
ar
X

iv
:0

71
0.

51
71

v1
  [

as
tr

o-
ph

] 
 2

6 
O

ct
 2

00
7

Mon. Not. R. Astron. Soc. 000, 000–000 (2001) Printed 2 February 2008 (MN LATEX style file v2.2)

Systematic Bias in Cosmic Shear: Beyond the Fisher

Matrix

Adam Amara and Alexandre Réfrégier
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ABSTRACT
We describe a method for computing the biases that systematic signals introduce in
parameter estimation using a simple extension of the Fisher matrix formalism. This
allows us to calculate the offset of the best fit parameters relative to the fiducial model,
in addition to the usual statistical error ellipse. As an application, we study the impact
that residual systematics in tomographic weak lensing measurements. In particular we
explore three different types of shape measurement systematics: (i) additive systematic
with no redshift evolution; (ii) additive systematic with redshift evolution; and (iii)
multiplicative systematic. In each case, we consider a wide range of scale dependence
and redshift evolution of the systematics signal. For a future DUNE-like full sky sur-
vey, we find that, for cases with mild redshift evolution, the variance of the additive
systematic signal should be kept below 10−7 to ensure biases on cosmological parame-
ters that are sub-dominant to the statistical errors. For the multiplicative systematics,
which depends on the lensing signal, we find the multiplicative calibration m0 needs
to be controlled to an accuracy better than 10−3. We find that the impact of system-
atics can be underestimated if their assumes redshift dependence is too simplistic. We
provide simple scaling relations to extend these requirements to any survey geometry
and discuss the impact of our results for current and future weak lensing surveys.

Key words: gravitational lensing - cosmology: cosmological parameters - methods:
statistical

1 INTRODUCTION

Weak gravitational lensing, or ‘cosmic shear’, is undergoing
a phase of rapid expansion (see Refregier 2003; Munshi et al.
2006; Hoekstra 2003, for reviews) with many future surveys
and instruments being planned (e.g. DUNE1, PanSTARRS2,
DES3, SNAP4 and LSST5). Central to the planning and de-
signing of these instruments is our ability to predict the
uncertainties that such measurements will achieve on the
cosmological parameters. To this end, the Fisher matrix has
become a widely used tool in cosmology for calculating their
covariance matrix. However, a limitation of this approach is
that it is only able to account for statistical errors, i.e. ones
that cause an enlargement of the error bars, and is not well-
suited for treatment of systematic errors, which can intro-
duce biases that move the measured central value relative
to its true value. One approach that is commonly taken to

1 http://www.dune-mission.net
2 http://pan-starrs.ifa.hawaii.edu
3 https://www.darkenergysurvey.org
4 http://snap.lbl.gov
5 http://www.lsst.org

overcome this limitation is to treat the systematic errors in
the same way as statistical errors and to marginalise over
possible values. This introduction of nuisance parameters,
in addition to the cosmological parameters, causes the er-
ror ellipses to expand. A more accurate approach, which we
use here, is to directly calculate the bias that the system-
atic signals will introduce. This bias will tend to offset the
central value to the measurements from the true values, as
shown in figure 1. Since the computations needed for this
calculation are very similar to those performed in the stan-
dard Fisher matrix analysis, extending the current Fisher
matrix analysis to include a calculation of bias is relatively
straightforward.

We apply this formalism to study the impact of resid-
ual systematics on tomographic cosmic shear surveys. In
particular, we consider systematics arising in the measure-
ment of galaxy shapes after correction of instrumental ef-
fects (such as the Point Spread Function). We consider both
additive and multiplicative systematics and explore a wide
range of scale and redshift dependences. In an earlier work,
Huterer et al. (2006) considered the impact of photometric
calibration errors and power law shape systematics using the
Fisher matrix formalism. A similar bias formalism was intro-

http://arXiv.org/abs/0710.5171v1
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duced by Huterer and Takada (2005) and applied to theo-
retical uncertainties in modeling the matter power spectrum
with N-body simulations. Our work expands upon these ear-
lier works, by appying the bias formalism to a broad set of
shape systematics and by studying the joint impact of sys-
tematic and statistical errors in current and future surveys.

This paper is organised as follows. In section 2, we de-
scribe the formalism that we use to quantify systematic bi-
ases. In section 3, we apply our formalism to cosmic shear
surveys by exploring the effect of three types of shape mea-
surement systematics: (i) additive with no redshift evolu-
tion; (ii) additive with redshift evolution; and (iii) multi-
plicative. For each type, we consider several possibilities for
their scale dependence: (i) log-linear systematics; (ii) sys-
tematics that have the same shape as the lensing signal; and
(iii) systematics that mimic a small change in the cosmolog-
ical parameters. In section 4, we study the impact of the
systematics in the design of future surveys. Our conclusions
are summarised in section 5.

2 GENERAL BIAS FORMALISM

In a weak lensing survey, the observed power spectrum de-
rived from the shapes of background galaxies is given by

Cobs
ℓ = Clens

ℓ + Csys
ℓ + Cnoise

ℓ , (1)

where each term corresponds to, respectively, the lensing
signal (Clens

ℓ ), residual systematics (Csys
ℓ ), and noise arising

from measurement errors and intrinsic shape noise (Cnoise
ℓ ).

An estimator of the weak lensing shear power spectrum can
thus be defined as

Ĉlens
ℓ = Cobs

ℓ − Cnoise
ℓ , (2)

where it is assumed that the residual systematics is unknown
and therefore uncorrected. The errors of this estimator are
given by

∆Cl =

s

1

(2ℓ + 1)fsky
[Clens

ℓ + Csys
ℓ + Cnoise

ℓ ], (3)

where fsky is the fraction of the sky covered by the survey.
The measurement of this power spectrum can then be

used to constrain a set of cosmological parameters pi. For
this, we form the usual statistic

χ2(p) =
X

ℓ

∆C−2
l

h

[Ĉlens
ℓ − Clens

ℓ (p)]2
i

. (4)

An estimator for the parameters bpi is then defined such that
dχ2(p̂i)/dpi = 0.

Neglecting the dependence of the errors ∆Cℓ in the pa-
rameters, the covariance matrix of the parameters

cov[p̂i, p̂j ] = 〈(p̂i − 〈p̂i〉)(p̂j − 〈p̂j〉)〉 = (F−1)ij (5)

is then given by the inverse of the Fisher matrix

Fij =
X

ℓ

∆C−2
l

dClens
ℓ

dpi

dClens
ℓ

dpj

. (6)

It is also easy to show that, for small residual systematics,
the bias of the parameter estimator is given by

b[p̂i] = 〈p̂i〉 − 〈ptrue
i 〉 = (F−1)ijBj , (7)

where ptrue
i is the true value of the parameters, the summa-

tion convention has been assumed and the bias vector Bj is
given by

Bj =
X

ℓ

∆C−2
l Csys

ℓ

dClens
ℓ

dpj

. (8)

This simple expression is similar to that for the Fisher
matrix and is therefore a convenient way to evaluate
the impact of residual systematics and has also used by
Huterer and Takada (2005) and Huterer et al. (2006). Note
that this expression, while derived for the measurement of
a single weak lensing power spectrum, is general and can be
applied to any estimation of a model using a χ2 fit in the
presence of residual (unknown) systematics. In particular, it
can be easily generalised for the case where several power
spectra are considered, such as in weak lensing tomography,
and if the power spectrum estimators at different multipoles
are correlated.

Figure 1 illustrates the principles of our formalism for
the case of the measurement of dark energy equation of
state parameters (see detailed discussion below). The black
dashed ellipse shows the statistical error estimates for these
parameters derived using the fisher matrix. This error el-
lipse is centred on the fiducial model. The red error ellipse
includes the systematics bias discussed in equation 8. We
see that systematics have an additional effect of shifting the
centre of the error ellipses away from the fiducial model.

In general, it is convenient to consider the total error
covariance matrix which considers deviations from the true
value of the parameters and is given by

tcov[p̂i, p̂j ] = 〈(p̂i−ptrue
i )(p̂j−ptrue

j )〉 = (F−1)ij+b[p̂i]b[p̂j ].(9)

This includes both statistical and systematic errors, as op-
posed to the the standard covariance matrix (Eq. 5) which
only considers deviations from the mean values of param-
eter estimators and thus only includes statistical errors. In
particular, the diagonal elements of the total error matrix
give the Mean Square Error (MSE) of a parameter pi

MSE[p̂i] = σ2[p̂i] + b2[p̂i], (10)

where the statistical error variance is σ2[p̂i] = (F−1)ii. It is
this total error which needs to be minimised when optimis-
ing future surveys rather than the statistical error alone. An
interesting criterion is to define a tolerance on the system-
atics such that they do not dominate over statistical error.
This is verified when

b[p̂i] 6 σ[p̂i], (11)

for all or a selected subset of the paramters pi. In the fol-
lowing, we will apply this formalism to cosmic shear and
derived the systematics tolerance for future surveys.

3 SHAPE SYSTEMATICS FOR WEAK
LENSING TOMOGRAPHY

Weak lensing tomography places constraints on cosmologi-
cal parameters by measuring the statistics of the shear field
as a function of redshift. This is done in practice by di-
viding galaxies into redshift bins and measuring both the
auto-correlation of the shear signal within bins as well as
the cross-correlation between bins. The shear signal itself is
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Figure 1. Illustration of the distinction between statistical errors
which can be estimated using the Fisher matrix and the biasing
effect of residual systematics, which can be estimated using the
present formalism. The black dashed line shows the results of
a Fisher matrix calculation with the cross showing the fiducial
model that has been used. The solid red line shows the error
ellipses when the effects of a systematic signal are also included.
We see that the systematic errors can induce a bias that moves
the central value relative to the fiducial model.

measured using the shapes of distant galaxies. For this pur-
pose, the observed galaxy images must be corrected from
the effects of the point spread function (PSF) which is mon-
itored using stars in the image. Errors in the PSF decon-
volution and galaxy shape estimation induces errors in the
measured galaxy shapes, and hence lead to errors in shears.
These shape measurement errors generally have spatial cor-
relations (since the PSF itself has a spatial variation) which
can be described by its power spectrum Csys

ℓ . In this work,
we decompose residual systematic power spectrum into two
parts: an additive term (i.e. independent of the lensing sig-
nal) and a multiplicative term (i.e. dependent on the lensing
signal). Each term and its impact on the systematics power
spectrum is described in AppendixA.

In the following, we consider a flat cosmological model
with 7 parameters listed in table 1. In particular, the
evolution of the dark energy equation of state parameter
is assumed to take the form w(a) = wn + (an − a)wa,
with w0, listed in the table, corresponding to a pivot
point of an = 1. For the cosmic shear survey parameters,
we focus on the DUNE-like ‘shallow’ survey described in
Amara and Refregier (2006), namely a 20,000 sq. degree
survey containing 35 galaxies per amin2 with σγ = 0.25
and zm = 0.9, with the galaxies divided into 5 redshift
bins so that each bin contains the same number of galax-
ies. We assume that the overall galaxy distribution is given
by Smail et al. (1994),

P (z) = zα exp

"

−

 

z

z0

!β#

, (12)

where we set α = 2 and β = 1.5. The median redshift of the
survey, zm, is then used to set z0 ≃ zm/1.412. We use multi-
poles in the range 10 < ℓ < 2×104. The lensing tomography
formalism we use is also described in Hu and Jain (2004)
and Amara and Refregier (2006). Table 1 shows the central
values of our fiducial model and the marginalised Fisher ma-
trix errors on each of the cosmological parameters for this
survey. These errors come from the same calculation used to
produce the results (dashed curve) shown in figure 1. The
errors on the dark energy parameters are sometimes stated
in terms of wn corresponding to the pivot point an where
wn and wa are uncorrelated. For our survey the marginalised
error on wn is 0.02.

3.1 Additive Term

First, we consider an additive systematic signal, which, by
definition is not correlated with the lensing signal. Such a
systematic could, for instance, result from residual errors in
the correction of the PSF. This signal can in general have
an arbitrary scale dependence and may also depend on the
galaxy redshift.

To quantify the amplitude of the systematic signal it is
convenient to consider its variance

σ2
sys =

1

2π

Z

|Csys
ℓ |ℓ(ℓ + 1)d ln ℓ, (13)

where the absolute value sign is included to account for pos-
sible changes of sign. To explore the possible scale depen-
dence of the systematic signal, we consider the following
three classes of shape of the systematic power spectrum:

• The first is a log-linear systematic:

ℓ(ℓ + 1)Csys
ℓ = A0

“

n log10(ℓ/ℓ0) + 1
”

, (14)

where ℓ0 is a reference scale, n a scaling parameter and
A0 is a normalisation. This parametrisation allows for the
possibility that the residual power spectrum of systematic
signal, after correction, be positive or negative and may
transition from one to the other. More specifically, the
quantity ℓ(ℓ + 1)Csys

ℓ scales linearly with log ℓ and goes
through the point ℓ(ℓ + 1)Csys

ℓ = A0 at ℓ = ℓ0 and has
a slope of nA0.In general, each correlation function could
have its own normalisation (i.e. Aij , rather than A0). For
instance this would be the case if the systematic signal had
a redshift dependence.

• Secondly, we explore systematic signals that have the
same shape as one of the lensing power spectra, Clens

ℓ . Since,
in this work, the galaxies have been divided into 5 redshift
bins, this gives us 15 possible power spectra to investigate:

Csys
ℓ = A1C

ij
ℓ , (15)

where Cij
ℓ is the correlation spectrum between bins i and

j, and A1 is a normalisation. Once again each correlation
function could have a different normalisation. For instance
this would be the case if the systematic signal had a redshift
dependence.

• Finally, we explore the systematic shape that should
have the greatest impact on our measured cosmological pa-
rameter estimation, namely systematics that exactly mimic
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Parameter Ωm w0 wa h σ8 Ωb n
Central value 0.28 -0.95 0.00 0.72 1.0 0.046 1.0

Marginalised errors 0.006 0.06 0.19 17 0.008 4 0.009

Table 1. Cosmology parameters for our fiducial model with marginalised Fisher matrix errors for the survey we consider.

Figure 2. Different classes of additive systematic signals we con-
sider. In each case, the systematics power spectra shown have
been normalised so that they induce a a bias on w0 equal to
the systematics error (b[w0] = σ[w0] = 0.06). The top left panel
shows examples of the log-linear models for n=-1.4, -1.0, -0.6, -
0.2, 0.2 and 0.6; the top right panel shows systematics that have
the same shape as the lensing signal (all 15 powerspectra shapes
are shown); and the bottom left panel shows signal that have the
shape of dC33

ℓ
/dpα, where C33

ℓ
is the auto-correlation power spec-

trum of the third redshift slice and pα are the parameters in our
fiducial model. Finally, the bottom right panel shows systematic
signals that have the same functional form as dCij

ℓ
/dw0, where

Cij
ℓ

is the lensing correlation function between bins i and j.

the effect of a change in one of the cosmological parameters
(pα):

Csys
ℓ = A2

dCij
ℓ

dpα

, (16)

whereA2 is another normalisation factor.

Figure 2 shows examples of these different classes of
systematic signals. Each of the systematic signals have been
normalised so that they introduce a bias on the equation of
state parameter w0 of 0.06, which is the same level as the
marginalised statistical error on this parameter calculated
from a standard Fisher matrix approach see Table 1.

3.1.1 Additive term with no redshift evolution

We first consider additive systematics whose amplitude is
independent of redshift. Figure 3 shows the bias introduced
to each parameter in our log-linear model (Eq. 14 and top

Figure 3. The bias of all 7 parameters considered in our fiducial
model produced by the log-linear systematic as a function of n,
the scaling in equation 14. A0 is chosen so that σ2

sys = 4 × 10−7.

left panel of figure 2)) as function of the scaling parameter
n. The 7 curves in the figure show the bias for a system-
atic signal with an amplitude such that σ2

sys = 4× 10−7. As
can be seen from equations 8 and 13, the bias scales linearly
with σ2

sys. The level of the bias depends on the cosmological
parameter considered and the absolute value of the bias re-
mains roughly flat with n. The apparent dips around n = −1
correspond to a change of sign of the biases (e.g. goes from
positive to negative). The black-solid and blue-dashed curves
show that a log-linear systematic with σ2

sys = 4 × 10−7 will
introduce a bias of ∼ 0.05 on w0 and ∼ 0.1 on wa, for most
values of n. The range of possible bias values is large depend-
ing on which cosmology parameter is under scrutiny (note
that the y-axis of figure 3 is on a log scale). For example,
the absolute bias induced in Ωm is typically ∼ 0.005 for a
wide range of n values.

Although the value of the bias on the Ωm is smaller than
that for w0, a more relevant quantity is the size of the bias
relative to the statistical errors (which are shown in table
1). Figure 4 shows the ratio of the bias to the marginalised
Fisher matrix errors of all 7 cosmology parameters for the
log-linear model with σ2

sys = 4 × 10−7. Expressed in this
manner, we see that many of the cosmological parameters
respond to the same extent to the presence of a systematic
signal (note that the y-axis is now on a linear scale). We also
see more clearly that as we vary n, the bias on any given
parameter can change sign.

The grey shaded region in the figure is where the bias
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dominates over statistical errors, i.e. where |b(pi)|/σ(pi) > 1.
With this in mind, we can now adjust the level of the the
systematic (σ2

sys) and find our tolerance (σ2
sys−tol), which,

from equation 11, is the maximum value that σ2
sys can have

before the potential bias on one of the cosmology param-
eters breaches our acceptable threshold (i.e. before one of
the curves in figure 4 enters the grey area). Figure 4 shows
that, for the log-linear systematic, setting a threshold of
σ2

sys−tol = 4× 10−7 would be sufficient to meet this criterial
for the dark energy parameters.

Appendix B, shows the results for the other classes
of systematics. Table B1 shows the ratio of the bias to
marginalised statistical errors for the residual systematic
signals shown in the top right panel of figure 2, table B2
correspond to the bottom left panel figure 2 and B3 are
the results for the bottom right panel. We see that, if the
residual systematic has the same shape as the lensing sig-
nal, then a tolerance level of σ2

sys−tol = 4 × 10−7 is suffi-
cient to keep |b(pi)/σ(pi)| < 1 for the w0 and wa param-
eters. However, table B3 shows that a systematic level of
σ2

sys−tol = 4 × 10−7 can lead to a ratio greater than one for
w0 for some systematic power spectrum shapes, for instance
Cs

ℓ ys ∝ dC3
ℓ 3/dw0. It is also interesting to note the the most

stringent constraints on systematics does not always come
from dark energy. For instance for a systematic that has a
shape Csys

ℓ ∝ dC45
ℓ /dw0, it is the constraint from Ωm that

would dominate.
Focusing again on dark energy parameters, figure 5

shows the biases (as a fraction of statistical errors) for w0

and wa for all the additive systematics we have considered.
Once again the grey area shows regions where the bias would
dominate over the statistical errors. We see that a system-
atic with σ2

sys−tol = 4 × 10−7 is not always sufficient (this
can also be seen in tables B2 and B3). Instead a more com-
fortable tolerance level is σ2

sys−tol = 3× 10−7, which we can
be considered as the target for the control of additive sys-
tematics with no redshift evolution.

3.1.2 Additive term with redshift evolution

The additive term discussed in the previous section was for a
systematic signal that is the same for all tomographic power
spectra, i.e. independent of the galaxy redshifts. An exten-
sion of the above results is to consider an additive term that
evolves with redshift. This, for example, could be due to
the fact that more distant galaxies tend to be smaller than
nearby galaxies, making their shape measurements more
prone to errors in PSF deconvolution. We can model such an
effect by introducing a simple redshift scaling to the additive
part of equation A5:

γadd = γadd
0 (1 + zm)βa , (17)

where zm is the median redshift of a tomographic redshift
bin. The systematic power spectrum now depends on the
redshift of the two galaxies being correlated and, for sim-
plicity, we assume that this redshift dependence can be sep-
arated from the angular dependence such that,

Csys
ℓ (zi

m, zj
m) = (1+zi

m)βa(1+zj
m)βaCsys

ℓ (zi
m = 0, zj

m = 0), (18)

where zi
m and zj

m are the median redshifts of bins i and j,
and Csys

ℓ (zi = 0, zj = 0) is the systematic auto-correlation
power spectrum of galaxies at redshift z=0.

Figure 4. The ratio of the systematic bias to the marginalised
statistical errors for each of the cosmological parameters as a func-
tion of n, the scaling parameter of the log-linear scaling model.
The amplitude has been set to σ2

sys = 4 × 10−7. The grey area
corresponds to regions where the bias dominates over the statis-
tical errors (i.e. |b(pi)/σ(pi)| > 1). We see that it is not always
the dark energy equation of state parameters that drive the sys-
tematic requirements.

Figure 5. Impact of additive systematics (with no redshift evo-
lution) on the dark energy parameters, w0 and wa, for all classes
of scale dependence considered. As before, the grey area corre-
sponds regions where the bias dominates over the (marginalised)
statistical errors. In all cases, we set σ2

sys = 4 × 10−7.



6 A. Amara & A. Refregier

Figure 6. The ratio of bias to statistical errors for additive sys-
tematics with redshift evolution for the different cosmological pa-
rameters. The shape of the systematics has been chosen to be
Csys

ℓ
∝ dC33

ℓ
/dw0 and βa is the power-law exponent describing

the redshift evolution (see text). In all cases, the systematic auto-
correlation variance at z = 0 is set to σ2

sys = 10−7. Note that this
is a systematic amplitude that is a factor of 4 smaller than that
used in earlier figures.

Figure 6 shows the bias (as a fraction of marginalised
errors) for different values of βa and for systematic shape of
the form Csys

ℓ ∝ dC33
ℓ /dw0 (one of our worst-case systematic

shapes) and an amplitude such that σ2
sys = 1 × 10−7. Once

again we see that it is not always the dark energy equation
of state parameters that drive the systematic requirements,
and that Ωm and σ8 can be as restrictive as the two w pa-
rameters. We also see large values of βa cause the bias to
become very large relative to the statistical errors. For the
dark energy parameters, we therefore place a requirement of
βa < 1.5 and σ2

sys−tol(z
i = 0, zj = 0) < 1 × 10−7.

3.2 Multiplicative Term

Having investigated the effect of additive systematics, we
now investigate the case of multiplicative systematics which
are correlated to the lensing signal. This is most easily done
by studying the impact of different values of the multiplica-
tive calibration m defined in equation A5 and A8. First,
we consider a simple scaling of m with the median redshift,
since the redshift can have an impact on galaxy properties,
such as size and magnitude, which in turn have an impact
on the accuracy with which their shapes are measured. The
redshift scaling is thus taken to be

msys = m0(1 + zm)βm , (19)

Figure 7 shows the fractional bias as a function of βm

with m0 = 5 × 10−3. If there is no redshift dependence (i.e.
if βm = 0) then setting a tolerance of m0 < mtol = 5× 10−3

is more than sufficient to keep the biases at a subdominant

levels. Once again, it is not the equation of state parame-
ters that place the most stringent constraints on systemat-
ics. In particular, the primordial shape parameter n is the
most sensitive. If one is only concerned with dark energy
parameters, we can set a limit of βm < 1.5 for this value
of mtol. Figure 7 also shows some distinct features that are
not apparent in figure 6, namely that the biases change sign
as βm varies. Since βm controls the relative amplitude of
the systematics as a function of redshift, this suggests that
not all the power spectra are affected in the same way. For
instance, for w0, when the error on the low redshift cor-
relation functions dominates (i.e. for small βm) the bias is
negative, whereas when the errors on the high redshift cor-
relation functions dominates (i.e. for large βm) the bias is
positive. This is important since it shows that there exists
a trade-off between high and low redshift biases. Moreover,
this indicates that if m transitions through zero at some
redshift, the multiplicateive systematics are likely to have a
greater effect. This is analogous to what we have found for
the additive term.

From figure 7 we would thus expect that if we are able
to constrain m0 to 5 × 10−3 with βm = 1, we would ex-
pect that the bias on the dark energy parameters would be
significantly subdominant to the statical errors. Figure 8,
however, tells a different story. For any experiment the tar-
get is for m to be as close to zero as possible. Since m can
be either positive or negative (or infact transition from one
to the other) one can image defining a tolerance envelope
such that the unknown systematic can be anywhere in this
region. This is illustrated in figure 9. The shaded area shows
the uncertainty envelope enclosed by m = ±m0(a + z)βm ,
with m0 = 5×10−3 and βm = 1. In blue we show the simple
model used from equation 19, where m is always positive
and the red dashed curve, which was used to produce figure
8 is for a systematic that has the form,

msys =
2

π
atan

„

αm(zm − zT )

«

m0(1 + zm)βm , (20)

where zT is the redshift at which the systematic transitions
through zero and αm controls the rate of the transition.
Figure 10 shows results for a number of αm and βm values
as a function of the transition redshift. From this we are
able to set the requirements that when we allow m to have
a zero transition, the tolerance is m0−tol = 1 × 10−3 for
βm < 1.5.

4 IMPACT ON WEAK LENSING SURVEYS

In Amara and Refregier (2006) we studied how the geome-
tries and configurations of future lensing surveys can be op-
timised to derive the strongest cosmological constraints. The
present results can be used to extend this work, which solely
included statistical errors, to also include the impact of sys-
tematic biases. For this purpose, it is useful to consider the
total mean square error of the cosmological parameters pi,
which we have defined in equation 10.

Figure 11 shows the root mean square error as a func-
tion of survey area, with all other properties of the survey
set to the values listed in section 3. Also shown are the
impact of different levels of additive systematics with am-
plitudes of σ2

sys = 10−5, 10−6 and 10−7, from top to bottom
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Figure 7. The ratio of the bias to statistical error for the mul-
tiplicative systematics for the power-law redshift evolution. The
multiplicative calibration parameter is set m0 = 5 × 10−3.

respectively. The systematics were chosen to have a shape
Csys

ℓ ∝ dC33
ℓ /dwn without redshift evolution. The figure

demonstrates that, when designing future surveys, one needs
to consider both the statistical power of the survey and the
systematic floor of the survey. For instance, we see that if
an instrument was to have systematics with σ2

sys = 10−5

then there is very little point in surveying an area of sky
bigger than 20 square degrees. Alternatively, we see that if
we choose to do a 20,000 square degree survey, we will need
to control the residual systematic to σ2

sys ∼ 10−7 in order
to reach the statistical potential of the survey.

Since the requirements depend on the ratio of the bias
to statistical errors, the requirements for a specific survey
configurations depends on the statistical power of that spe-
cific survey. In Amara and Refregier (2006) we investigated
the statistical power for measuring dark energy of several
survey configurations. We then gave a simple scaling rela-
tion for calculation the dark energy Figure of Merit (FoM)
as a function of the survey properties. We have found that
these scaling relations hold well and capture most of the
relevant physics. In the same spirit we now give the scaling
relation for the systematic requirements. For a survey that
has an area As , a galaxy surface density ng (useful for lens-
ing) and a median redshift zm, the tolerance on the additive
systematic is,

σ2
sys < 10−7

0

@

As

2 × 104 deg2

1

A

−0.50

@

ng

35 amin−2

1

A

−0.50

@

zm

0.9

1

A

−0.6

(21)

and the requirement on the multiplicative systematic is,

m0 < 10−3

0

@

As

2 × 104 deg2

1

A

−0.50

@

ng

35 amin−2

1

A

−0.50

@

zm

0.9

1

A

−0.6

.(22)

Figure 8. The ratio of bias to statistical errors when m is al-
lowed to transition between positive and negative. Here we have
set m0 = 5 × 10−3 and βm = 1. With the simple redshift evolu-
tion used in figure 7 one would conclude that this level would be
sufficient for the equation of state parameters. Allowing a more
complicated redshift evolution can however cause the biases to
dominate.

Figure 9. The shaded area (yellow) shows the tolerance envelope,
with βm = 1 and α=10. Within this zone the residual systematic
can take any form. In blue we show the systematic described in
equation 19 and the red dashed curve shows the systematic from
equation 20.
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Figure 10. Same as Results in figure 9 but for different values of
βm and αm. We have set m0 = 10−3, i.e. 5 times more stringent
than those iinfered from a simple scaling that is always positive.

In both cases we have found that the evolution with redshift
must remain weak (β < 1.5).

To illustrate this scaling relation we consider its impact
for current day surveys. Benjamin et al. (2007) have per-
formed a joint analysis of the latest cosmic shear surveys
together covering about 100 deg2 with a median redshift
of 0.78 and roughly 10 galaxies per arcmin2 on average.
From our scaling relation we see that, for this analysis, the
shear calibration m needs to be determined to a precision
of better than 3%. As we have already stated, this is close
to the limit of current shear measurement methods in sim-
ulated, therefore somewhat idealised, conditions. This un-
derscores the fact that, for future larger surveys, control of
systematic signals needs to be a priority since we are al-
ready at the point where they are likely to dominate. With
the progress currently being made in the STEP program
it is reasonable to expect the shape measurements meth-
ods to improve their accuracy for multiplicative systemat-
ics, and hence be able to keep up with ever more ambitious
surveys. For the additive requirement we find that for the
Benjamin et al. (2007) study we need σ2

sys < 3 × 10−6 and
corresponds roughly to an additive error of c ∼ 0.002 (as de-
fined in STEP (Heymans et al. 2006; Massey et al. 2007)).
While less attention has been given to additive systemat-
ics, STEP studies have shown this level is also achievable
with the best current measurement methods, assuming that
the measurements are not limited by PSF modeling and in-
terpolation. A detailed study of requirements for additive
systematics and PSF calibration will be presented in a later
paper (Paulin-Henriksson et al in prep.).

Figure 11. The root mean square error (RMSE) on the dark
energy equation of state parameter w0 as a function of survey
area. This error includes both the effects of statistical errors and
the bias induced by a systematics with a shape, Csys

ℓ
∝ dC33

ℓ
/dw0

with σ2
sys = 10−5, 10−6 and 10−7 and βa = 1. The red line shows

the uncertainty with no systematic errors.

5 CONCLUSIONS

In this paper, we have outlined a method for computing the
biases that residual systematics introduce. This approach
involves a simple extension of the Fisher matrix formalism
that is now widely used in cosmology to make error forecasts.
As an application, we have used it to study the impact that
residual systematic signals will have on future tomographic
cosmic shear measurements. Specifically, we have explored
three different types of shape systematic signal affecting to-
mographic shear power spectra: (i) additive systematics with
no redshift evolution; (ii) additive systematics with redshift
evolution; and (iii) multiplicative systematics. The require-
ment target is then to have all types of systematics close to
zero. This defines a tolerance envelope for the systematics
that allows the residual systematics errors in the power spec-
tra to be positive or negative within its limits. It is impor-
tant to note that it is the worst systematic possible within
this limit which drives the requirement, not a marginalised
average over all systematics. To this end we have investi-
gated a wide class of possible systematic shapes and used the
most constraining ones to set our systematic requirements.
In doing this, we have found that, for both the additive and
multiplicative parts, it is vital to consider systematics that
have positive and negative power spectra Csys

ℓ . For instance
we see, in the multiplicative case, that investigating only
power-law behaviour for its redshift evolution (i.e. m is al-
ways positive) can lead to a factor of 5 underestimation of
the impact of a systematic within a given tolerance win-
dow. From our calculation we are able to set the following
requirements on the survey we have considered (a DUNE-
like survey covering 20,000 sq. degrees with 35 galaxies per
arcmin−2 and a median redshift of zm = 0.9):
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• For both the additive and the multiplicative signals,
the redshift evolution needs to be weak β < 1.5, where the
errors for a given galaxy scale as (1 + z)β. This is not a
trivial requirement since the shapes of more distant galaxies
are harder to measure since they are smaller and fainter.

• The power spectrum of the residual additive shear error,
that is the part that is not correlated to the lensing signal,
must be controlled such that its amplitude is σ2

sys < 10−7

(as defined in equation 13)
• The multiplicative part needs to be controlled to a pre-

cision of m0 < 10−3, where m0 is the shear calibration error.
This means that we need to be able calibrate shears to an
accuracy of 0.1%, which is about one order of magnitude
better than the current best measurement methods are able
to achieve, as determined by the latest STEP simulations
(Heymans et al. 2006; Massey et al. 2007).

These specific requirements apply to our fiducial survey,
but we provide scaling relations (Eqs 21 and 22) which show
the requirements for any survey geometry. We have shown
that for current survey covering ∼ 100 deg2 (Benjamin et al.
2007), we need σ2

sys < 3 × 10−6 and m < 0.03. This level
of accuracy is at the limit of the performance of the cur-
rent best shear measurement methods, as demonstrated by
STEP. However, further systematics, such as that arising
from PSF calibration and interpolation, are not accounted
for by STEP and can dominate the error budget for future
surveys. A discussion of the requirements for additive sys-
tematics and PSF modeling in the context of present and
future surveys will be presented in a later paper (Paulin-
Henriksson et al., 2007, in prep).

APPENDIX A: SHEAR SYSTEMATIC ERROR
AND SYSTEMATIC POWER SPECTRUM

The shear at a position can be written as a complex number,

γ(θ, z) = γ1(θ, z) + iγ2(θ, z). (A1)

This shear field can be measured and used to construct a
set of correlation functions between the shear measured at
(θ, z) and (θ′, z′), where θ and θ′ are the angular positions
of two galaxies on the sky with θ′ = (θ + φ), and z, z′ are
their respective redshift. The two correlation functions ξ+

and ξ− can then be constructed as,

ξ+(φ, z, z′) = 〈γ1(θ, z)γ1(θ
′, z′)〉 + 〈γ2(θ, z)γ2(θ

′, z′)〉, (A2)

and

ξ−(φ, z, z′) = 〈γ1(θ, z)γ1(θ
′, z′)〉 − 〈γ2(θ, z)γ2(θ

′, z′)〉. (A3)

These real space correlation functions can be combined to
calculate the power spectrum between galaxies at a redshifts
of z and z′,

C(ℓ, z, z′) =

Z

φdφ
“

ξ+(φ, z, z′)J0(ℓφ)−ξ−(φ, z, z′)J4(ℓφ)
”

, (A4)

where J0 and J4 are the zeroth and the fourth order Bessel
functions. In weak lensing tomography, where galaxies are
divided into redshift slices, we use the notation Cij

ℓ , the
correlation function between slices at redshift zi and zj , for
C(ℓ, z, z′).

We assume that the observed shear (without noise) is a
combination of shear due to lensing plus a residual system-
atic, γobs = γlens + γsys, and that the lensing systematics
can be decomposed into an additive error and a multiplica-
tive error,

γsys(θ, z) = γadd(θ, z) + m(z)γlens(θ, z). (A5)

This is similar to the decomposition used by the STEP
collaboration (Heymans et al. 2006; Massey et al. 2007).
Putting this systematic into equation A4 we see that the
systematic power spectrum is composed of two parts, an
additive part (Cadd) and a multiplicative powerspectrum
(Cmul),

Csys(ℓ, z, z′) = Cadd(ℓ, z, z′) + Cmul(ℓ, z, z′), (A6)

where the additive power spectrum can be calculated di-
rectly from the correlation function of γadd,

Cadd(ℓ, z, z′) =

Z

φdφ
“

ξadd
+ (φ, z, z′)J0(ℓφ)−ξadd

−
(φ, z, z′)J4(ℓφ)

”

(A7)

and the multiplicative part is dependent on the lensing
power spectrum,

Cmul(ℓ, z, z′) =
“

m(z) + m(z′)
”

Clens(ℓ, z, z′). (A8)
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APPENDIX B: TABULATED BIAS RESULTS

In this section we give the results for the bias calculation of
several examples of systematics that have the same shape as
the lensing signal and systematics that resemble dCℓ/dp. As
with the results shown in figure 3, we calculate the bias in
each parameter for systematic signals that have an an am-
plitude given by σ2

sys = 10−7. Table B1 shows the results for
systematic in equation A4 (i.e. the same shape as the power
spectrum shown in the top right panel of figure 2), table B2
are for systematics in equation 16 where we specifically look
at changes in the power spectrum corresponding to small
changes in w0. These systematics are shown in the bottom
right panel of figure 2. Finally, table B3 shows other exam-
ples of systematics that are described by 16. In this case
these are the systematics shown in the bottom left panel on
figure 2
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b(Ωm)
σ(Ωm)

b(w0)
σ(w0)

b(wa)
σ(wa)

b(h)
σ(h)

b(σ8)
σ(σ8)

b(Ωb)
σ(Ωb)

b(n)
σ(n)

Csys
ℓ

∝ C11
ℓ

0.762 0.689 -0.538 -0.006 -0.716 -0.004 0.077
Csys

ℓ
∝ C12

ℓ
0.603 0.546 -0.414 -0.012 -0.563 -0.010 0.065

Csys
ℓ

∝ C13
ℓ

0.534 0.482 -0.364 -0.012 -0.499 -0.010 0.073
Csys

ℓ
∝ C14

ℓ
0.488 0.439 -0.333 -0.011 -0.457 -0.009 0.085

Csys
ℓ

∝ C15
ℓ

0.445 0.399 -0.306 -0.009 -0.419 -0.007 0.099
Csys

ℓ
∝ C22

ℓ
0.696 0.630 -0.486 -0.009 -0.652 -0.007 0.068

Csys
ℓ

∝ C23
ℓ

0.680 0.616 -0.473 -0.010 -0.636 -0.008 0.067
Csys

ℓ
∝ C24

ℓ
0.671 0.608 -0.466 -0.010 -0.628 -0.008 0.066

Csys
ℓ

∝ C25
ℓ

0.664 0.602 -0.461 -0.011 -0.621 -0.009 0.065
Csys

ℓ
∝ C33

ℓ
0.574 0.520 -0.393 -0.013 -0.536 -0.010 0.067

Csys
ℓ

∝ C34
ℓ

0.562 0.508 -0.384 -0.013 -0.524 -0.011 0.068
Csys

ℓ
∝ C35

ℓ
0.552 0.499 -0.376 -0.013 -0.515 -0.011 0.069

Csys
ℓ

∝ C44
ℓ

0.514 0.464 -0.350 -0.012 -0.481 -0.010 0.077
Csys

ℓ
∝ C45

ℓ
0.501 0.452 -0.341 -0.012 -0.468 -0.010 0.079

Csys
ℓ

∝ C55
ℓ

0.469 0.422 -0.321 -0.010 -0.440 -0.009 0.090

Table B1. The ratio of bias to marginalised statistical errors for each parameter from a systematic that has the same shape as the
lensing correlation function and σ2

sys = 4 × 10−7. These are the systematic signals shown in the top right panel of figure 2.

b(Ωm)
σ(Ωm)

b(w0)
σ(w0)

b(wa)
σ(wa)

b(h)
σ(h)

b(σ8)
σ(σ8)

b(Ωb)
σ(Ωb)

b(n)
σ(n)

Csys
ℓ

∝ dC33
ℓ

/Ωm 0.557 0.466 -0.330 -0.015 -0.416 -0.014 0.070
Csys

ℓ
∝ dC33

ℓ
/dw0 -1.325 -1.089 0.885 -0.026 1.034 -0.028 -0.134

Csys
ℓ

∝ dC33
ℓ

/dwa -0.188 -0.150 0.171 -0.030 0.163 -0.030 0.072
Csys

ℓ
∝ dC33

ℓ
/dh 0.237 0.203 -0.111 -0.026 -0.166 -0.026 0.050

Csys
ℓ

∝ dC33
ℓ

/dσ8 0.639 0.537 -0.381 -0.015 -0.475 -0.015 0.042
Csys

ℓ
∝ dC33

ℓ
/dΩb -0.237 -0.203 0.111 0.026 0.166 0.026 -0.050

Csys
ℓ

∝ dC23
ℓ

/dn 0.186 0.160 -0.090 -0.022 -0.133 -0.021 0.126

Table B2. The ratio of bias to Fisher matrix errors for each parameter from a systematic that is similar to the change in C33
ℓ

caused by

a small change in each of the cosmological parameters. The systematic correlations all have σ2
sys = 4 × 10−7. These are the systematic

signals shown in the bottom left panel of figure 2.

b(Ωm)
σ(Ωm)

b(w0)
σ(w0)

b(wa)
σ(wa)

b(h)
σ(h)

b(σ8)
σ(σ8)

b(Ωb)
σ(Ωb)

b(n)
σ(n)

Csys
ℓ

∝ dC11
ℓ

/dw0 -0.492 -0.386 0.409 -0.064 0.422 -0.065 -0.193
Csys

ℓ
∝ dC12

ℓ
/dw0 -0.763 -0.615 0.577 -0.059 0.625 -0.060 -0.179

Csys
ℓ

∝ dC13
ℓ

/dw0 -0.794 -0.642 0.595 -0.057 0.647 -0.058 -0.168
Csys

ℓ
∝ dC14

ℓ
/dw0 -0.789 -0.638 0.590 -0.055 0.643 -0.056 -0.160

Csys
ℓ

∝ dC15
ℓ

/dw0 -0.756 -0.611 0.568 -0.054 0.617 -0.055 -0.150
Csys

ℓ
∝ dC22

ℓ
/dw0 -1.202 -0.985 0.833 -0.042 0.949 -0.043 -0.149

Csys
ℓ

∝ dC23
ℓ

/dw0 -1.274 -1.046 0.869 -0.035 1.000 -0.036 -0.138
Csys

ℓ
∝ dC24

ℓ
/dw0 -1.276 -1.048 0.866 -0.033 1.000 -0.034 -0.129

Csys
ℓ

∝ dC25
ℓ

/dw0 -1.250 -1.027 0.849 -0.032 0.980 -0.033 -0.118
Csys

ℓ
∝ dC33

ℓ
/dw0 -1.325 -1.089 0.885 -0.026 1.034 -0.028 -0.134

Csys
ℓ

∝ dC34
ℓ

/dw0 -1.287 -1.058 0.854 -0.023 1.003 -0.025 -0.130
Csys

ℓ
∝ dC35

ℓ
/dw0 -1.286 -1.056 0.852 -0.023 1.002 -0.025 -0.125

Csys
ℓ

∝ dC44
ℓ

/dw0 -1.185 -0.973 0.782 -0.020 0.923 -0.022 -0.130
Csys

ℓ
∝ dC45

ℓ
/dw0 -1.177 -0.966 0.777 -0.022 0.918 -0.023 -0.134

Csys
ℓ

∝ dC55
ℓ

/dw0 -1.187 -0.973 0.787 -0.025 0.928 -0.026 -0.145

Table B3. The ratio of bias to Fisher matrix errors for each parameter from a systematic that is similar to the change in Cij
ℓ

corresponding
to a small change in w0. As before, we use σ2

sys = 4 × 10−7. These are the systematic signals shown in the bottom right panel of figure
2.
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