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ABSTRACT

Some general properties of the advective-acoustic instability are described and understood using
a toy model which is simple enough to allow for analytical estimates of the eigenfrequencies. The
essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic
region of deceleration. For the sake of analytical simplicity, the 2D unperturbed flow is parallel
and the deceleration is produced adiabatically by an external potential. The instability mechanism is
determined unambiguously as the consequence of a cycle between advected and acoustic perturbations.
The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to
the instability can be either constructive or destructive. A frequency cut-off is associated to the
advection time through the region of deceleration. This cut-off frequency explains why the instability
favours eigenmodes with a low frequency and a large horizontal wavelength. The relation between
the instability occurring in this highly simplified toy model and the properties of SASI observed in
the numerical simulations of stellar core-collapse is discussed. This simple set up is proposed as a
benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this
instability. We illustrate such benchmark simulations in a companion paper.

Subject headings: accretion – hydrodynamics – instabilities – shock waves – supernovae

1. INTRODUCTION

In the scenario proposed by Bethe & Wilson (1985)
for core collapse supernovae, the success of the explo-
sion depends on the efficiency of energy deposition by
neutrinos below the stalled accretion shock, during the
first second after core bounce. Numerical simulations
revealed that this mechanism is inefficient in spherical
symmetry (Liebendörfer et al. 2001). Hydrodynamical
instabilities may play an important role by breaking the
spherical symmetry and helping the revival of the stalled
shock. Indeed, multidimensional simulations allowing for
transverse motions, induced by neutrino-driven convec-
tion in the gain region, approached the explosion thresh-
old (Burrows et al. 1995, Janka & Müller 1996), al-
though this effect did not seem sufficient (Buras et al.
2003). The discovery of another hydrodynamical insta-
bility, named the Standing Accretion Shock Instability
(SASI) by Blondin et al. (2003), opened new perspectives
which seem very promising for the revival of the shock.
The recent simulations of Marek & Janka (2007) showed
a successful explosion of a 15M⊙ progenitor where neu-
trino energy deposition is efficient enough owing to the
effect of SASI, which lengthens the time spent by the
postshock gas in the gain region (Murphy & Burrows
2008). SASI is also the starting point of the acoustic
mechanism found by Burrows et al. (2006, 2007), where
the excitation of g-mode oscillations inside the proto-
neutron star triggers the emission of acoustic waves (see
also Weinberg & Quataert 2008). Besides the question
of the explosion mechanism, the development of SASI
seems to have important consequences on the birth con-
ditions of the neutron star, its kick (Scheck et al. 2004,
2006) and also its spin (Blondin & Mezzacappa 2007, Ya-
masaki & Foglizzo 2008).

Electronic address: foglizzo@cea.fr

In view of the spectacular possible consequences of SASI,
a fundamental understanding of its mechanism is de-
sired but still a source of debate. It is definitely distinct
from convection since it can take place even without any
source of heating (Blondin et al. 2003). The “advective-
acoustic cycle” (Foglizzo & Tagger 2000, Foglizzo 2001,
Foglizzo 2002) was recognized as the driving mechanism
by several authors (Blondin et al. 2003, Burrows et al.
2006, Ohnishi et al. 2006, Foglizzo et al. 2007, Scheck et
al. 2008, Yamasaki & Foglizzo 2008), but some alternate
interpretations were proposed (Blondin & Mezzacappa
2006, Blondin & Shaw 2007). It should be noted that
the analytical arguments of Laming (2007) supporting
the existence of a purely acoustic mechanism contained
some errors, and the corrected calculation favours the
advective-acoustic mechanism (Laming 2008, in press).
Part of the difficulty in recognizing the advective-acoustic
mechanism in numerical simulations, even in the simpli-
fied set up proposed by Blondin et al. (2003), comes from
the lack of simple reference models where its properties
would be fully understood. The present work aims at
providing such a reference, as simple as possible. This
reference serves two purposes. It can help us build our
physical intuition about the advective-acoustic coupling
responsible for an unstable advective-acoustic cycle. It
can also be used as a benchmark test to evaluate the ac-
curacy of multidimensional numerical simulations in the
linear phase of the instability (Sato et al. 2008, hereafter
paper II).
Although some of the equations used in the present work
have already been described in past publications dealing
with more complex flows (e.g. Yamasaki & Foglizzo 2008
and references therein), we choose to explain them again
in the simpler framework considered here. Analytical cal-
culations are made possible by three main simplifications:
(i) the flow is 2D planar, (ii) the region of deceleration is
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Fig. 1.— Schematic view of the toy model. Entropy/vorticity
perturbations (circular arrows) are advected downward with the
flow, and coupled to acoustic ones (wavy arrows) in the inhomoge-
neous region near z∇. The linear coupling between these pertur-
bations is described by coupling coefficients Qsh, Q∇, Rsh, R∇,
defined in Sect. 3

localized spatially at a distance from the shock, and (iii)
the deceleration is produced adiabatically. The simplic-
ity of the present set up allows for an exact calculation,
even at low frequency. The physical insight in the mech-
anism at work can be used as a reference, in order to
analyze more realistic situations.
The paper is organized as follows: in Sect. 2, the toy
model consisting of a stationary shock in an external
step-like potential is described, and its eigenspectrum is
computed as an illustrative example. Sect. 3 explains the
method used to prove unambiguously the mechanism at
work, beyond the determination of the eigenfrequencies.
This method requires the determination of the efficiency
of the advective-acoustic coupling at the shock, in Sect. 4,
and in the region of acoustic feedback in Sect. 5. These
local wave coupling efficiencies are combined into a global
cycle whose growth rate is computed in Sect. 6 and com-
pared to the direct eigenspectrum of Sect. 2. The impor-
tance of the size of the deceleration region is emphasized
in both Sect. 5 and 6. The relevance of these results
to the problem of core-collapse is discussed in Sect. 7.
Results are summarized in Sect. 8. Lengthy analytical
derivations are described in Appendices for the sake of
clarity.

2. DESCRIPTION OF A TOY MODEL

2.1. Stationary flow

The essential ingredient of the advective-acoustic in-
stability is the interplay of advected and acoustic per-

turbations in a subsonic cavity (e.g. the sketch drawn in
Fig. 1 of Scheck et al. 2008). For the sake of simplic-
ity, we build a toy model where the advective-acoustic
cycle takes place without the complications associated
with the spherical geometry, and without the difficulties
relative to non adiabatic processes. The discussion of
these difficulties is postponed to Sect. 7. We choose the
2D parallel flow of an ideal gas in a Cartesian geometry,
passing through a shock and adiabatically decelerated
by an external potential. The density is uniform in the
x direction and the gas flows along the z direction with
a negative velocity. The initial position of the stationary
shock is noted zsh and the region of deceleration centered
on z∇ (Fig. 1). The distance from the shock to the center
of the deceleration region is noted H ≡ zsh − z∇.

In the adiabatic approximation, the equations describ-
ing the stationary flow of ideal gas, with a density ρ and
a velocity v in the external potential Φ(z), are the con-
servation of mass flux and the Euler equation:

∂

∂z
(ρv)=0, (1)

∂

∂z

(

v2

2
+

c2

γ − 1
+ Φ

)

=0, (2)

where γ is the adiabatic index, and the sound speed c is
related to the pressure p by c2 ≡ γp/ρ. The only gradi-
ents in this stationary flow are produced by the external
potential Φ(z), localized in the vicinity of the coordinate
z∇ over a region of size H∇:

Φ(z) ≡
∆Φ

2

[

tanh

(

z − z∇
H∇/2

)

+ 1

]

. (3)

At a distance exceeding ∼ 3H∇ from z∇, the flow is ap-
proximately uniform (1− tanh(6) ∼ 1.2×10−5). Quanti-
ties in the uniform subsonic regions upstream and down-
stream of the potential jump are denoted by the sub-
scripts “in” and “out” respectively, while the subscripts
“1” and “sh” denote quantities immediately ahead and
after the stationary shock respectively. The entropy S is
defined by S ≡ [log((p/psh)/(ρ/ρsh)

γ)] /(γ − 1), and the
Mach number is defined as positive: M ≡ −v/c. The
only dimensionless parameters of the stationary flow are
the adiabatic index γ, the incident Mach number M1,
the relative size of the coupling region H∇/H and the
adiabatic heating parameter c2

out/c2
in (or the deceleration

parameter vout/vin). Note that γ = 4/3 and M1 = 5
throughout the paper. The potential jump ∆Φ, the
sound speed, velocity, and Mach number jumps are re-
lated to the parameters of the flow, through conservation
equations, as follows:

Min =

[

2 + (γ − 1)M2
1

2γM2
1 − γ + 1

]

1
2

, (4)

Mout

Min
=

(

vout

vin

)

γ+1

2

, (5)

cout

cin
=

(

vin

vout

)

γ−1

2

, (6)

∆Φ=

(

M2
out

2
+

1

γ − 1

)

c2
out −

(

M2
in

2
+

1

γ − 1

)

c2
in.(7)
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2.2. Linear perturbations

The 1D stationary flow is perturbed in the plane (x, z),
with periodic boundary conditions in the direction x.
For a given horizontal size Lx of the computation do-
main, the wavenumber kx is restricted to discrete values
associated to the number nx of horizontal wavelengths,
kx ≡ 2πnx/Lx. The incoming supersonic flow is not per-
turbed. For the sake of physical simplicity, the lower
boundary condition is defined by the free leakage of per-
turbations, i.e. the absence of an acoustic flux propa-
gating upward from z < z∇ − 3H∇. Instead of repeating
the tedious derivation of the differential system governing
the evolution of linear perturbations, we deduce it from
previous studies such as Foglizzo et al. (2006, hereafter
FSJ06) or Yamasaki & Foglizzo (2008), by neglecting non
adiabatic effects or rotation. The three functions chosen
to describe the evolution of perturbations are noted δf ,
δh and δS, where δS is the entropy perturbation, δf is
the the perturbation of the energy density associated to
the Bernoulli invariant, and δh is associated to the ver-
tical mass flux:

δf ≡ vzδvz +
2

γ − 1
cδc , (8)

δh≡
δvz

vz

+
δρ

ρ
, (9)

The perturbations of velocity, sound speed, density, pres-
sure, vorticity are directly related to δf, δh, δS through a
set of equations recalled in Appendix A (Eqs. (A1-A7)).
The differential system is a simplified version of Eqs. (22-
24) of FSJ06:

∂δf

∂z
=

iωv

1 −M2

[

δh −
δf

c2
+

(

1

M2
+ γ − 1

)

δS

γ

]

, (10)

∂δh

∂z
=

iω

v(1 −M2)

[(

1 −
ω2

ev

ω2

)

δf

c2
−M2δh − δS

]

,(11)

∂δS

∂z
=

iω

v
δS, (12)

where the frequency ωev, related to the evanescent or
propagating nature of acoustic waves in the vertical di-
rection, is defined by:

ωev ≡kxc(1 −M2)
1
2 . (13)

The boundary conditions at the shock surface are de-
duced from Eqs. (28-30) of FSJ06:

δfsh

ω
= iv1∆ζ

(

1 −
vsh

v1

)

, (14)

δhsh =−i
ω

vsh
∆ζ

(

1 −
vsh

v1

)

, (15)

δSsh

γ
= i

ωv1

c2
∆ζ

(

1 −
vsh

v1

)2

, (16)

where the velocity of the shock is related to its dis-
placement through ∆v ≡ −iω∆ζ. The expression of
the leaking lower boundary condition is deduced from
Eq. (34) in FSJ06, which is based on the decomposition
of a perturbation onto acoustic and advected contribu-
tions (Eqs. (A8)-(A11) in Appendix A):

µout

Mout

δfout

c2
out

−

(

γ +
µout

Mout

1 −M2
out

1 + µoutMout

)

δSout

γ

−δhout = 0.(17)

Fig. 2.— Eigenfrequencies of the most unstable modes for
0 ≤ nx ≤ 7 in a flow where H∇/H = 0.1. The value nx of the cor-
responding wavenumber is indicated next to each eigenfrequency.
Positive values of ωi correspond to growth.

The parameter µ is defined by a square root of a com-
plex number. The choice of its sign is set by the require-
ment that the amplitude of acoustic waves∝ exp(ik±

z z) is
bounded in the direction of their propagation (Eq. (C19)
of FSJ06):

µ≡

(

1 −
ω2

ev

ω2

)

1
2

, (18)

k±
z =

ω

c

M∓ µ

1 −M2
. (19)

2.3. Illustrative examples as possible benchmark tests

The boundary value problem is solved by integrat-
ing numerically the differential system (10-12) from the
boundary conditions (14-16) at the shock to the lower
boundary, using a Newton-Raphson algorithm to find
the discrete set of eigenfrequencies such that the lower
boundary condition (17) is satisfied. Fig. 2 illustrates the
typical irregular shape of the eigenspectrum of this type
of flows. The eigenfrequencies that are plotted corre-
spond to the most unstable harmonic for each transverse
number 0 ≤ nx ≤ 7. The following set of parameters has
been used: c2

in/c2
out = 0.75, Lx = 4, H∇ = 0.1, where

lengthscales are expressed in units of H . Eigenfrequen-
cies are shown using a reference timescale τaac defined
as the sum of the advective and longitudinal acoustic
timescales between the shock and the deceleration re-
gion:

τaac ≡
H

cin

1

Min(1 −Min)
. (20)

Although the mode nx = 1 is the most unstable in Fig. 2,
this is not a strict rule. Fig. 3 shows that the order
nx of the most unstable mode depends on the size of
the coupling region. For example, the linear instability
should be dominated by a mode nx = 4 if H∇ = 0.04,
and by nx = 7 if H∇ = 0.02.
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Fig. 3.— Dependence of the growth rate ωi on the size H∇ of
the coupling region, when the amplitude ∆Φ of the potential jump
is kept constant. Same parameters as in Fig. 2.

According to Fig. 3, low order modes seem to be
favoured by the large size of the coupling region. This
observation will be confirmed by physical arguments in
Sect. 5. Note that the stability of the longitudinal mode
nx = 0 is not an intrinsic feature of this toy model, but
the consequence of tuning the size of the potential jump.
In the limit H∇ → 0, the mode nx = 0 would become
unstable if c2

in/c2
out ≤ 0.7167, but even then it would still

be less unstable than transverse modes. Even for a weak
potential jump such as c2

in/c2
out = 0.9, some modes are

still unstable (e.g. nx = 18) if the coupling region is
sufficiently narrow. No unstable modes where found for
c2
in/c2

out ≥ 0.95.

3. METHOD FOR THE DETERMINATION OF THE
INSTABILITY MECHANISM

3.1. Cycles efficiencies Q and R

The determination of the eigenfrequencies in Fig. 2 is
not sufficient to reveal the instability mechanism at work.
Our toy model has been designed to be simple enough to
allow for an unambiguous determination of the mecha-
nism, using the same method as in Foglizzo (2002) for
black hole accretion or Foglizzo et al. (2007) and YF08
for neutron star accretion. In these studies, this method
was restricted to perturbations with a high enough fre-
quency for the validity of the WKB approximation in
the vicinity of the shock. This condition excluded the
description of waves propagating horizontally along the
shock. By contrast, the simplicity of the present set up
allows for an exact calculation even at low frequency.
It leads to an analytical formulation of the advective-
acoustic instability in a compact approximation in the
same spirit as Marble & Candel (1977) or Foglizzo & Tag-
ger (2000) in 1D. The originality of the present formula-
tion is that it includes transverse motions and vorticity
perturbations, since our model is 2D. This toy model
can thus describe the vortical-acoustic cycle as well as
the entropic-acoustic cycle.

Our method consists in analyzing the interaction of plane
waves (i.e. with a real frequency) with both the shock
and the region of deceleration. Perturbations with a
given frequency ωr and transverse wavenumber kx are lo-
cally projected onto pressure waves and advected waves
(entropy/vorticity) (see Appendix A). These different
waves are independent from each other in each uniform
part of the flow, but get coupled together both at the
shock and in the region of flow gradients. This coupling
is measured by two efficiencies Rsh and R∇ of acoustic
reflection, and two efficiencies Qsh, and Q∇ of advective-
acoustic coupling, illustrated in Fig. 1. Connecting these
waves into two global cycles, one can estimate the global
efficiency Q ≡ Qsh ×Q∇ of the advective-acoustic cycle,
and the global efficiency R ≡ Rsh × R∇ of the purely
acoustic cycle in order to address the question of the sta-
bility of each of these cycles.
As illustrated by Fig. 1, the coefficient Q∇ is the net ef-
fect of the advective-acoustic coupling associated to the
region of deceleration, together with the advection from
the shock to this region and the acoustic propagation
from it up to the shock. Similarly, the coefficient R∇

includes the acoustic propagation between the shock and
the region of deceleration, in addition to the acoustic re-
flection by the deceleration region.
Immediately after the shock, the perturbation of en-
ergy density is decomposed into acoustic ones propagat-
ing downward (δf+

sh), upward (δf−
sh) and advected ones

(δfS
sh):

δfsh = δfS
sh + δf+

sh + δf−

sh. (21)

The definitions of the coupling constants Rsh, Qsh, R∇,
Q∇ correspond to the following relations:

δf+
sh =Rshδf−

sh, (22)

δfS
sh =Qshδf−

sh, (23)

δf−

sh =Q∇δfS
sh + R∇δf+

sh. (24)

Suppressing δf±

sh, δfS
sh from these relations,

Q + R = 1, (25)

with

Q≡QshQ∇, (26)

R≡RshR∇. (27)

The analytic calculation of the coupling efficiencies Qsh,
Rsh at the shock was done approximately in Foglizzo et
al. (2005), and the exact calculation is repeated below
in Sect. 4.
The calculation of the coupling efficiencies Q∇, R∇ re-
quires in principle an integration across the region of cou-
pling, as was done in Foglizzo (2002). Taking advantage
of the simplicity of the present flow, we show in Sect. 5
that an algebraic expression of the coupling efficiencies
Q∇ and R∇ is possible in the compact approximation.
Anticipating on the results of Sect. 6, this calculation
concludes that the purely acoustic cycle is always stable
(i.e.|R| ≤ 1), and that only the advective-acoustic cy-
cle may be unstable (i.e. |Q| > 1). This approach also
proves that transverse perturbations are more unstable
than longitudinal ones.
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Fig. 4.— Efficiencies |Qsh| and |Rsh| of the advective-acoustic
coupling and acoustic reflection, deduced from Eqs. (29) and (31).
These efficiencies depend on the frequency of the perturbation only
through the parameter µ2

sh
.

3.2. Cycle of waves and growth rate: a new method to
estimate the contribution of each cycle

In Foglizzo (2002) and Foglizzo et al. (2007, here-
after FGSJ07), the efficiencies |Q|, |R| of the cycles of
plane waves have been computed for a real frequency
ω = ωr. Eq. (25) invites us to evaluate the contribu-
tion of each cycle considered alone through the complex
frequency ωaac solution of Q(ω) = 1 for the advective-
acoustic cycle, or the complex frequency ωpac solution
of R(ω) = 1 for the purely acoustic cycle. The eigen-
frequencies ωaac, ωpac associated in this manner to each
cycle can be compared to the eigenfrequency ω computed
directly in Sect. 2, in order to assess their relative impor-
tance in the instability mechanism. This method is used
for the first time in Sect. 6.2.

4. EFFICIENCY OF ACOUSTIC REFLECTION AND
ADVECTIVE-ACOUSTIC COUPLING AT THE SHOCK

4.1. Acoustic reflection at a shock

The efficiency of acoustic reflection has been computed
by Foglizzo et al. (2005) (Eq. (F10)):

Rsh ≡
δf+

sh

δf−

sh

=
1 + µshMsh

1 − µshMsh

δp+
sh

δp−sh
, (28)

=−
µ2

sh − 2Mshµsh + M−2
1

µ2
sh + 2Mshµsh + M−2

1

1 + µshMsh

1 − µshMsh
. (29)

The WKB approximation in Eq. (B5) of Appendix B
(or Eq. (C1) in Foglizzo 2002) indicates that µ|δf±|2/vc
is conserved to second order in an adiabatic flow. This
guarantees that the quantity |Rsh|

2 can also be inter-
preted as a ratio of fluxes of acoustic energies.
From the expression of k±

z in Eq. (19), acoustic waves are
propagating in the z direction if µ2 > 0 (i.e. ω > ωev)
and evanescent otherwise. Using Eq. (29), one can prove
that |Rsh| < 1 for propagating acoustic waves (µ2

sh > 0)
and |Rsh| = 1 for evanescent ones (µ2

sh < 0), as illus-

trated by the dotted line in Fig. 4. This property pre-
cludes the possibility of an over-reflection, at least in this
simple toy model.

4.2. Advective-acoustic coupling at a shock

The coupling coefficient obtained in the WKB approx-
imation in Foglizzo et al. (2005) (Eq. (F11-F12)) can be
rewritten as an exact formulae in the present toy model
since the flow is uniform immediately after the shock:

Qsh ≡
δfS

sh

δf−
sh

=
1

1 − µshMsh

pshδSsh

δp−sh
, (30)

=
2

Msh

1 −M2
sh

1 + γM2
sh

(

1 −
M2

sh

M2
1

)

×
µsh

(1 − µshMsh)(µ2
sh + 2µshMsh + M−2

1 )
,(31)

This formula is checked by numerical simulations in pa-
per II. Note that |Qsh|

2 is not a ratio of energy fluxes
(unlike |Rsh|

2).
Eq. (31) indicates that the efficiency of the advective-
acoustic coupling vanishes in the limit of a weak shock:
Qsh ∝ (1−M2

sh) for radial perturbations (µsh = 1), and
Qsh ∝ (1−M2

sh)2 for transverse ones (µsh < 1). As seen
on Fig. 4, there are two optimal values of µ2

± ∝ ±1/M2
1

leading to a maximal production |Qsh| of advected per-
turbations. In the asymptotic limit of a strong shock,
the maximum efficiencies are reached for acoustic waves
propagating horizontally (ω ∼ ωsh

ev):

|Qsh|∼
1

M2
sh

1 −M2
sh

1 + γM2
sh

. (32)

5. COMPUTATION OF THE ACOUSTIC FEEDBACK

5.1. Analytic expressions of R∇, Q∇ in the compact
approximation

5.1.1. Range of validity

The “compact approximation” consists in treating the
inhomogeneous layer as infinitely thin. This approxima-
tion was used by Marble & Candle (1977) in the context
of jet nozzles, in order to compute the acoustic feed-
back from advected entropy perturbations, in 1D. It is
here extended to parallel flows in an external potential
Φ, subject to both entropy and vorticity perturbations.
This approximation is valid for perturbations such that
their vertical wavelength 2π/kz is long compared to the
lengthscale H∇ of the region of deceleration, on both
sides of it. For acoustic waves, the criterion k±

z H∇ ≪ 2π
can be approximated, using Eq. (19) and cin < cout, by
the following sufficient condition on the frequency ω of
the wave:

ω ≪

[

k2
x +

(

2π

H∇

)2
]

1
2

cin. (33)

For advected waves (kz = ω/v), the frequency threshold
for the compact approximation can be related to the time
τ∇ of advection through the inhomogeneous region:

2π

ω
≫ τ∇ ≡

∫ z∇+
H∇
2

z∇−
H∇
2

dz

|v|
. (34)
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Fig. 5.— Refraction efficiency |R∇| for longitudinal and trans-
verse perturbations, in a flow where H∇/H = 0.1. The differ-
ent curves are labelled with the value of the transverse wavenum-
ber nx = 0, 1, 5. The thick grey lines are the analytical esti-
mates deduced from the compact approximation, in Eq. (35). The
range of frequencies corresponding to total reflection coincides with
[ωin

ev, ωout
ev ] (Eq. (13))

The condition (34) for advected waves is more severe
than (33) because the flow is subsonic. The coefficients of
acoustic refraction, and advective-acoustic coupling can
be expressed through simple algebraic formulae based on
the conservation of entropy, mass flux and energy density
(δf , δh and δS) through the potential jump.

5.1.2. Coupling efficiencies R∇ and Q∇

In Appendix C, the following expressions are deduced
from the conservation laws :

R∇ =
µinMoutc

2
out − µoutMinc

2
in

µinMoutc2
out + µoutMinc2

in

eiωτR , (35)

Q∇ =
Mout + µout

1 + µoutMout

eiωτQ

µout
c2
in

c2
out

+ µin
Mout

Min

×

[

1 −
c2
in

c2
out

+
k2

xc2
in

ω2
(M2

in −M2
out)

]

, (36)

where τQ and τR are defined by:

τQ≡ τaac
1 + µinMin

1 + Min
, (37)

τR≡
H

cin

2µin

1 −M2
in

. (38)

As expected, these coupling efficiencies vanish in the
limit of a uniform flow (cout = cin and Eq. (5)).
The exponential functions in Eqs. (35-36) are associated
to the vertical structure of advected and acoustic waves.
In the low frequency limit (ω ≪ ωin

ev), the evanescent
character of acoustic waves is responsible for the follow-
ing damping effect:

∣

∣eiωτR
∣

∣∼ exp

[

−2kxH

(1 −M2
in)

1
2

]

, (39)

Fig. 6.— Efficiency |Q∇| of the advective-acoustic coupling in
the same flow as in Fig. 5. The thick grey lines corresponds to
Eq. (36). Kinks in the curves correspond to the particular frequen-
cies ωin

ev and ωout
ev . There is no frequency cut-off in the compact

approximation.

∣

∣eiωτQ
∣

∣∼ exp

[

−kxH

(1 −M2
in)

1
2

]

. (40)

This acoustic evanescence is a strong stabilizing factor
for any cycle based on high degree perturbations (nx ≫
Lx/2πH).

5.2. Comparison with the exact calculation: the
frequency cut-off ω∇

Figures 5 and 6 show the efficiencies |Q∇|, |R∇| com-
puted in the compact approximation (thick grey lines)
and the exact calculation with H∇/H = 0.1 (thin black
lines). The numerical method to compute Q∇, R∇ is
based on three numerical integration from the shock to
the lower boundary, using different boundary conditions
at the shock, and two appropriate linear combinations
of these three solutions such that the lower boundary
condition is fulfilled, as explained in Appendix D of
FGSJ07. Q∇ can also be computed as an explicit integral
over the region of flow gradients, using Green functions
as explained in the Appendix D of the present paper.
Schematically, the global advective-acoustic coupling Q∇

is described by a convolution between the radial profile of
acoustic waves δp0/p, the radial profile of advected waves

e
R

iω
v

dz, and the local emissivity ∂b∇/∂z associated to the
gradients of the flow:

Q∇ =

∫ sh

bc

b0
δp0

p
e

R

sh
iω
v

dz ∂b∇
∂z

dz, (41)

where

b0 ≡
1

2

(

1 +
k2

xv2
sh

ω2

) (

1 −R∇ −
1 + R∇

µshMsh

)

1 −M2

1 −M2
sh

M2
sh

M2

(

δp0

p

)−1

sh

e
−

R

sh
iω
c

2M

1−M2 dz
, (42)
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b∇≡
iω

c2
sh

iω − 2v ∂ logM

∂z

k2
xM

2 + ω2

c2 − vM2 ∂
∂z

iω
v2

. (43)

In comparison with Eq. (25) of Foglizzo (2001), the
present formulation stresses the local character of the
acoustic emissivity associated to the flow gradients, de-
scribed by Eq. (43).
Figures 5 and 6 show that the analytical compact ap-
proximation is excellent for ωτ∇ ≪ 1, and works quite
well even for values just below one. As expected, τ−1

∇

defines a cut-off frequency above which the compact ap-
proximation ceases to be valid. From Fig. 6, one can
estimate the cut-off associated to the advective-acoustic
coupling:

ω∇ ∼
1

τ∇
. (44)

Comparing Figs. 5 to Fig. 6, the frequency cut-off as-
sociated to Q is smaller than the one associated to R,
as expected from Eqs. (33) and (34). The different na-
ture of these cut-off frequencies can be understood owing
to Eq. (41): the efficiency Q∇ decreases not only if the
wavelength of the perturbations is short compared to the
lengthscale of the flow gradients (i.e. the term ∂b∇/∂z),
but also if the convolution of the advected and acous-
tic phase structures leads to a phase averaging. Also
remarkable in Fig. 5 is the fact that acoustic waves prop-
agating horizontally (ω ∼ ωin

ev) are always well described
by the compact approximation, with |R∇| = 1 (this is
also visible in the bottom plot of Fig. 7). Altogether,
Figs. 5 and 6 indicate that the compact approximation
may be used as an upper bound for the efficiency of the
acoustic feedback.
Acoustic reflection is always damped (|R∇| ≤ 1). Total
reflection without damping (|R∇| = 1) occurs for trans-
verse perturbations in the range of frequencies [ωin

ev, ω
out
ev ]

where both µ2
in > 0 and µ2

out < 0, i.e. when acoustic
waves propagate above the inhomogeneous region and
are evanescent below it.
A striking feature on Fig. 6 is the divergence |Q∇| ∝ ω−1

of the coupling efficiency at low frequency for transverse
perturbations (Eq. (36)). This divergence however is
not sufficient to overcome the weak efficiency of produc-
tion of advected perturbations at the shock, |Qsh| ∝ ω2

(Eq. (31)). The frequency dependence of the global ef-
ficiency |Q| = |QshQ∇| is further studied in the next
section (Fig. 7).

6. GLOBAL CYCLE

6.1. Compact approximation of Q and R

The coefficients Q and R defined in Eqs. (26-27) can be
expressed analytically by combining Eqs. (31) and (36)
for Q, and Eqs. (29) and (35) for R:

Q=Q0e
iωτQ , (45)

R=R0e
iωτR , (46)

Q0≡
4

γ + 1

µin

Min

1 −
c2
in

c2
out

+
k2

xc2
in

ω2 (M2
in −M2

out)

(1 − µinMin)(µ2
in + 2µinMin + M−2

1 )

×
Mout + µout

1 + µoutMout

(1 −M2
in)(1 −M−2

1 )

µout
c2
in

c2
out

+ µin
Mout

Min

, (47)

Fig. 7.— Efficiencies |Q| and |R| of the advective-acoustic cycle
in a flow where H∇/H = 0.1 (black lines). The different curves are
labelled with the value of the transverse wavenumber 0 ≤ nx ≤ 7.
In the upper plot, the crosses indicate the discret set of oscillation
frequencies corresponding to the solution of Q = 1 (Fig. 9). The
grey lines are the analytical estimates deduced from the compact
approximation. For comparison with Fig. 6, τaac/τ∇ ∼ 16.52.

R0 ≡−

(

1 + µinMin

1 − µinMin

)

µ2
in − 2µinMin + M−2

1

µ2
in + 2µinMin + M−2

1

×
µinMoutc

2
out − µoutMinc

2
in

µinMoutc2
out + µoutMinc2

in

. (48)

The cycles efficiencies |Q| and |R| are shown as functions
of the real frequency ωr in Fig. 7, both in the compact
approximation and for H∇/H = 0.1, for different values
of the transverse wavenumber nx. The stability of the
purely acoustic cycle is confirmed by the bottom plot in
Fig. 7. The spikes correspond to the frequencies ωin

ev, for
which |R| = 1 according to Eqs. (27), (46) and (48).
The stabilization of the advective-acoustic cycle above
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Fig. 8.— Eigenfrequencies of the most unstable modes for
0 ≤ nx ≤ 7 in a flow where H∇ = 0 (empty diamonds). The
value nx of the corresponding wavenumber is indicated next to
each eigenfrequency. Increasing the size H∇ of the deceleration
region up to H∇/H = 0.1 is stabilizing (filled diamonds).

the cut-off frequency is clearly demonstrated by the up-
per plot in Fig. 7. The maximum coupling efficiency is
always reached for ω ∼ ωin

ev, as expected from Sects. 4
and 5 since ωin

ev = ωsh
ev in our toy model. If the shock is

strong and Mout ≪ 1, we deduce from Eq. (47) that the
maximum efficiency is

Qmax ∼
2

γ + 1

1

M2
in

c2
out

c2
in

≫ 1. (49)

In our toy model with a strong shock, the maximum
efficiency Qmax is larger in 2D than in 1D by a factor
which depends only on Min:

Qmax(2D)

Qmax(1D)
=

1 + 2Min

2Min(1 + Min)
> 1. (50)

This factor is equal to 1.8 for γ = 4/3.
According to Fig. 7, the advective-acoustic cycle alone is
necessarily stable (|Qmax| < 1) for nx ≥ 4 if H∇/H =
0.1, and can be unstable for nx ≤ 3. Interestingly, Fig. 2
indicates that the mode nx = 2 is stable and the mode
nx = 4 is unstable, whereas the upper plot of Fig. 7 shows
that |Q| > 1 is possible for the mode nx = 2, and that
|Q| < 1 for nx = 4. This apparent paradox is clarified
below by taking into account two factors:

(i) the phase closure relation (25) selects a discrete
set of oscillation frequencies, which do not necessarily
allow for the maximum coupling efficiency |Q|max to be
reached,

(ii) the additional influence of the purely acoustic
cycle can be constructive or destructive, and can be
crucial close to marginal stability.

The closure relation (25) takes the following particular
form in the compact approximation:

Q0e
iωτQ + R0e

iωτR = 1, (51)

Fig. 9.— For each value of nx = 0 to 7, comparison of the most
unstable modes associated to the advective-acoustic cycle alone
(filled grey squares), the purely acoustic cycle alone (black crosses)
and the full problem (filled black diamonds). The contribution of
the purely acoustic cycle can either be constructive or destructive.

This explicit analytical equation is a 2D generalization of
the equation obtained in 1D by Foglizzo & Tagger (2000).
The corresponding eigenmodes, easily obtained numeri-
cally, are shown as empty diamonds in Fig. 8. Comparing
the compact eigenspectrum (filled diamonds) to the one
obtained for H∇/H = 0.1 (empty diamonds) shows again
the stabilization above the cut-off frequency.

As a consistency check, one can verify for 1 ≤ nx ≤ 7
that the growth rates shown in Fig. 3, in the limit
H∇/H ≪ 1, do converge towards the growth rates rep-
resented as empty diamonds in Fig. 8. The former are
obtained by numerical integration of the boundary value
problem, whereas the latter are directly deduced from
the explicit Eqs. (47,48,51).

6.2. Calculation of ωaac, ωpac

As explained in Sect. 3.2, the complex eigenspectrum
associated to each cycle considered alone is defined by
the equations Q = 1 for the advective-acoustic cycle,
and R = 1 for the purely acoustic cycle. These eigen-
spectra are compared to the solution of the full prob-
lem (Q + R = 1) in Fig. 9, where we have selected
the most unstable mode for each degree 0 ≤ nx ≤ 7.
The eigenspectrum of the purely acoustic cycle is stable
as expected. The eigenmodes of the advective-acoustic
cycle match remarkably well the eigenmodes of the full
problem from the point of view of the oscillation fre-
quencies, and also the growth rates for 0 ≤ nx ≤ 4.
The difference of growth rate between the solutions of
Q + R = 1 and Q = 1 is attributed to the contribution
of the purely acoustic cycle, which is clearly constructive
for the modes nx = 0, 1, 4, 6, 7 and destructive for the
modes nx = 2, 5. As already noted by Foglizzo & Tag-
ger (2000) and Foglizzo (2002), the contribution of the
purely acoustic cycle is most important close to marginal
stability: Fig. 9 shows that the mode nx = 2 would be
slightly unstable with the advective-acoustic cycle alone,
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Fig. 10.— Same as Fig. 3, with Lx/H = 3.5 instead of Lx/H = 4.
This small change in the aspect ratio of the flow changed the degree
nx of the dominant mode: the modes nx = 1, 2 and 5 are now the
dominant ones depending on the size of the region of coupling.

and is stable because of the destructive interference with
the acoustic cycle. Conversely, the mode nx = 4 would
be stable with the advective-acoustic cycle alone, and
is unstable because of the constructive interference with
the acoustic cycle.
Unlike the method based on Q(ωr) (e.g. Foglizzo 2002,
FGSJ07), the present method is not restricted to ωi ≪
ωr.

6.3. Analytical estimate of the maximum growth rate
ωaac

i and sensitivity to geometrical factors

Writing ωaac = ωaac
r +iωaac

i , the growth rate ωaac
i of the

advective-acoustic cycle alone can be estimated by a first
order expansion of Q0 exp(ωaacτQ) = 1 in the compact
approximation:

ωaac
i ∼

1 + Min

µr + Min

µr

τaac
log |Q0(ω

aac
r )|, (52)

µ2
r ≡1 −

(

ωin
ev

ωaac
r

)2

. (53)

This equation is valid when ωaac
i ≪ ωaac

r and µ2
r > 0.

Equation (52) illustrates the competing effects intro-
duced by transverse perturbations. On the one hand, 2D
perturbations allow for a higher coupling efficiency Q0

(Fig. 7 and Eq. 50), but on the other hand the acoustic
timescale for the feedback is longer for transverse waves
(factor µr in Eq. (52)). Whether the optimum balance
between these two effects is reached or not depends on
geometrical factors such as the aspect ratio Lx/H of the
toy model. Indeed, the discrete set of oscillation fre-
quencies selected by the closure relation is sensitive to
Lx through kx = 2πnx/Lx. Besides, the constructive or
destructive contribution of the acoustic cycle is sensitive
to H through the ratio of the acoustic and advective-
acoustic timescales. A comparison between Fig. 3 and
Fig. 10 illustrates the fact that a small change in the

aspect ratio of the unstable cavity, from Lx/H = 4 to
Lx/H = 3.5, is sufficient to favour the modes nx = 1, 2, 5
rather than nx = 1, 4, 7.

6.4. A low frequency, low order instability if the
coupling region is wide

The frequency cut-off ω∇ associated in Sect. 5.2 to the
finite size of the coupling region is responsible for the sta-
bilization of high frequency modes. Besides, the evanes-
cent pressure feedback associated to high nx transverse
modes (Eq. 40) is inefficient at perturbing the shock.
These two arguments explain why the advective-acoustic
instability favours low frequency, low order modes if the
size of the coupling region is large, as seen on Figs. 2 and
3.
More precisely, the evanescence length [Im(k−

z )]−1 of
the pressure perturbation can be compared to the dis-
tance H to the shock. Using Eq. (19), the conditions
Im(k−

z H) < 1 and ω < ω∇ can be translated into a con-
dition on the horizontal wavenumber kx:

k2
x <

ω2
∇

c2
in(1 −M2

in)
+

1 −M2
in

H2
. (54)

Neglecting M2
in ≪ 1 for the sake of simplicity, and us-

ing Eq. (44), the range of frequencies and wavenumbers
which can produce an unstable cycle most efficiently are
summarized as follows:

ωin
ev ≤ω <

1

τ∇
, (55)

n2
x <

(

Lx

2πcinτ∇

)2

+

(

Lx

2πH

)2

. (56)

The r.h.s in Eq. (56) depends both on the velocity profile
in the deceleration region (phase averaging), and on the
shock distance (acoustic evanescence). The first term is
dominant in the compact approximation.

7. RELATION TO THE INSTABILITY OF THE STANDING
SHOCK DURING CORE COLLAPSE

A direct extrapolation of Eq. (56) to a stalled shock of
radius Rsh in spherical geometry would favour unstable
modes with a low azimuthal degree l:

l2 <

(

Rsh

cinτ∇

)2

+

(

Rsh

H

)2

. (57)

The deceleration region responsible for the acoustic feed-
back has been identified in the numerical simulations of
Scheck et al. (2008), from which we estimate, 80ms after
bounce in their model W00F: Rsh ∼ 110km, H ∼ 50km,
Rsh/cin ∼ 5ms, τ∇ ∼ 15ms and H∇/H ∼ 0.4. Using
these numbers in Eq. (57) we deduce l ≤ 2.2. Despite
the simplicity of our approximation, this estimate is very
close to the degree l = 1, 2 of SASI observed in Scheck
et al. (2008), as well as in most numerical simulations of
the stationary shock involved in the core-collapse prob-
lem. These simulations cover a broad range of physical
ingredients and approximations, from stationary flows
with a simplified cooling function (Blondin & Mezza-
cappa 2006, FGSJ07) to the most detailed modeling of
neutrino transport and advanced equations of state in the
core of a massive progenitor (e.g. Burrows et al. 2007,
Marek & Janka 2007). SASI has also been observed in
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the pioneering 3D simulations of Blondin & Mezzacappa
(2007) and Iwakami et al. (2008). The efficiencies Q,
R of the cycles have been computed by FGSJ07 in the
context of a simplified stationary flow, proving that the
advective-acoustic mechanism is responsible for SASI, at
least when the shock is far enough to allow for the WKB
approximation. By taking a step further in the simplifi-
cation of the flow, the present toy model enabled us to
better understand some generic properties of this insta-
bility. A frequency cut-off is associated to the timescale
of advection through the flow gradients. Among the
low frequency perturbations below this cut-off, the most
unstable ones are those which approach the maximum
advective-acoustic coupling efficiency Q with a moder-
ate lengthening of the acoustic feedback timescale. Close
to marginal stability, constructive interference with the
purely acoustic cycle can be essential for the instability.
In such cases however, its consequences may be negligi-
ble due to a lack of time for significant growth.
By considering a 2D planar flow, our toy model neglected
the large scale gradients that would exist in a spherical
flow, all the way between the shock and the neutron star.
These large scale gradients are expected to contribute
the adiabatic coupling of advected and acoustic pertur-
bations at low frequency. Neglecting these gradients in
the toy model was important in order to characterize
analytically acoustic waves in the vicinity of the shock,
even at low frequency (Eqs. (A10-A11)). Another impor-
tant simplification in our toy model was the hypothesis
of an adiabatic region of deceleration, which allowed us
to identify the phase averaging effect responsible for the
inefficiency of the acoustic feedback, above the frequency
cut-off, through Eq. (41).
Of course, the acoustic feedback produced by advected
perturbations is expected to depend quantitatively on
whether the deceleration is produced by a cooling layer
or an adiabatic gravity step. For example, the mode
l = 0 would be necessarily stable in an idealized isother-
mal flow, because the only advected perturbations which
can build a cycle in an isothermal flow are non radial vor-
ticity perturbations (l ≥ 1). The relative contributions of
entropy and vorticity perturbations to the acoustic feed-
back are thus expected to differ significantly from our
toy model when non adiabatic processes are involved.
We believe however that our description of the cycles,
and the existence of a cut-off frequency associated to the
advection time through the deceleration layer, are gen-
eral enough to be relevant to the framework of stalled
accretion shock during core collapse. This toy model al-
lows us to propose answers to the questions: why SASI
is a low frequency, low degree l instability, and why the
eigenspectrum is irregular and sensitive to geometrical
factors.

8. CONCLUSION

A simple toy model has been analyzed in order to bet-
ter understand the advective-acoustic cycle in a decel-
erated flow. This comprehensive study has reached the
following conclusions:

-The instability mechanism is based on the amplifica-
tion of the advective-acoustic cycle.

-The purely acoustic cycle is always stable in this flow.
-Optimal transverse perturbations are more unstable

than longitudinal ones.
-The finite size of the coupling region is responsible for

a frequency cut-off which favours low frequency pertur-
bations.

-This frequency cut-off disfavours high order perturba-
tions, which would lead to an inefficient evanescent pres-
sure feedback: the most unstable modes are expected to
be low frequency and low order.

-The maximum efficiency |Q| of the advective-acoustic
cycle is governed by a compromise between the efficiency
of the advective-acoustic coupling, which favours trans-
verse perturbations, and a short cycle time which dis-
favours too horizontal acoustic propagation.

-The eigenspectrum is irregular and sensitive to geo-
metrical factors due to the phase condition which selects
a discrete set of frequencies, and the interferences with
the acoustic cycle.

-A new method has been described to measure the
eigenspectrum associated to each cycle considered alone.

-This toy model can be used as a benchmark test for
numerical simulations, in order to check for undesired
numerical artifacts. The important roles played by the
shock, the advection of perturbations and the propaga-
tion of acoustic waves make this toy model particularly
challenging for numerical simulations (paper II).

-The comparison with the properties of SASI suggests
that our toy model captures some fundamental features,
explaining in particular why SASI is a low frequency, low
degree instability.
A good understanding of the mechanism behind SASI
should help perform accurate numerical simulations of
core collapse explosions, with particular attention to the
mesh size and the boundary conditions.
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APPENDIX

DECOMPOSITION OF PERTURBATIONS IN A UNIFORM FLOW

For completeness we repeat here the relationship between δf , δh and δvz , δρ, δp corresponding to Eqs. (A1-A4) in
FGSJ07:

δvz

v
=

1

1 −M2

(

δh + δS −
δf

c2

)

, (A1)
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δρ

ρ
=

1

1 −M2

(

−M2δh − δS +
δf

c2

)

, (A2)

δp

γp
=

1

1 −M2

{

−M2δh −
[

1 + (γ − 1)M2
] δS

γ
+

δf

c2

}

, (A3)

δc2

c2
=

γ − 1

1 −M2

(

δf

c2
−M2δh −M2δS

)

, (A4)

δp

γp
=

iv

ωc2

(

∂δf

∂z
−

iω

v
δf

)

. (A5)

The expression of the perturbations of transverse velocity and vorticity are simply proportional to δf and δS, as
deduced from Eqs. (A15-A18) of YF08:

δvx =
kx

ω
δf, (A6)

δwy =
ikx

v

c2

γ
δS. (A7)

In a uniform flow, the perturbations of energy density δfS and mass flux δhS associated to advected perturbations of
entropy/vorticity produced by the shock are given by Eqs. (C5-C6) in FGSJ07:

δfS

c2
=

1 −M2

1 − µ2M2

δS

γ
, (A8)

δhS =
µ2

c2
δfS − δS. (A9)

The energy density δf± and mass flux δh± in the acoustic waves are deduced from Eqs. (C7-C8) of FGSJ07:

δf± =
1

2
f ±

Mc2

2µ
(δh + δS) −

1 ± µM

2
δfS, (A10)

δh± =±
µ

M

δf±

c2
. (A11)

The perturbations of pressure δp± and energy density δf± of an acoustic wave in a uniform flow are related by:

δp±

γp
=

δf±

c2

1 ∓ µM

1 −M2
. (A12)

WKB APPROXIMATION

Owing to the adiabatic hypothesis, the vertical structures of both entropy and vorticity perturbations can be inte-
grated and the differential system can be reduced to a second order differential equation, similar to Foglizzo (2001)
when considering the perturbation of energy density δf and the variable X defined by:

dX

dz
≡

v

1 −M2
, (B1)

δh=
1

iω

∂δf

∂X
+

δf

c2
−

(

1

M2
+ γ − 1

)

δS

γ
, (B2)

{

∂2

∂X2
+

(ωµ

vc

)2
}(

δf

iω
e

R

sh
iω

c2
dX

)

=
δSsh

γ

∂

∂X

(

1 −M2

M2
e

R

sh
iω

v2 dX

)

. (B3)

This equation is formally identical to Eq. (B32) of Foglizzo (2001) (with δK = 0). This formulation is particularly
useful to define a WKB approximation δf±

wkb of the acoustic solutions of the homogeneous equation in the simplest
manner, satisfying a WKB criterion deduced from the left hand side of Eq. (B3):

ωµ

c
≫ (1 −M2)

∂ log

∂z

(

µ2

v2c2

)

, (B4)

δf±

wkb ≡ δf±

sh

c

csh

(

µshM

µMsh

)
1
2

e
R

sh
iω
c

M∓µ

1−M2 dz
, (B5)

δh± ∼ ±
µ

M

δf±
c2

, (B6)

where δf±
sh is an arbitrary normalization constant. The acoustic solution satisfying the lower boundary condition

defines the reflection coefficient R∇, such that δf0 = δf+ + R∇δf− at z = zsh.
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COMPACT APPROXIMATION

Dispersion relation

The dispersion relation is obtained as in Foglizzo & Tagger (2000), Foglizzo (2002). In the specific case of our
toy model in the compact approximation, some coupling constants Q′

∇ , R′
∇ can be defined immediately above the

coupling layer (z ∼ z∇) by

δf−
∇ = Q′

∇δfS
∇ + R′

∇δf+
∇ . (C1)

The value of perturbations at z = zsh and z = z∇ are related through their vertical wavenumber k±
z defined by Eq. (19)

and k0
z ≡ ω/v.

δfsh = δfS
sh + δf+

sh + δf−

sh, (C2)

δfS
sh =eik0

zHδfS
∇, (C3)

δf+
sh =eik+

z Hδf+
∇ , (C4)

δf−
sh =eik−

z Hδf−
∇

. (C5)

The coupling constants Q∇ and R∇ can thus be decomposed into a contribution of advection/propagation, and a
contribution of the coupling through the compact layer:

Q∇ =Q′
∇eiωτQ , (C6)

R∇ =R′
∇eiωτR , (C7)

with

τQ≡ (k−
z − k0

z)
H

ω
= τaac

1 + µinMin

1 + Min
, (C8)

τR≡ (k−
z − k+

z )
H

ω
=

H

cin

2µin

1 −M2
in

. (C9)

Note that the quantities τQ and τR may be directly interpreted as timescales only when the frequency ω is real and
high enough to correspond to propagating acoustic waves (µ2

in > 0). The global efficiencies Q0 and R0 are defined by
Q0 ≡ QshQ

′
∇ and R0 ≡ RshR

′
∇.

Reflection of acoustic waves: calculation of R∇

Let an acoustic wave propagate in the direction of the flow towards the region of gradient. It produces an acoustic
reflection δf−

in and a transmitted acoustic wave δf+
out

δf+
in + δf−

in = δf+
out, (C10)

δh+
in + δh−

in = δh+
out. (C11)

The system (C10-C11) is thus equivalent to

δf+
in + δf−

in = δf+
out, (C12)

δf+
in − δf−

in =
µoutMinc2

in

µinMoutc2
out

δf+
out. (C13)

The reflexion coefficient R∇ in Eq. (35) is deduced.

Advective-acoustic coupling: calculation of Q∇

At low frequency, the acoustic perturbations produced by the advection of the entropy/vorticity perturbation through
the gradient satisfy the conservation of mass and energy:

δfS
in + δf−

in = δfS
out + δf+

out, (C14)

δhS
in + δh−

in = δhS
out + δh+

out. (C15)

Using Eq. (A11),

δf−
in − δf+

out = δfS
out − δfS

in, (C16)

µin

Min

δf−
in

c2
in

+
µout

Mout

δf+
out

c2
out

=µ2
in

δfS
in

c2
in

− µ2
out

δfS
out

c2
out

. (C17)

thus, the advective-acoustic coupling Q∇ is described by Eq. (36). δf+
out is deduced from δf−

in by exchanging the
subscripts ’in’ and ’out’, µin/Min and −µout/Mout.
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LOCAL ACOUSTIC EMISSIVITY

Expressing the local pressure emissivity aS characterizing to the advectic-acoustic coupling due to the gradients
of the flow is most easily obtained by writing the differential equation satisfied by pressure perturbations δp. A
pressure perturbation in an adiabatic flow satisfies the acoustic wave equation with a source term associated to the
inhomogeneity of the flow. The differential equation established by Foglizzo (2001) in a spherical accelerated flow is
formally the same in a decelerated flow. The differential system can be written as follows:

{

∂2

∂z2
+ a1

∂

∂z
+ a2

}(

1 −M2

M2

δp

p

)

= aSδS, (D1)

with

δS = δSshe
R

sh
iω
v

dz, (D2)

∆≡k2
xv2 + ω2 − v3 ∂

∂z

iω

v2
, (D3)

a1 =−
iω

c

2M

1 −M2
−

∂ log

∂z

∆

v3
, (D4)

a2 =
1

1 −M2

(

ω2

c2
− k2

x + v
∂

∂z

iω2

v2

)

+
∆

v3

∂

∂z

(

iωv2

∆

1 + M2

1 −M2

)

, (D5)

aS =−
∆

v3

∂

∂z

[

c2

∆

(

iω − 2v
∂ logM

∂z

)]

. (D6)

Let δp± be the acoustic solutions of the homogeneous equation which propagate outward (-) or inward (+), and let
δp0 ≡ δp+ +R∇δp− be the acoustic solution which satisfies the lower boundary condition at rbc. The general solution
satisfying the lower boundary condition is written as

δp

δSsh
= δp−

∫

bc

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp0

p
dz − δp0

(

β +

∫

bc

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp−
p

dz

)

, (D7)

where W contains the normalization of the amplitudes of δp±:

Wp ≡
1 −M2

M2

[

δp0

p

∂

∂z

(

1 −M2

M2

δp−
p

)

−
δp−
p

∂

∂z

(

1 −M2

M2

δp0

p

)]

, (D8)

∂ log Wp

∂z
=−a1. (D9)

The WKB approximation of the pressure perturbation deduced from Eq. (B5) is

δp±wkb

γp
∼

1 ∓ µM

1 −M2

f±

wkb

c2
, (D10)

∼
f±

sh

c2
sh

csh

c

(

Mµsh

µMsh

)
1
2 1 ∓ µM

1 −M2
e

R

sh
iω
c

M∓µ

1−M2 dz
, (D11)

Wp ∼−2iγ2 µsh

Msh

f+
shf

−

sh

ωc2
sh

∆

v3
e

R

sh
iω
c

2M

1−M2 dz
. (D12)

Thus

aS

Wp

=−
iωMshc

2
sh

2f+
shf

−
shγ2µsh

e
R

sh
iω
v

2M2

1−M2 dz ∂

∂z

[

c2

∆

(

iω − 2v
∂ logM

∂z

)]

. (D13)

The derivative of the pressure perturbation is:

∂

∂z

δp

δSsh
=

∂

∂z
δp−

(
∫

bc

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp0

p
dz

)

−
∂

∂z
δp0

(

β +

∫

bc

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp−
p

dz

)

. (D14)

The outgoing pressure perturbation is deduced from the WKB approximation:

δp= δp̃− + δp̃+, (D15)

∂

∂z
δp=

iω

c

(

M + µ

1 −M2
δp̃− +

M− µ

1 −M2
δp̃+

)

. (D16)

Each component δp̃± is deduced from δp and its derivative according to:

δp̃± =
1

2

{(

1 ±
M

µ

)

δp ∓
c

iωµ
(1 −M2)

∂

∂z
δp

}

. (D17)
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The value of β is deduced from the outer boundary condition δp̃− = 0, and the general solution satisfying the boundary
conditions is thus simply:

δp

δSsh
= δp−

∫

bc

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp0

p
dz − δp0

∫

sh

aS

Wp

e
R

sh
iω
v

dz 1 −M2

M2

δp−
p

dz. (D18)

The acoustic feedback produced by the advection of the entropy-vorticity perturbation is

Q∇ =(1 − µshMsh)
δpsh

pδSsh
, (D19)

=

(

1 +
k2

xv2
sh

ω2

) (

1 −R∇ −
1 + R∇

µshMsh

)

×

∫ sh

bc

1−M
2

M2

δp0

p
(

1−M2

M2

δp0

p

)

sh

e
R

sh
iω
v

1+M2

1−M2 dz iω

2c2
sh

∂

∂z

[

iω − v ∂ logM
2

∂z

k2
xM

2 + ω2

c2 − vM2 ∂
∂z

iω
v2

]

dz, (D20)

from which we deduce Eqs. (41-43).
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