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Abstract

We present a measurement of the spin-dependent cross sections for the ~3He(~e, e′)X reaction in

the quasielastic and resonance regions at four-momentum transfer 0.1 ≤ Q2 ≤ 0.9 GeV2. The spin-

structure functions have been extracted and used to evaluate the nuclear Burkhardt–Cottingham

and extended GDH sum rules for the first time. Impulse approximation and exact three-body

Faddeev calculations are also compared to the data in the quasielastic region.

PACS numbers: 11.55.Hx,11.55.Fv,25.30.Rw,12.38.Qk,13.60.Hb,29.25.Pj,29.27.Hj,25.70.Bc
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Inclusive electron scattering has been used extensively to investigate the fundamental

gauge theory of the strong interaction, quantum chromodynamics (QCD). One goal of this

endeavor has been a greater understanding of the spin-structure of the nucleon. The wealth

of experimental data (e.g. [1, 2]), collected in recent years is crucial for testing the implemen-

tations of QCD: the operator product expansion (OPE) at large four-momentum transfer

Q2, chiral perturbation theory (χPT) at low Q2, and lattice gauge theory in the intermediate

region. χPT, in particular, has had success in describing polarized nucleon data [3], but has

also met with some interesting challenges [4, 5].

The spin-dependent contributions to the inclusive cross section of a spin-1/2 system are

contained in the structure functions g1 and g2, or equivalently the cross sections σ′
TT and

σ′
LT . Spin-dependent measurements in the simplest systems have been the focus of several

recent investigations [6, 7, 8, 9] at low to moderate Q2. Fundamental sum rules govern the

behavior of the nucleon spin-structure functions, but the assumptions made in deriving these

relations apply regardless of whether the target is a nucleon or a nucleus. For example, the

Gerasimov-Drell-Hearn (GDH) sum rule [10] was derived for a nucleon target, but is also

valid for nuclei. For a target of spin S, mass M , and anomalous magnetic moment κ, it

reads:

∫ ∞

νth

σA(ν) − σP(ν)

ν
dν = −4π2Sα

( κ

M

)2

(1)

Here σA(σP) represents the cross section for absorption of a photon of energy ν which is

polarized anti-parallel (parallel) to the target spin and α is the fine-structure constant. The

inelastic threshold is signified by νth, which is pion production (photodisintegration) for

a nucleonic (nuclear) target. Due to the 1/ν-weighting, states with lower invariant mass

provide the most significant contribution to the sum rule. The GDH predictions for the

neutron and 3He are −234 and −496 µb, respectively. To gauge the relative strength of

the nuclear contribution [11] to Eq. 1, we divide the 3He integral into two excitation energy

regions. Region I extends from two-body breakup to the pion production threshold, and

region II extends from threshold to ∞. Polarized 3He at first order appears as a free polarized

neutron due to the spin pairing of the protons, so the contribution from region II should be

approximately −234 µb. Therefore, the contribution in region I is necessarily quite large

in order to satisfy the prediction for 3He. The only reaction available to real photons in

region I is disintegration, and Arenhövel [11] points out that threshold disintegration must
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become significant at low Q2 in order to satisfy the sum rule prediction for the lightest

nuclear systems.

Ji and Osborne [12] suggest a generalization of the GDH sum rule based on the relation-

ship between the forward virtual Compton amplitudes S1 and S2, and the spin-dependent

structure functions. Since Eq. 1 is derived from the dispersion relation for S1 at the real pho-

ton point, a generalized sum rule can also be constructed from the same relation at nonzero

Q2. This leads to a set of Q2-dependent dispersion relations [13] for the spin-structure func-

tions. In particular, the dispersion relation for S1 leads to the following extension of the

GDH sum rule to virtual-photon scattering:

Γ1(Q2) ≡

∫

1−ǫ

0

g1(x, Q2)dx =
Q2

8
S1(0, Q2) (2)

The infinitesimal ǫ insures that only inelastic contributions are included, which is indicated

by the overbar, and x = Q2/2Mν is the Bjorken scaling variable. However, an alternate

extension is often presented [14]:

I(Q2) =

∫ ∞

νth

σA(ν, Q2) − σP (ν, Q2)

ν
dν

= 2

∫ ∞

νth

K

ν

σTT ′(ν, Q2)

ν
dν (3)

Here, K is the virtual photon flux factor, and σTT ′ is the transverse-transverse cross section

for scattering with target spin aligned along the direction of the three-momentum transfer

~q. We will also refer to σLT ′ , the longitudinal-transverse cross section for scattering with

target spin perpendicular to the momentum transfer.

The dispersion relation for S2 leads [13] to the following super-convergence relation:

Γ2(Q2) ≡

∫

1

0

g2(x, Q2)dx = 0 (4)

which is the Burkhardt–Cottingham (BC) sum rule [15]. The derivation of the BC sum

rule depends on the convergence of the integral, and assumes that g2 is a well-behaved

function [16] as x → 0. It has been shown to be satisfied at first order in αs for a quark

target in pQCD [17], and to lowest order in αem in QED [18].

This Letter details a test of the sum rules described above via an inclusive cross-section

measurement in the quasielastic (QE) and resonance regions. The experiment was performed

in Hall A [19] of the Thomas Jefferson National Accelerator Facility (JLab). Longitudinally
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polarized electrons at six incident energies from 0.9 to 5.1 GeV were scattered from a high-

density polarized 3He target. Longitudinal and transverse target polarizations were main-

tained, allowing a precision determination of both g
3
He

1
(x, Q2) and g

3
He

2
(x, Q2) or alternatively

σTT ′(ν, Q2) and σLT ′(ν, Q2). Full experimental details can be found in Refs. [4, 8, 9]

The measured spin-structure functions were interpolated (or extrapolated for a few data

points at large ν) to constant Q2 [8] from 0.1 to 0.9 GeV2. Figure 1 displays the first moments

of g
3He

1
and g

3He

2
, along with the extended GDH sum I(Q2). In all panels the circles represent

the 3He data integrated to W = 2 GeV. The invariant mass W is defined here in terms of

the proton mass: W 2 = M2

p − Q2 + 2Mpν. Squares include an estimate (discussed below) of

any unmeasured contributions. Statistical uncertainties are shown on the data points, while

the systematic uncertainty of the measured (total) integral is represented by the light (dark)

band. The absolute cross sections contribute 5% uncertainty, while the beam and target

polarization each contribute 4%. The radiative corrections are assigned 20% uncertainty to

reflect the variation seen from choosing different initial models for our unfolding procedure.

This uncertainty is doubled for the 0.9 GeV incident energy spectra to reflect the lack of

lower energy data. A separate contribution to the radiative corrections uncertainty arises

from the subtraction of the 3He elastic radiative tail, which is significant only for the lowest

incident energy. The uncertainty due to interpolation has been determined by varying

the order of the polynomial interpolation, while the extrapolation uncertainty has been

estimated by comparison to model [20] predictions. The light band represents the quadratic

sum of the above errors. The full systematic band includes an estimate of the uncertainty

of the unmeasured contribution to the integrals. The Γ2 full systematic error includes a

5% uncertainty from the elastic contribution (solid black curve) which was evaluated using

previously measured form factors [21].

The total integral of Γ1 includes an estimate [22] of the unmeasured region above W = 2

GeV, and the uncertainty arising from this is reflected in the total error band. The data show

some hint of a turnover at low Q2, where we have also plotted the slope predicted by Eq. 1

for 3He. To obtain the model curve, we have summed the MAID [20] proton and neutron

predictions using an effective polarization procedure [23]. To this we add an estimate of the

contribution below the pion threshold using the plane-wave impulse approximation (PWIA)

model [24, 25]. At large momentum transfer, Γ1(Q
2) appears to be nearly independent of

Q2. This is consistent with an OPE interpretation in which the higher twist effects become
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negligible at large Q2 and the evolution is driven by logarithmic pQCD effects. It is somewhat

surprising to observe this behavior in a region where the higher twists are conventionally

expected to be quite significant. However, this is consistent with other recent findings (eg.

[26, 27]) in this kinematic range.

Experimental measurements of g2 are scarce and only recently has the BC sum rule been

evaluated for the first time. The SLAC E155 collaboration [28] measured Γ2 at Q2 = 5 GeV2.

They found the BC sum rule to be satisfied within a large uncertainty for the deuteron,

while a violation of almost 3σ was found for the more precise proton measurement. In

Figure 1 (middle) we plot Γ2. The unmeasured contribution was estimated using the method

described in [28], which assumes the validity of the Wandzura-Wilczek relation [29]. All six

data points are consistent with the Burkhardt–Cottingham prediction. Results from this

same experiment have been used to test the BC sum rule for the neutron [9], using only

data for which W > 1.073 GeV, and with nuclear corrections applied. It was found that

the neutron BC sum rule is satisfied primarily due to the cancellation of the resonance and

nucleon elastic contributions. It is interesting to find that for 3He a balance is struck between

the positive inelastic contribution above the pion threshold, and the negative contribution

from the elastic and quasielastic regions, with the elastic becoming important below Q2 ≈ 0.2

GeV2.

Figure 1 (bottom) displays the extended GDH sum as defined in Eq. 3. We follow the con-

vention K = ν for the virtual photon flux. Accounting for the unmeasured contribution [22]

has only a minor effect due to the 1/ν-weighting of the integrand. The phenomenologi-

cal model (dot-dashed curve) tracks the data well, but the negative sum rule prediction at

Q2 = 0 (black star) stands in contrast to the large positive value of our lowest point. The 3He

GDH integral is dominated by a positive QE contribution which largely outweighs the neg-

ative contribution of the resonances. Assuming the continuity of the integrand as Q2 → 0,

as in the nucleonic case [30], our results indicate the necessity of a dramatic turnover in

I(Q2) at very low Q2. The only possible reaction channel available to accommodate such a

turnover is electro-disintegration at threshold. Indeed, our σ′
TT data [31] shows an indication

of a growing negative contribution to the sum in the threshold region as Q2 approaches zero.

A recently completed experiment [32] in the range 0.02 < Q2 < 0.3 GeV2 may shed further

light on this behavior.

We focus now on the quasielastic region, where 3He can be treated with exact nonrela-
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tivistic Faddeev calculations. This approach describes the existing data [33, 34, 35] well at

low Q2. At larger Q2, modern applications [24, 25] of the PWIA have had good success re-

producing data. The measured quasielastic differential cross section dσ/dΩdE ′ is displayed

in Figure 2 as a function of W. In addition, Figure 3 displays the 3He polarized cross sec-

tions σTT ′ and σLT ′ . Radiative corrections have been applied to the data as discussed in

Refs. [8, 31]. The data are compared to a PWIA calculation [24, 25] and an exact nonrel-

ativistic Faddeev calculation [34, 35, 36]. The latter includes both final state interactions

(FSI) and meson exchange currents (MEC). Both groups utilize the Höhler [37] parame-

terization for the single nucleon current, and the AV18 [38] nucleon-nucleon potential. We

also display the PWIA curves that result when the RSC [24, 25] potential is used instead

of AV18, or if the Galster [39] form factor parameterization is used instead of Höhler. In

the Faddeev calculation, the three-nucleon current operator consists of the single nucleon

current and the π- and ρ-like meson exchange contributions consistent with AV18.

The Faddeev calculation does not address relativistic effects, and as such was only per-

formed for the lowest Q2 data. The agreement with data is in general quite good, but we

find a small discrepancy from the data on the high energy side of the QE peak at 〈Q2〉 = 0.2

GeV2. This may indicate the increasing importance of relativistic effects, along with the

growth in relative strength of the ∆ resonance tail in the QE region as Q2 increases. We

note that σLT ′ which is not sensitive to the ∆ resonance generally shows better agreement

with the Faddeev calculation on the high energy side of the quasielastic peak.

At very low Q2, the PWIA calculation fails, but improves as expected with increasing

momentum transfer, in part because it takes the relativistic kinematics into account. The

fact that the Faddeev and PWIA calculations differ less as Q2 increases seems to indicate

that FSI and MEC (neglected in the PWIA) become less important for these observables as

Q2 increases. It also appears that the PWIA calculation is more sensitive to the choice of

the form factor parameterization, than to the nucleon-nucleon potential utilized.

The Faddeev calculation reproduces the polarized data well at the lowest Q2, and the

PWIA does well at the highest, but there remains an intermediate zone where both ap-

proaches are unsatisfactory. Refs. [34, 35] previously reported that this same PWIA calcula-

tion reproduced well the measured 3He quasielastic asymmetry A′
T in this kinematic region.

As such we compared this calculation directly to the transverse asymmetry A′
T data from

our experiment and found good agreement, consistent with the previous results but only in
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a narrow window centered on the QE peak.

To summarize, we find the Burkhardt–Cottingham sum rule to hold for 3He. The GDH

integral and Γ1 display intriguing behavior at low Q2, and will provide valuable constraints

on future 3He χPT and lattice QCD calculations. We have measured the first precision

polarized cross-sections in the quasielastic and resonance regions of 3He. A full three-body

Faddeev calculation agrees well with the data, but starts to exhibit discrepancies as the

energy increases, possibly due to growing relativistic effects. As the momentum transfer

increases, the PWIA approach reproduces the data well, but there exists an intermediate

range where neither calculation succeeds.

This work was supported by the U.S. Department of Energy, the National Science Foun-
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[11] H. Arenhövel, Proceedings, GDH2000, pg. 67. World Scientific. nucl-th/0006083.

[12] X. Ji and J. Osborne, J. Phys. G27, 127 (2001).

8



[13] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys. Rept. 378, 99 (2003).

[14] D. Drechsel, S. S. Kamalov, and L. Tiator, Phys. Rev. D63, 114010 (2001).

[15] H. Burkhardt and W. N. Cottingham, Annals Phys. 56, 453 (1970).

[16] R. L. Jaffe and X.-D. Ji, Phys. Rev. D43, 724 (1991).

[17] G. Altarelli, B. Lampe, P. Nason, and G. Ridolfi, Phys. Lett. B334, 187 (1994).

[18] W.-Y. Tsai, L. L. DeRaad Jr., and K. A. Milton, Phys. Rev. D11, 3537 (1975).

[19] J. Alcorn et al., Nucl. Instrum. Meth. A522, 294 (2004).

[20] D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator, Nucl. Phys. A645, 145 (1999).

[21] A. Amroun et al., Nucl. Phys. A579, 596 (1994).

[22] E. Thomas and N. Bianchi, Nucl. Phys. Proc. Suppl. 82, 256 (2000).

[23] C. Ciofi degli Atti and S. Scopetta, Phys. Lett. B404, 223 (1997).

[24] C. Ciofi degli Atti, E. Pace, and G. Salme, Phys. Rev. C51, 1108 (1995).

[25] E. Pace, G. Salme, S. Scopetta, and A. Kievsky, Phys. Rev. C64, 055203 (2001).

[26] Z.-E. Meziani et al., Phys. Lett. B613, 148 (2005).

[27] A. Deur et al., Phys. Rev. Lett. 93, 212001 (2004).

[28] P. L. Anthony et al. (E155), Phys. Lett. B553, 18 (2003).

[29] S. Wandzura and F. Wilczek, Phys. Lett. B72, 195 (1977).
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FIG. 1: 3He spin-structure moments. Top : Γ1(Q
2) compared to the PWIA model described in

text (dot-dash), and the GDH sum rule slope (solid). Middle : Γ2(Q
2) along with the elastic

contribution [21] (solid) to the moment. Bottom : I(Q2) with K = ν, compared to the PWIA

model.
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FIG. 2: 3He unpolarized cross sections in the QE region compared to PWIA [24, 25] with AV18

(dashed) or RSC (dotted,dot-dashed) potential and to the Faddeev calculation [36] (solid). The

error bars (bands) represent statistical (systematic) uncertainties. 〈Q2〉 in GeV2.
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FIG. 3: Color online. 3He polarized cross sections in the QE region. Curves and notations are the

same as in Fig. 2.
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