properties

of young neutron stars may also be the consequences of SASI, such as their distribution of

velocities (Scheck et al. 2004, 2006) or their spin (Blondin & Mezzacappa 2007; Blondin &

Shaw 2007).

Until now, most studies of SASI have assumed that the unperturbed flow is purely

radial and not rotating. Since the angular momentum of massive stars is likely to be large

(Heger et al. 2005), it is desirable to understand how the properties of SASI are affected by

rotation. In this Letter, the effect of rotation on the linear stage of SASI is investigated using

a perturbative analysis in order to shed light on one of the surprising results observed by

Blondin & Mezzacappa (2007) in their 3D numerical simulations: the development of SASI

seems to systematically favour a spiral mode rotating in the same direction as the accretion

flow. As a consequence of momentum conservation, this mode diminishes and may even

reverse the angular momentum acquired by the proto-neutron star from the stationary flow.

Incidentally, the present linear study does not address another surprising result of Blondin

& Mezzacappa (2007), that a spiral mode of SASI always dominate the axisymmetric mode

even without rotation. Following an approach similar to Foglizzo et al. (2007) (hereafter

FGSJ07), we first compute the eigenfrequencies by solving accurately a boundary value

problem between the shock surface and the accretor surface; in a second step, we use the

same WKB method as in FGSJ07 to measure the stability of purely acoustic and advective-

acoustic cycles in this region. This approach is different from Laming (2007), which is

based on the approximate derivation of a dispersion relation. Rather than the complexity

of describing the non-spherical shape of a shock deformed by rotation (Yamasaki & Yamada

2005), we have chosen, as a first step, to solve the much simpler problem of a cylindrical
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accretion shock. This flow is simple enough to allow for a complete coverage of the parameter

space and a physical insight of the main effects of rotation on SASI. Once characterized, these

effects can be transposed into the more complex geometry of a rotating stellar core.

2. Formulation

Following a similar desire of simplification, Blondin & Shaw (2007) have limited their 2D

simulation domain (r, ϕ) to the vicinity of the equatorial region (θ = π/2) of a non-rotating

spherical flow, where the poloidal velocity of a symmetric mode is vθ = 0. Their calculation

neglected the perturbation of density induced by the term (ρ/r)(∂vθ/∂θ) in the equation

of continuity, implicitly decoupling the structure of perturbations in the vertical direction

from their structure in the equatorial plane. In order to study the effects of rotation in

a simple setup and maintain a self consistent set of equations, we have chosen to adopt a

cylindrical geometry invariant along the z-axis of rotation. The accretor and the shock are

thus cylindrical in our toy-model.

Except for the geometry of the flow and the presence of rotation, the assumptions are the

same as in FGSJ07. In the equations describing the flow (Appendix A), we have assumed

that i) the free-falling supersonic flow is cold, ii) gravity is Newtonian and self-gravity is

neglected, iii) the shock is adiabatic, iv) neutrino heating is neglected and the cooling rate

per volume is approximated as L ∝ ρβ−αPα with α = 3/2, and β = 5/2, where ρ is the

density and P the pressure, v) the accreting material is described by a perfect gas with a

uniform adiabatic index γ = 4/3, vi) the condition M = 0 is imposed at the inner boundary,

where M ≡ −vr/c is the Mach number associated to the radial velocity vr and adiabatic

sound speed c, vii) the flow is inviscid and its specific angular momentum L is conserved.

We have adopted values of the parameters typical for the core-collapse problem: the ra-

dius of the inner boundary is r∗ = 50 [km] and the gravitational potential is Φ = −1.3GM⊙/r,

where G is the gravitational constant and M⊙ the solar mass. By adopting the same gravi-

tational potential as for a spherical accretor, the Bernoulli equation is unchanged.

The stability of the accretion flow is investigated for various values of the specific an-

gular momentum L, measured by the rotation frequency fp ≡ L/(2πr2
p) extrapolated at a

radius rp ∼ 10[km] by reference to young pulsars. The range of rotation rates considered

corresponds to 0 ≤ fp ≤ 103[Hz]. We have chosen to compare instability timescales in cylin-

drical models with different rotation rates but identical shock radii and mass accretion rates,

in order to keep geometrical factors constant. This is made possible by adapting the inten-

sity of cooling accordingly, by a modest amount (< 15%) over the range of rotation rates
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considered. We observe that the advection time from the shock to the accretor is hardly

affected by rotation (a few percent). This is because the centrifugal force L2/r3 is much

smaller than gravity −dΦ/dr:

L2

r3|dΦ/dr|
= 4.6 × 10−2

(r∗
r

) (
fp

103[Hz]

)2

. (1)

The perturbations superimposed upon the steady solution are proportional to exp{−i(ωt −
mθ − kzz)}. We adopt the variables δS, δq, δf, δh defined by

δS ≡ 2

γ − 1

δc

c
− δρ

ρ
, (2)

δq ≡ δ

(∫ r L
ρvr

dr′
)

, (3)

δf ≡ vrδvr +
L

r
δvθ +

2

γ − 1
cδc − δq, (4)

δh ≡ δvr

vr

+
δρ

ρ
, (5)

where δ denotes the Eulerian perturbation and vθ is the azimuthal velocity. Then the differ-

ential system describing the perturbations becomes particularly compact:

dδf

dr
=

iωc2

vr(1 −M2)

{
M2δh −M2ω′

ω

δf

c2

+[1 + (γ − 1)M2]
δS

γ
− δq

c2

}
, (6)

dδh

dr
=

iω′

vr(1 −M2)

{
µ2

c2

ω′

ω
δf −M2δh − δS +

δq

c2

}
, (7)

dδS

dr
=

iω′

vr

δS + δ

(
L

Pvr

)
, (8)

dδq

dr
=

iω′

vr

δq + δ

(
L

ρvr

)
, (9)

where µ and ω′ are defined by

µ2 ≡ 1 − c2

ω′2 (1 −M2)

(
m2

r2
+ k2

z

)
, (10)

ω′ ≡ ω − mL

r2
. (11)

These equations are solved by imposing the Rankine-Hugoniot relations for the perturbed

quantities, which are written as,

δfsh

ω
= ivr,1∆ζ

(
1 − vr,sh

vr,1

)
, (12)
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δhsh = −i
ω′

vr,sh

∆ζ

(
1 − vr,sh

vr,1

)
, (13)

δSsh

γ
= i

ω′vr,1

c2
sh

∆ζ

(
1 − vr,sh

vr,1

)2

− Lsh − L1

ρshvr,sh

∆ζ

c2
sh

+

(
1 − vr,sh

vr,1

)
∆ζ

c2
sh

(
vr,1vr,sh

rsh

+
L2

r3
sh

− dΦ

dr

)
, (14)

δqsh = −Lsh − L1

ρshvr,sh

∆ζ, (15)

where the subscripts ’sh’ and ’1’ refer to the values just below and above the shock, respec-

tively; ∆ζ is the radial displacement of the shock surface. Since we have assumed that the

flow above the shock is cold, the cooling rate L1 = 0. In addition to these equations, we

impose the condition that the radial velocity perturbation vanishes at the inner boundary

(δvr = 0). The derivations of the basic equations and the boundary conditions are shown in

the Appendix A.

When rotation is neglected (L = 0, ω′ = ω), we remark the formal resemblance between

the above formulation and the formulation of FGSJ07 describing a spherical flow. The only

difference is the expression for the parameter µ2 in Eq. (10), where (m2 + r2k2
z) replaces

l(l + 1), and a geometrical factor 2 in the boundary condition for the entropy perturbation

(vr,shvr,1 replaces 2vr,shvr,1 in Eq. 14).

For a small value of the angular momentum L, we also remark that the effect of the

centrifugal force L2/r3 on the stationary flow is quadratic, and so is its effect on the entropy

perturbation in Eq. (14). The only first order effect of rotation on the differential system

satisfied by δf, δh, δS, δq, is the Doppler shift described by ω′ in Eq. (11).

3. Results

Given the resemblance of formulations, let us first check that the stability properties of

the cylindrical flow without rotation resemble those of the spherical flow studied by FGSJ07

despite the different geometry. In the spherical problem, the axisymmetric mode m = 0 and

the spiral modes ±m of a given degree l have exactly the same growth rate (FGSJ07). In

the cylindrical flow, the spiral modes ±m are also degenerate without rotation. A numerical

resolution of the eigenfrequencies shows that the instability is dominated by the mode m =

±1 if rsh/r∗ ≥ 2, and by a larger |m| for smaller shock radius, exactly as observed in the

spherical flow (Fig. 6 of FGSJ07). The growth rate of the axisymmetric mode (m = 0,

kz > 0) however, is expected to differ from the spiral modes (m > 0, kz = 0) in a cylindrical

flow. For example if rsh/r∗ = 5, the most unstable axisymmetric mode is twice as slow as
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the most unstable spiral mode.

The dependence of the growth rate on the specific angular momentum is shown in

Fig. 1 for the spiral modes m = ±1,±2 in a flow where rsh/r∗ = 5. The growth rate

of the modes rotating in the same direction as the flow (m > 0) is increased by rotation,

whereas the counter-rotating modes (m < 0) are stabilized. The increase of the growth

rate is almost proportional to the specific angular momentum. In a rotating flow with

L ∼ 200 × 2π · 1012[cm2/s] (fp = 200[Hz]), the growth rate of the fundamental mode m = 1

is twice its value in a non rotating flow of same size. The strong effect of rotation on the

growth rate of SASI does not seem to depend on the presence of a corotation radius rco,

defined by Re(ω)−mL/r2
co = 0, also displayed in Fig. 1. We also investigated the effects of

rotation on the axisymmetric modes (m = 0) for various values of the vertical wave number

kz, and found that their growth rates are hardly affected, by less than one percent of |vr,sh|/rsh

in our study (Fig. 2). A global overview of the parameter space of the cylindrical SASI is

displayed in Fig. 3, which indicates the azimuthal wavenumber m of the most unstable mode

for a wide range of shock radii and specific angular momentum. The asymmetric one-armed

spiral mode is unstable in most of the parameter space, and always more unstable than

without rotation. The growth rate of the mode m = 2 exceeds that of the mode m = 1 (by

less than 10% in the example of Fig. 1), as the specific angular momentum is increased.

4. Discussion

4.1. Instability mechanism

As underlined in Sect. 3, the dynamical effect of the centrifugal force on the stationary

flow is modest. We anticipated in Sect. 2 that the only linear effect of angular momentum

is a Doppler shift of the eigenfrequency ω′ = ω − mΩ(r), where Ω(r) is the local rotation

frequency. This leaves the axisymmetric mode m = 0 unaffected and explains the relative

insensitivity of its growth rate with respect to the rotation rate, at least for moderate angular

momentum. The strong effect of rotation on the growth rate of the spiral modes can thus be

traced back to this Doppler shifted frequency. What is the mechanism of the instability ? As

seen in the previous section, the destabilizing role of rotation does not seem related to the

presence or absence of a corotation radius, thus discarding a Papaloizou-Pringle mechanism

(Goldreich & Narayan 1985). Two possibilities have been proposed for the mechanism of

SASI without rotation; one is the advective-acoustic mechanism (Foglizzo & Tagger 2000;

Foglizzo 2001, 2002) and the other is the purely acoustic mechanism (Blondin & Mezzacappa

2006). Up to now, there is no satisfactory direct argument for the mechanism of the modes

with a long wavelength. FGSJ07 used a WKB approximation to prove that the instability of
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the modes with a short wavelength is due to an advective-acoustic mechanism and extrap-

olated this conclusion to the modes with a long wavelength, which are the most unstable.

This method, recalled in Appendix B, is based on the identification of acoustic waves and

advected waves at a radius immediately below the shock surface, and the measurement of

their coupling coefficients, above this radius due to the shock, and below this radius due to

the flow gradients. These coupling processes are responsible for the existence of two cycles,

namely a purely acoustic cycle characterized by an efficiency R, and an advective-acoustic

cycle characterized by an efficiency Q.

By using the same method, the present study does not address directly the instability

mechanism of long wavelength modes. However, the WKB approximation enables us to de-

scribe, in a conclusive manner, the instability mechanism of short wavelength modes affected

by rotation. First we checked that when the shock distance is increased (rsh = 20r∗), the

overtones are also unstable and their growth rate is an oscillatory function of the frequency

similar to Fig. 7 of FGSJ07. The effect of rotation on the advective-acoustic cycle is il-

lustrated by Fig 3, for the spiral modes m = ±1 corresponding to the 10-th overtone, as

a function of the rotation rate. The cycle efficiency Q is strongly amplified by rotation if

m > 0, while strongly damped if m < 0. The stabilization of the counter-rotating spiral

coincides with a marginally stable cycle Q ∼ 1. The calculation of the amplification factor R
of perturbations during each purely acoustic cycle indicates its stability (R < 1). Contrary

to the expectation of Laming (2007) (see next subsection), rotation clearly favours the spiral

mode of the advective-acoustic cycle.

This consequence of rotation established unambiguously for short wavelength perturba-

tions is identical to the influence of rotation on the fundamental mode of SASI: we consider

this a new hint that the advective-acoustic mechanism can be extrapolated to low frequencies.

The detailed analysis of the consequences of the Doppler shifted frequency on the increase of

the advective-acoustic efficiency Q will be presented elsewhere (Yamasaki & Foglizzo (2008),

in preparation).

4.2. Comments on the Results of Laming (2007)

The effect of rotation on the growth rate of SASI, established in Sect. 3 in a cylindrical

geometry, is qualitatively similar to the effect conjectured by Laming (2007) (hereafter L07).

Nevertheless, their investigation about the instability mechanism led them to a different

interpretation of the roles of the acoustic and advective-acoustic cycles.

We must point out a fundamental difference between the method of L07 and ours: by
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using a WKB approximation, we have carefuly defined the range of validity of our method,

namely short wavelength modes. This guarantees that the advective-acoustic interpretation

of the instability mechanism is physical and robust, at least in some parameter range. In

contrast, the existence of a purely acoustic instability is still a conjecture because the domain

of validity of the method used by L07 is ambiguous: their analytical derivation of a dispersion

relation when advection is included requires to neglect terms of order (vr/ωr) while terms

of order M are retained. This approximation is not supported by the results of their Fig. 2,

which indicates that (vr,sh/ωrsh) is comparable to or larger than Msh for the modes l = 0

and l = 1. An accurate description of this acoustic mode, even in a simplified set up, would

be useful to gain confidence in its possible existence.

In addition to the question of the validity of the approximations used by L07, we find that

our results invalidate their reasoning concerning the instability mechanism. They proposed

that the advective-acoustic mechanism would be essential if rsh/r∗ ≥ 10, whereas a purely

acoustic unstable process would be dominant for small shock radii, and they argued that

rotation is a key ingredient to discriminate between the two mechanisms. When rotation

is included, its effect on SASI has been attributed by L07 to a purely acoustic mechanism,

despite the results of their Table 3. However, their view that rotation cannot possibly

enhance the growth of the advective-acoustic cycle is clearly incorrect, at least for the short

wavelength modes (our Fig. 4).

4.3. Consequences of rotation on supernova explosions

The perturbative study of a simple cylindrical configuration has enabled us to cover

a large parameter space of shock radii and rotation rates, in order to (i) demonstrate the

linear selection of non-axisymmetric modes, (ii) establish a correlation between the preferred

direction of the spiral SASI and the rotation of the collapsing core, (iii) identify the advective-

acoustic mechanism at work for short wavelength spiral perturbations.

The fact that rotation favours a spiral mode m = 1, 2 in a cylindrical flow seems directly

connected to the property observed by Blondin & Mezzacappa (2007) in their 3D simulations

including rotation. Tracing back the main influence of rotation to the local Doppler shifted

frequency ω − mΩ, we may indeed expect a similar destabilization of the spiral modes with

a positive value of m, a stabilization of the counter-rotating ones, and a comparatively weak

influence on the axisymmetric modes.

Even a moderate amount of angular momentum results in a shortening of the growth

time of SASI through the destabilization of a non-axisymmetric mode. The promising con-
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sequences of SASI on both the explosion mechanisms and the pulsar kick could thus be

considerably modified, since they were established on the basis of axisymmetric numerical

simulations (Burrows et al. 2006, 2007; Marek & Janka 2007; Scheck et al. 2004, 2006). Our

study suggests that the effect of rotation on the linear phase of SASI can be safely neglected

only for slowly rotating progenitors with a specific angular momentum L ≪ 2π · 1014 cm2/s.

Although a fast growth of SASI might be helpful to an early shock revival, the dynamical

effects of a spiral mode m = 1, and even m = 2, on the possible explosion mechanisms are

not known yet.

If the direction of the kick were determined by the geometry of the most unstable l = 1

SASI mode, our perturbative approach would suggest a kick-spin misalignment. The strength

of the equatorial kick may be diminished by the domination of a symmetric mode m = 2.

It is worth noting however that the relationship between the timescale of the most unstable

SASI mode and the onset of explosion is not straightforward, and should be evaluated by

future 3D numerical simulations. Our linear approach modestly aims at guiding our intuition

for the interpretation of these simulations.

A. Derivation of the Basic Equations

A.1. Basic Equations

The basic equations describing the flow are

∂ρ

∂t
+ ∇ · (ρv) = 0, (A1)

∂v

∂t
+ w × v + ∇

(
|v|2

2
+

c2

γ − 1
+ Φ

)
=

c2

γ
∇S, (A2)

∂S

∂t
+ v · ∇S =

L
P

. (A3)

Small amplitude perturbations are superimposed onto the above equations. From the trans-

verse components (θ, z) of the Euler equation, the vorticity can be expressed as follows:

δwθ =
ikz

vr

(
δf − L

r
δvθ + δq − c2

γ
δS

)
− iω′

vr

δvz, (A4)

δwz = iω
δvθ

vr

+
im

rvr

(
c2

γ
δS − δf − δq

)
. (A5)

From the definition of the vorticity vector,

δwr ≡ im

r
δvz − ikzδvθ, (A6)
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drδvθ

dr
= imδvr + rδwz, (A7)

dδvz

dr
= ikzδvr − δwθ. (A8)

Using the two equations (A4) and (A5) and the definition of vorticity leads to:(
d

dr
− iω′

vr

)
(rδwr) = 0. (A9)

The radial Euler equation combined with Eq. (8) and (9) is

dδf

dr
= iωδvr +

L

r
δwz +

iω′

vr

(
c2

γ
δS − δq

)
. (A10)

Guided by the conservation of δK in a radial flow (Foglizzo 2001), let us define the quantities

δK1, δK2 as follows:

δK1 ≡ vrrδwz − im

(
c2

γ
δS − δq

)
, (A11)

= iωrδvθ − imδf, (A12)

δK2 ≡ vrδwθ + ikz

(
c2

γ
δS − δq

)
, (A13)

= −iω′δvz + ikz

(
δf − L

r
δvθ

)
, (A14)

where Eq. (A12) and Eq. (A14) are deduced from Eqs. (A4) and (A5). The flow quantities

δvθ, δvz, δwθ, δwz can be expressed with δK1 and δK2 using Eqs. (A11-A14):

δvθ =
m

r

δf

ω
− iδK1

ωr
, (A15)

δvz = kz
δf

ω
+

i

ω′

(
δK2 +

Lkz

ωr2
δK1

)
, (A16)

δwθ =
ikz

vr

(
δq − c2

γ
δS

)
+

δK2

vr

, (A17)

δwz = − im

vrr

(
δq − c2

γ
δS

)
+

δK1

rvr

. (A18)

Using Eq. (A7), (A8) and (A10), we can prove that(
d

dr
− iω′

vr

)
δK1 = 0, (A19)(

d

dr
− iω′

vr

)
δK2 = −2L

r2
δwr. (A20)
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The perturbations of radial velocity, sound speed and density are related to f, h, δS, δq as

follows:

δvr

vr

=
1

1 −M2

(
δh + δS − δf

c2
+

L

rc2
δvθ −

δq

c2

)
, (A21)

δc2

c2
=

γ − 1

1 −M2

(
δf

c2
− L

rc2
δvθ +

δq

c2
−M2δh −M2δS

)
, (A22)

δρ

ρ
=

1

1 −M2

(
δf

c2
− L

rc2
δvθ +

δq

c2
−M2δh − δS

)
. (A23)

The continuity of mass flux is

dδh

dr
=

iω′

vr

δρ

ρ
− im

rvr

δvθ. (A24)

The differential system satisfied by δf, δh, δS, δq is

dδf

dr
=

iωc2

vr(1 −M2)

{
M2δh −M2ω′

ω

δf

c2
+

[
1 + (γ − 1)M2

] δS

γ
− δq

c2

}
+

L

vrr2

δK1

1 −M2
, (A25)

dδh

dr
=

iω′

vr(1 −M2)

(
µ2

c2

ω′

ω
δf −M2δh − δS +

δq

c2

)
− δK1

ωr2vr

(
m +

Lω′

c2(1 −M2)

)
, (A26)

dδS

dr
=

iω′

vr

δS + δ

(
L

Pvr

)
, (A27)

dδq

dr
=

iω′

vr

δq + δ

(
L

ρvr

)
. (A28)

The transverse velocity perturbations δvθ, δvz at the shock are expressed in Appendix A.2.

by:

δvθ,sh =
im

rsh

∆ζ(vr,1 − vr,sh), (A29)

δvz,sh = ikz∆ζ(vr,1 − vr,sh). (A30)

Together with the boundary conditions (Eqs. (12-15)) established in Appendix A.2., we

deduce from the definition of δwr, δK1, δK2 that these three quantities vanish at the shock.

From the conservation Eqs. (A9), (A19), (A20), we conclude that δwr, δK1 and δK2 are

uniformly zero throughout the flow. The flow quantities δvθ, δvz, δwθ expressed in Eqs. (A15-

A18) are thus simplified accordingly, and the differential system (A25-A28) is transformed

into the simpler Eqs. (6-9).
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A.2. Boundary Conditions

The Rankine-Hugoniot relation is written as

ρ1(v1 − vs) ·
n

|n|
= ρsh(vsh − vs) ·

n

|n|
, (A31)

ρ1

{
(v1 − vs) ·

n

|n|

}2

+
ρ1c

2
1

γ
= ρsh

{
(vsh − vs) ·

n

|n|

}2

+
ρshc

2
sh

γ
, (A32)

(v1 − vs) · t1 = (vsh − vs) · t1, (A33)

(v1 − vs) · t2 = (vsh − vs) · t2, (A34)

1

2

{
(v1 − vs) ·

n

|n|

}2

+
c2
1

γ − 1
=

1

2

{
(vsh − vs) ·

n

|n|

}2

+
c2
sh

γ − 1
, (A35)

where vs is the velocity vector of the shock surface and n, t1 and t2 are the vector normal

and tangent to the shock surface which is written at first order as follows,

n =

(
1,− 1

rs

∂rs

∂θ
,−∂rs

∂z

)
, (A36)

t1 =

(
∂rs

∂θ
, rs, 0

)
, (A37)

t2 =

(
∂rs

∂z
, 0, 1

)
. (A38)

Considering small perturbations of the above Eqs, (A31)-(A35), we obtain

ρshvr,shδhsh + iω′∆ζ(ρsh − ρ1) = ∆ζ

[
d

dr
(ρvr)1 −

d

dr
(ρvr)sh

]
, (A39)

v2
r,shδρsh + 2ρshvr,shδvr,sh +

2

γ
ρshcshδcsh + δρsh

c2
sh

γ

= ∆ζ

[
d

dr
(ρv2

r + P )1 −
d

dr
(ρv2

r + P )sh

]
, (A40)

δfsh − vθ,shδvθ,sh + δqsh + iω′∆ζ(vsh − v1)

= ∆ζ

[
d

dr

(
v2

r

2
+

c2

γ − 1

)
1

− d

dr

(
v2

r

2
+

c2

γ − 1

)
sh

]
, (A41)

and Eqs. (A29)-(A30). Using the relations in the steady flow,

d

dr
(ρvr) = −ρvr

r
, (A42)
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d

dr
(ρv2

r + P ) = ρ
dΦ

dr
− ρv2

r

r
, (A43)

d

dr

(
v2

r + v2
θ

2
+

c2

γ − 1

)
=

L
ρvr

+
dΦ

dr
, (A44)

we obtain the boundary conditions (12)-(15).

B. WKB Method for the Calculation of the Amplification Coefficients

In order to interpret the complex eigenfrequency ω of a given eigenmode, we compute

the efficiency of the advective-acoustic and purely acoustic cycles associated to the real

frequency ωr ≡ Re(ω) of this eigenmode. The coefficient R(ωr) is defined by the amplifica-

tion of perturbations after one purely acoustic cycle, initiated at the shock by an acoustic

wave propagating downward. Q(ωr) and Qq(ωr) measure the amplification of pertubations

through an advective-acoustic cycle, initiated at the shock by the advection of an entropy

perturbation δS with δq = 0, or a heat perturbations δq with δS = 0 respectively. Each of

these coefficients R, Q and Qq is the product of the coupling coefficient at the shock (Rsh,

Qsh, or Qq
sh), multiplied by the coupling coefficient through the flow (R∇, Q∇ or Qq

∇). The

technique of calculation of each factor is the same as that described in the Appendix D of

FGSJ07. The calculations are based on the decomposition of the variables onto the basis of

advected and acoustic perturbations, which is exact when the flow is uniform. Even when

the flow is moderately inhomogeneous, a similar decomposition is obtained using a WKB

approximation. Since the definitions of the variables δf, δh, δS, δq employed in this paper

are slightly different from those in FGSJ07, the decomposition is modified as follows:

δf = δf+ + δf− + δfS + δf q, (B1)

δh = δh+ + δh− + δhS + δhq. (B2)

The superscripts +, −, S, q refer to the contributions of the ingoing and outgoing acoustic

wave, the advected quantities δS and δq, respectively. Adopting the WKB approximation,

the quantities δf±, δh± associated with the acoustic waves satisfy the differential system

(6-9) where δS = 0 and δq = 0, and the radial derivatives are replaced by a multiplication

by ik±:

ik±δf± =
iωc2

vr(1 −M2)

(
M2δh± −M2ω′

ω

δf±

c2

)
, (B3)

ik±δh± =
iω′

vr(1 −M2)

(
µ2

c2

ω′

ω
δf± −M2δh±

)
. (B4)
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The dispersion relation of acoustic waves corresponds to:

k± =
ω′

c

M∓ µ

1 −M2
. (B5)

The advected quantities satisfy the differential system (6-9) where the radial derivatives are

replaced by a multiplication by ik0, where k0 ≡ ω′/v.

ik0δf
S =

iωc2

vr(1 −M2)

{
M2δhS −M2ω′

ω

δfS

c2
+ [1 + (γ − 1)M2]

δS

γ

}
, (B6)

ik0δh
S =

iω′

vr(1 −M2)

(
µ2

c2

ω′

ω
δfS −M2δhS − δS

)
, (B7)

ik0δf
q =

iωc2

vr(1 −M2)

(
M2δhq −M2ω′

ω

δf q

c2
− δq

c2

)
, (B8)

ik0δh
q =

iω′

vr(1 −M2)

(
µ2

c2

ω′

ω
δf q −M2δhq +

δq

c2

)
. (B9)

Solving these two sets of equations leads to:

δh± = ±ω′

ω

µ

Mc2
δf±, (B10)

δfS =
ω

ω′
1 −M2

1 − µ2M2

c2

γ
δS, (B11)

δhS =
ω′

ω

µ2

c2
δfS − δS, (B12)

δf q = − ω

ω′
1 −M2

1 − µ2M2
δq, (B13)

δhq =
1 − µ2

1 − µ2M2

δq

c2
. (B14)

The coupling coefficients Rsh, Qsh and Qq
sh are obtained by decomposing the variables at the

boundary described by Eqs. (12-15) onto the basis of acoustic and advected perturbations,

immediately below the shock:

δfsh = δf+
sh + δf−

sh + δfS
sh + δf q

sh, (B15)

Rsh ≡ δf+
sh

δf−
sh

, (B16)

Qsh ≡ δfS
sh

δf−
sh

, (B17)

Qq
sh ≡ δf q

sh

δf−
sh

. (B18)
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The three coupling coefficients R∇, Q∇ and Qq
∇ are calculated by measuring numerically, at

a radius R immediately below the shock (R = rsh), the acoustic feedback δf−(R) that would

be produced, either by an ingoing purely acoustic perturbation δf+, or a purely advective

perturbation δfS, or δf q. Each of these three coefficients is calculated by integrating the

differential system (6-9) from the radius R down to the accretor surface. For example, the

boundary condition used at r = R for the calculation of Q∇ involves a perturbation of

entropy and vorticity δfS(R), and the right amount of acoustic feedback δf−(R),

δf(R) = δfS(R) + δf−(R), (B19)

such that the inner boundary condition at the accretor surface is satisfied. The coupling

coefficient Q∇ measures the efficiency of this acoustic feedback:

Q∇ ≡ δf−(R)

δfS(R)
. (B20)

Since Qq is negligible compared to both Q and R, we discuss only R and Q in the text. The

WKB decomposition is a good approximation when the inhomogeneity caused by the conver-

gence of the flow, gravity and cooling is moderate within a wavelength of the perturbation.

Since we use this decomposition immediately below the shock front, the approximation is

valid when the inhomogeneity of the steady flow just below the shock is sufficiently small.

The amplification coefficients Q and R illustrated in our Fig. 4 were computed in a flow with

a large shock radius (rsh = 20r∗), for a short wavelength mode (tenth overtone), in order to

obtain reliable results.
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Fig. 1.— Growth rate and corotation radius rco/r∗ as a function of the specific angular

momentum L, when rsh/r∗ = 5. The growth rate is normalized by |vr,sh|/(rsh − r∗). L is

normalized by 2π·1012[cm2/s], and corresponds to the rotation frequency fp [Hz] extrapolated

at 10km. Thick lines are for the modes with m > 0 and thin curves are for m < 0. The

corotation radii are displayed only for the modes with m > 0. The solid, dotted and dashed

lines are for the fundamental modes, first and second overtones respectively. Left: The case

with m = ±1. Right: The case with m = ±2.
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Fig. 2.— Growth rate of the axisymmetric mode (m = 0) as a function of the specific angular

momentum L, when rsh/r∗ = 5. The growth rate is normalized by |vr,sh|/(rsh − r∗). L is

normalized by 2π·1012[cm2/s], and corresponds to the rotation frequency fp [Hz] extrapolated

at 10km. The solid, dotted and dashed lines are for the fundamental modes, first and second

overtones respectively. The value of the wavenumber kz is indicated on each plot.
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Fig. 3.— Azimuthal wave number m of the mode with the largest growth rate, for each

specific angular momentum L and shock radius rsh. Units are identical to Fig. 1. In the

dotted area, the transition between m = 1 and m = 2 is irregular. The spiral mode m = 1

is unstable in most of the parameter space (above the dashed line).
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Fig. 4.— In a flow with rsh/r∗ = 20, the two spiral components m = +1 (thick lines) and

m = −1 (thin lines) of the 10-th overtone are analyzed as a function of the specific angular

momentum L, by solving the boundary value problem (linear scale) and computing the cycle

efficiencies Q, R in the WKB approximation (logarithmic scale). The growth rates Im(ω)

(full lines) are compared with the advective-acoustic efficiencies Q (dashed lines, logarithmic

scale) and the purely acoustic efficiencies R (dotted lines). Units are identical to Fig. 1.


