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ABSTRACT

Sgr A* is thought to be the radiative manifestation of a ∼ 3.6 × 106 M⊙ supermassive black hole
at the Galactic center. Its mm/sub-mm spectrum and its flare emission at IR and X-ray wavelengths
may be produced within the inner ten Schwarzschild radii of a hot, magnetized Keplerian flow. The
lightcurve produced in this region may exhibit quasi-periodic variability. We present ray-tracing
simulations to determine the general-relativistically modulated X-ray luminosity expected from plasma
coupled magnetically to the rest of the disk as it spirals inwards below the innermost stable circular
orbit towards the “stress edge” in the case of a Schwarzschild metric. The resulting lightcurve exhibits
a modulation similar to that observed during a recent X-ray flare from Sgr A*.
Subject headings: accretion—black hole physics—Galaxy: center—magnetohydrodynamics—

plasmas—Instabilities

1. INTRODUCTION

Sgr A*’s time-averaged spectrum is roughly a power
law below 100 GHz, with a flux density Sν ∝ να,
where α ∼ 0.19–0.34. In the mm/sub-mm re-
gion, however, Sgr A*’s spectrum is dominated by
a “bump” (Zylka et al. 1992), indicative of two dif-
ferent emission components (Melia et al. 2000; Agol
2000). Higher frequencies correspond to smaller
spatial scales (Melia 1992; Narayan et al. 1995), so
the mm/sub-mm radiation is likely produced near
the black hole (BH). X-ray flares detected from
Sgr A* (Baganoff et al. 2001; Goldwurm et al. 2003;
Porquet et al. 2003; Bélanger et al. 2005) may also have
been produced within this compact region, either from
a sudden increase in accretion accompanied by a reduc-
tion in the anomalous viscosity, or from the quick ac-
celeration of electrons near the BH (Liu & Melia 2002;
Liu et al. 2004). The energized electrons may also mani-
fest themselves via enhanced emission in a hypothesized
jet (Markoff et al. 2001, and references cited therein).

Near-IR flares detected from Sgr A* appear to be mod-
ulated with a variable period ≈ 17 minutes (Genzel et al.
2003; Eckart et al. 2006; Meyer et al. 2006; Eckart et al.
2007). The X-ray and near-IR flares may be coupled via
the same electron population, so one may expect simi-
larities in their lightcurves. A long X-ray flare detected
with XMM-Newton in 2004 also appears to have a mod-
ulated lightcurve, though not characterized by a fixed
period (Bélanger et al. 2008). If real, the modulation in
both the near-IR and X-ray events is almost certainly
quasi-periodic rather than periodic, with a decreasing
cycle from start to end. But are the fluctuations due
to a single azimuthal perturbation (i.e., a “hotspot”),
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or from a global pattern of disturbance with a speed
not directly associated with the underlying Keplerian
period (Tagger & Melia 2006; Falanga et al. 2007)? In
this Letter we examine the nature of the observerd quasi-
period, and focus on its implications for the flow of mat-
ter through the innermost stable circular orbit (ISCO). A
principal result of this study is a ray-tracing simulation
of the general-relativistically (GR) modulated lightcurve
produced as the disrupted plasma spirals inwards to-
wards the disk’s “stress edge” (Krolik & Hawley 2002).

2. BACKGROUND

Magnetohydrodynamic (MHD) simulations of Sgr A*’s
disk demonstrate the growth of a Rossby-wave instabil-
ity, enhancing the accretion rate for several hours, pos-
sibly accounting for the observed flares (Tagger & Melia
2006). The lightcurve produced by GR effects during
a Rossby-wave induced spiral pattern in the disk fit
the data relatively well, with a quasi-period associated
with the pattern speed rather than the Keplerian mo-
tion (Falanga et al. 2007). However, MHD simulations
of black-hole accretion suggest that magnetic reconnec-
tion might take place within the plunging region, due to
the presence of a non-axisymmetric spiral density struc-
ture, initially caused by the magnetorotational instability
(MRI) associated with differential rotation of frozen-in
plasma (see, e.g., Hawley 2001).

In this case, the accreting flow is no longer Keplerian
because of a radial velocity component. If Sgr A*’s quasi-
period of ∼ 17–25 minutes is associated with this kind of
process rather than a pattern rotation, it would place the
corresponding emission region at 0.73–0.94 rISCO radii,
below the ISCO (where rISCO = 3rs = 6GM/c2) for a
Schwarzschild BH. Theoretically, we may therefore dis-
tinguish the ISCO from the radius at which the inspiral-
ing material actually detaches from the rest of the mag-
netized disk—the so-called stress edge (Krolik & Hawley
2002). The X-ray modulation would then be associated
with the ever-shrinking period of the emitting plasma as
it spirals inwards from the magnetic flare.

Interest in “hotspots” began in the early 1980’s in con-
nection with quasi-periodic flux modulations observed in
BHs accreting from a binary companion. The hotspots
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are possibly overdense emission regions associated with
magnetic instabilities. But even with a hotspot, a New-
tonian disk does not produce a modulation since its
aspect does not affect the total luminosity observed
from it. Other than a dynamical periodicity (such as
that due to an azimuthal, radial, or vertical oscillation),
only GR effects can produce time-dependent photon tra-
jectories resulting in a modulated lightcurve (see e.g.
Cunningham & Bardeen 1973; Abramowicz et al. 1991;
Karas & Bao 1992; Hollywood et al. 1995; Falcke et al.
2000; Bromley et al. 2001). Even so, the “standard”
disk picture of hotspot modulation has been based on
Keplerian motion, for which one then expects a time
variability directly related to the Keplerian frequency.
Here, the modulation is not associated with such a fixed
Keplerian frequency, but from a shrinking orbit and a
monotonically decreasing period (see § 3). The relevance
of hotspots has already appeared in (Hollywood et al.
1995; Meyer et al. 2006; Eckart et al. 2007; Melia 2007,
for review). What is lacking, however, is a non Keplerian
treatment of the motion with the intent of probing the
stress edge itself.

So where exactly is the inner edge of the accretion
disk in Sgr A*? This is a question asked in a broader
context by Krolik & Hawley (2002), whose MHD simu-
lations of the plunging region in a pseudo-Newtonian po-
tential identified several characteristic inner radii. Here,
we assume a non-spinning BH, so our model pertains
solely to the Schwarzschild case.

The monotonic decrease of the period during the flares
suggests that we are witnessing the evolution of an
event moving inwards across the ISCO. The inflow time
scale, tinflow, which determines the rate at which plasma
can move from one orbit to another, is given by τv =
rg/vinflow ≈ 9.6 (r/rg)

1/2 minutes (Liu & Melia 2002)
and is approximately 23.5 minutes at r = 3rs = 6rg, cor-
responding to the ISCO for a non-rotating (i.e., a/rg = 0)
BH. This time scale does not explicitly depend on a vis-
cosity parameter since the viscosity is directly tied to
the MRI physical process via the induced Maxwell stress
(Liu & Melia 2002). The inflow time scale defined here
characterizes local processes occurring within the inner-
most portion of the disk during the flares. By compar-
ison, the dynamical time scale, td ≈ 1.3 (r/rg)

3/2, is
roughly 19 minutes at this radius (Liu & Melia 2002).
Thus, the azimuthal asymmetry giving rise to the mod-
ulated flux during the flare may be due to a transient
event associated with either a dynamical or viscous pro-
cess close to the ISCO (Melia et al. 2001).

For a BH mass of 3.6 × 106 M⊙, the inflow time scale
at r ≈ 2.5 rs (inferred from the average period) is just
slightly larger than the average period, so the event could
be due to the sudden reconfiguration of magnetic field
lines frozen into plasma rapidly approaching the ISCO
and then flowing across it towards the event horizon.
Matter flowing past the ISCO may still remain “magnet-
ically” coupled to the outer accretion flow, so a dynami-
cally more meaningful radius is the so-called stress edge,
where plunging matter loses dynamical contact with the
material farther out (Krolik & Hawley 2002). This may
simply be defined as the surface on which the inflow speed
first exceeds the magnetosonic speed.

In their simulations, Krolik & Hawley (2002) deter-
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Fig. 1.— Upper panel: The stress edge radius, rstress, in units
of rISCO, as a function of κ, the exponent in the power-law formu-
lation of Ω(r). The dotted and dashed curves represent a period of
17 and 25 minutes, respectively, using a black-hole mass of 3.6×106

M⊙ (Schödel et al. 2003). Lower panel: The corresponding ratio
of accreted specific angular momentum, jin, to the specific angular
momentum at the ISCO.

mined that this surface occurs somewhere between
0.77rISCO and rISCO. The specific angular momen-
tum j = r2Ω(r), in terms of the orbital angular fre-
quency Ω(r), continues to fall below rISCO, though Ω
may not necessarily trace its Keplerian value, ΩK(r) ≡
(GM/r3)1/2. In the absence of any magnetic coupling
across rISCO, matter would retain all of its specific an-
gular momentum at the ISCO, so that the accreted
value of j, which we will call jin, would then simply be
jin = r2ISCO ΩK(rISCO). Instead, the MHD simulations
show that jin ≈ 0.95 j(rISCO), for which rstress is then
∼ 0.8 rISCO, within the range of values indicated by the
location of the trans-magnetosonic surface.

If the period in Sgr A* is decreasing monotonically,
j(r) will not follow its Keplerian value below rISCO.
Therefore we will adopt the formulation Ω(r) = Ω0 r

−κ

to fit the data in § 3. Clearly, κ = 3/2 corresponds to Ke-
plerian rotation; κ is 2 in the extreme case of angular mo-
mentum conservation. A reasonable fit to the data would
therefore be associated with 3/2 ≤ κ ≤ 2. At the bound-
ary rISCO, we expect Ω = ΩK , which then forces the

constant Ω0 to have the value c
√
rg r

κ−3/2
ISCO . We calculate

rstress using the quasi-periods 17 and 25 minutes emerg-
ing from the X-ray lightcurve (see § 3), and this is plotted
as a function of κ in Fig. 1. The radius rstress falls within
the range 0.73–0.96 rISCO for all permitted values of κ.
The corresponding accreted specific angular momentum,
for the same parameters as used before (see Fig. 1), is
0.85 j(rISCO) ≤ jin ≤ j(rISCO) as a function of κ. The ra-
tio jin/j(rISCO) = 0.95 from the MHD simulations would
require κ ∼ 1.8, for which rstress ∼ 0.77 rISCO. These
results are consistent with the MHD simulations, indi-
cating that the infalling plasma below the ISCO remains
magnetically coupled to the outer disk, though the dissi-
pation of angular momentum is not quite strong enough
in this region to force the gas into Keplerian rotation.

3. THE INSPIRALING PLASMA MODEL

With Ω(r) known, we now incorporate strong gravita-
tional effects in a geometrically and optically thin disk,
describing the inspiraling disturbance using coordinates
(r, θ, ϕ) in the co-rotating frame. In Fig. 2, we show
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the inspiraling trajectory and duration of the emitting
plasma. The observer is located at infinity with a viewing
angle i relative to the z′-axis in the non-rotating frame,
at (observer) polar coordinates (r′, θ′, ϕ′). The deflection
angle of a photon emitted by plasma in the inspiraling re-
gion is ψ, varying periodically with cos ψ = cos i cos ϕ,
for a disk in the plane θ = π/2. Also, for G = c = 1,
the BH’s horizon occurs at rs = 2M , and the last stable
orbit is located at rISCO = 3rs.
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Fig. 2.— Upper panel: The inspiraling trajectory of the hotspot,
beginning at rISCO and terminating at 0.74rISCO. The dotted
circle represents the location of the event horizon. Lower panel:
The period as a function of the stress radius for the two extreme
values of κ adopted here, assuming a black-hole mass of 3.6 ×
106 M⊙.

We calculate the lightcurve using a full ray-tracing al-
gorithm (see Luminet 1979; Falanga et al. 2007). The
disk from rISCO to 90rs is an unperturbed, Keplerian
flow, with angular velocity ΩK, and with specific angular
momentum jK = r2uϕ/ut = r2ΩK. The corresponding
four-velocity of the effective flow is then (ut, ur, uθ, uϕ) =
ut(1, 0, 0,ΩK), where ut = (1−3M/r)−1/2 (Misner et al.
1973). The accretion flow is no longer Keplerian below
the ISCO.

Triggering a perturbation induces an azimuthal asym-
metry in the region rstress ≈ 0.73 < r < 0.9rISCO. Below
rISCO, we use a simple representation of the bulk veloc-
ity field, in which Ω(r) = uϕ

sw/u
t
sw, as described e.g., in

Fukumura & Tsuruta (2004):

vr
sw = −Are

−(r−rstress)/∆sw sinγ0 [kr(r−rstress)+mϕ/2−ϕsw/2] .
(1)

In this case, the specific angular momentum is jin =
r2uϕ

sw/u
t
sw = Ω0r

2−κ. The subscript “sw” denotes
the spiral wave, and the number m is the azimuthal
wavenumber, fixed to be m = 1 for a single-armed spiral
wave. The constant γ0 = 2 is the width of the spiral
wave, Ar = 0.1 and Aϕ = 0.1 are the amplitudes cho-
sen to be relatively small, kr characterizes a tightness
(i.e., the number of windings) of the spiral, and the ef-
fective radial range of the spiral motion is controlled by
∆sw = 30, and ϕsw = 0 denotes the phase of the spi-
ral. Since (ur

sw, uϕ
sw) is not axisymmetric, the net ve-

locity field is also non-axisymmetric. For the effective
flow then, (ut

sw, u
r
sw, u

θ
sw, u

ϕ
sw) = ut

sw(1, vr
sw, 0,Ω0 r

−k),
where ut

sw = [(1− 2/m)− (1− 2m/r)−1(vr
sw)2 − r2Ω]1/2,

corresponding to the four-vector normalization condition
gα,βu

αuβ = −1.
We consider four GR effects: (i) light-bending, (ii)

gravitational Doppler effect defined as (1+z), taking into
account the non-axisymmetric radial and azimuthal com-
ponents below rISCO, (iii) gravitational lensing, dΩobs =

b db dϕ/D2 (withD the distance to the source), expressed
through the impact parameter, and (iv) the travel time
delay. The relative time delay between photons arriv-
ing at the observer from different parts of the disk are
calculated from the geodesic equation. The first pho-
ton arrives from phase ϕ = 0 and r = rISCO, and defines
the reference time, T0, which is set to zero. The observed
time is then the orbital time plus the light-bending travel
time delays, i.e., Tobs(ϕsw, r, i) = Ω−1(r)ϕsw + ∆TGR.

The observed flux at energy E′ is Fobs(E
′) =

Iobs(E
′)dΩobs, where Iobs(E

′) is the radiation intensity
observed at infinity and dΩobs is the solid angle on the
observer’s sky including relativistic effects. Using the
relation Iobs(E

′, α′) = (1 + z)−3Iem(E,α), a Lorentz in-
variant quantity that is constant along null geodesics in
vacuum, the intensity of a light source integrated over
its effective energy range is proportional to the fourth
power of the redshift factor, Iobs(α

′) = (1+z)−4Iem(r, ϕ),
Iem(r, ϕ) being the intensity measured in the rest frame
of the inspiraling disturbance (Misner et al. 1973). The
disk radiates an inverse Compton spectrum, Iem, calcu-
lated using the parameter scalings, rather than their ab-
solute values. The spectrum parameters are (Melia et al.
2001) the disk temperature, T (r), the electron number
density, ne(r), the magnetic field, B(r), and the disk
height H(r). This procedure gives correct amplitudes in
the lightcurve, though not the absolute value of the flux
per se.

The synchrotron emissivity is therefore js ∝ B nnt ∝
B T ne, where the nonthermal particle energy is roughly
in equipartition with the thermal. The X-rays are pro-
duced via inverse Compton scattering from the seed pho-
ton number flux. Thus, with Lseed ∝ r3 js, where js is
the synchrotron emissivity in units of energy per unit
volume per unit time, the soft photon flux scales as the
emitted power divided by the characteristic area. That
is, Fseed ∝ r3 js/r

2 = rjs, which is going to be roughly
the same scaling as the seed photon density, so nseed ∝
rjs ∝ r B T ne. The inverse Compton scattering emis-
sivity is therefore jic ∝ nnt nseed ∝ (T ne)

2 r B. Thus,
jx ∼ jic, and the surface intensity is Iem ∝

∫
jxds ∝ jxH ,

which gives finally Iem ∝ (T ne)
2 r B H .

The flux at a given azimuthal angle ϕ and radius r
is calculated from a numerical computation of ψ(α), fol-
lowed by a calculation of the Doppler shift, lensing ef-
fects, and the flux Fobs as a function of the arrival time.
For the persistent emission we use the best fit spec-
tral parameters to the Chandra data (Melia et al. 2001;
Baganoff et al. 2001), described above as a surface emis-
sivity Iem. The observed flare normalized flux is modeled
with two polynomials, one between 0–100 minutes and
the second from 100-160 minutes (see also Meyer et al.
2006). The value kr is fixed at 11 to have the six observed
cycles (see Fig. 3, solid line). The free parameters to fit
the data are the inclination angle i and the κ value. The
integrated flux is calculated for an extended spiral wave
90◦ long in the azimuthal direction and ∆r = 0.28rg in
the radial direction, plus the persistent emission. The
MHD simulations show that in the innermost part of the
disk a spiral-arm often expands out to ∼ 90◦ (see, e.g.,
Hawley 2001). The radial extent of the inspiraling region
is set by the observed condition that six cycles should fit
within the overall migration of the plasma from the ISCO
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to the stress edge. In Fig. 3 (solid line), we show the best
fit model for 72 ± 3◦ and κ = 1.7 ± 0.05.
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Fig. 3.— Lightcurve of the August 31, 2004 flare in the 2–10 keV
energy band (Bélanger et al. 2008), normalized with the observed
mean count rate of 0.231 cts s−1 for the flare duration. The best
fit model for an inspiraling disturbance is shown by the solid line
using an inclination angle 72◦ and κ = 1.7. The dotted curve
represents a constant Keplerian period at the last stable orbit, i.e.,
rISCO, i = 72◦, and κ = 1.5. Panels (a) and (b) show the residuals
(in units of sigma) of the inspiraling and constant-period model,
respectively, compared to the data.

4. CONCLUSION

If we adopt the simple view that the last period cor-
responds to the ISCO, then Sgr A* with a mass of
3.6×106 M⊙ must be spinning at a rate a/rg & 0.2−0.4.
With a more realistic analysis of the magnetic coupling
between matter in the plunging region and that beyond
the ISCO, we conclude that the peak of the instability
probably occurs at ∼ 0.97rISCO, where the period is ∼ 25
minutes, and the flaring activity continues as the plasma
spirals inwards, ending several orbits later when the mat-
ter crosses the stress edge at ∼ 0.8rISCO.

The significance of the fit for an inspiraling distur-
bance is χ2/d.o.f. = 92.4/39, compared to χ2/d.o.f. =
285.2/46 for a fixed Keplerian period (see dotted curve
in Figure 3). An inspiraling disturbance is preferred over
a fixed orbit by a factor 2.6 in the reduced χ2. The resid-
uals in the lower panels of Figure 3 show that the model
using a fixed period produces modulations that are pro-
gressively shifted in phase with respect to the data, by
as much as ∼ 16.5 minutes by the end of the flare. The
inspiraling model, on the other hand, follows the evolu-
tion of the flare and therefore fits the data much better.
Plasma on such an orbit also produces a constant pulsed
fraction= (Imax−Imean)/(Imax+Imin) of ∼ 9%, compared
with a linear increase from ∼ 9% to ∼ 11% for the in-
spiralling wave; this effect is due to a radially-dependent
gravitational lensing effect. Together, these two effects
render the inspiraling scenario a better explanation for
the data than the fixed orbit disturbance.
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