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Abstract. 
A simple method to compute numerically the lowest eigenmodes of the Laplacian in compact 
orientable hyperbolic spaces of dimension 3 is presented. It is applied to the Thurston 
manifold, the Weber-Seifert manifold, and to the spaces whose fundamental domain is a 
regular icosahedron.  
 
 
1  Introduction. 
 
Compact hyperbolic spaces are chaotic system for classical trajectories, but as quantum 
systems, there exists well defined solutions. Although the Cosmic Microwave Background 
anisotropy data suggest a locally flat universe, nothing is really known about its global 
structure. Compact hyperbolic spaces may still be an attractive possibility, and there is an 
infinity of them. The calculation of the observed anisotropies requires to know the 
eigenmodes of the Laplacian. In this note we present a simple method to compute numerically 
the lowest eigenvalues of the Laplacian (for scalar functions) in compact orientable 
hyperbolic spaces of dimension 3. It  also provides approximate eigenfunctions as expansions 
on known functions. The method is applied to the Thurston manifold, in order to compare 
with the results of [4], the Weber-Seifert manifold, and to the spaces whose fundamental 
domain is a regular icosahedron. This last example allows to compare spaces having the same 
fundamental domain but completely different structures. 
 
 
2  Compact hyperbolic manifolds. 
 
The hyperbolic n dimensional space H n  is defined as the « upper part » of the sphere of 

radius 
 

K  in the Minkowski space M n+1 . More precisely, if  xα{ } are cartesian coordinates 

in   M n+1   with origine O  , M  H n  is the surface defined by :  

                                                
  

xα xα − xn xn = K
α =0

n−1

∑

with :   K < 0  and 
 
xn ≥ K  . We set : R = K   and use « spherical » coordinates. For H 3  

in   M 4  : 

                                                 
*  Retired from DSM/DAPNIA/SPP  since October 1, 2007. This work was begun at the end 
of  2006. 
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                                                (1) 

  

x0 = R shχ c ; c = cos(θ ) , s = sin(θ )
x1 = R shχ s cϕ ; cϕ = cos(ϕ ) , sϕ = sin(ϕ )

x2 = R shχ s sϕ
x3 = R chχ

Then the linear element of   H 3  is : 
      

  
      (2) ds2 = (dx0 )2 + (dx1)2 + (dx2 )2 − (dx3)2 = R2 dχ 2 + sh2χ ((dθ)2 + s2(dϕ)2 )⎡⎣ ⎤⎦

                                                                                                                 
The coordinates (χ, θ,ϕ )  are the Riemann normal (spherical) coordinates with origine at 

 χ = 0  , which corresponds to the point  in (0,0,0, R) M 4  .  
In the following   is the metric tensor and  its inverse, whatever the coordinate system 

used. The curvature tensor is : 

gα β gα β

  
Rα βγ δ = −

1
R2 (gαγ gβδ − gαδ gβγ )  , the  Ricci tensor is  : 

  
Rα β = −

2
R2 gα β   and the scalar curvature :  RH = −

6
R2  . From now on, we set R = 1. 

 
 H n  is simply connected. From theorem 2.4.10 of [1] :  a manifold M n  of dimension  and 
negative constant curvature is complete and connected if and only if it is isometric to a 
quotient     where  is a group of  isometries of  

n

H n / Γ Γ H n  acting freely and properly 
discontinuously. 
  is a subgroup of the component of O  which preserves Γ (n,1) H n . It is called the group of 
deck transformation.  H n  is the universal covering of  M n . 
 
In the following we shall consider 3-dimensional compact and orientable manifolds only. 
The elements of the group   are screw motions. A screw motion is the product of a 
transvection and a rotation.  

Γ
H n , which is of constant curvature, is a symetric space. A 

transvection in a symetric space is an isometry which generalises the notion of translation. It 
is defined as the product of two successive symetries whith respect to two different points   
and 

A
B  . The geodesic going through these two points is invariant and is called base geodesic. 

In   H 3  one can perform a rotation around this geodesic. The transvection and this rotation 
commute and the base geodesic is invariant. The product of two screw motions is still a screw 
motion. In the following we shall call  the generators of  γ i Γ  and  the corresponding base 
geodesics. The base geodesic of  a motion 

gi

γ ∈Γ   is given by the intersection of the invariant 
plane, associated to the real eigenvalues of the matrix representing γ  in M 4  , with H 3  . 
 
We shall call  the « length » of the transvection, which is twice the distance between   
and 

L A
B  . A point whose spherical coordinates are ( χ,θ,ϕ, c = cos(θ ) ) is transformed by a 

transvection along Oz  into a point of coordinates ( χ ',θ ',ϕ ', c ' = cos(θ ') )  given by : 
                                   ch(χ ') = ch(χ )ch(L) + sh(χ )sh(L)c  
                                c ' = ( ch(χ)sh(L) + csh(χ)ch(L) ) sh(χ ')                                             (3) 
                                                         ϕ ' = ϕ  
 
We shall also use cylindrical coordinates wich we define as follows : 
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The z  coordinate of a point M  is given by the orthogonal projection of that point on the Oz  
axis. The distance between M  and that projection is the radius ρ . The azimuth ϕ  is the same 
as for the spherical coordinates. The linear element is given by : 
                                                                                   (4) ds2 = (dρ)2 + ch2ρ (dz)2 + sh2ρ (dϕ )2

The two sets of coordinates are related by : 
                        chχ = chρ chz     ,     thz = c thχ     ,    shρ = s shχ  
In cylindrical coordinates the action of a transvection along Oz  is simple and given by : 
                                       ρ ' = ρ , z ' = z + L , ϕ ' = ϕ                                                   (5) 
In the following, we shall call respectively  and Li ω i  the length and the rotation angle of the 
screw motion . γ i

 
 
3  Eigenmodes of the Laplacian. 
 
We consider only scalar functions (real or complex), not differential forms, and call  the 
functions defined on   

Φ
M 3 . The Lapacian is : 

                                           
  
ΔΦ =

1
g
∂α ( gα β g ∂βΦ )                                                  (6) 

where  is the determinant of   . g gα β

The function can be considered as a periodic function defined on Φ H 3  (we give the same 
name) satisfying : 
                                                          Φ(γ x) = Φ(x)                                                         (7) 
for any point x  of    H 3   and any element γ  of  Γ . This condition is equivalent to : 

 for any generator  and their inverse. In particular, Φ(γ i x) = Φ(x) γ i Φ  must be periodic on 
the base geodesics. 
 
Since the Laplacian commutes with any isometry we can search for functions which are 
eigenfunctions of the Laplacian and of some commuting subset of  Γ . We shall consider  
commuting subsets of Γ  of the form (  for some  and γ i )p i p∈  . We shall choose, for i , 
the isometry which has the longest transvection, although this is not necessary, and consider 
its base geodesic as the polar axis for spherical or cylindrical coordinates. For the rest of this 
note, we rename the generators such that  becomes the one with the longest transvection 
and such that its base geodesic  defines the Oz  axis of the spherical coordinates (this is 
always possible by performing a transvection and a rotation around the origin). 

γ 0

g0

 
In cylindrical coordinates functions of the form : 
                                ( , , ) exp( ( ))z zI i zμ ν ρ μ νϕΦ ∼ +         ,       ν  integer                   (8) 
are invariant under the action of   provided that :  γ 0 μz L0 +νω0 = 2π mz  , where  is an 
integer. This last constraint defines 

mz

μz . 
 
At this stage one has two possibilities. Either one expands Φ  on the known basis of 
eigenfunctions of the Laplacian in spherical coordinates, or one keeps on using cylindrical 
coordinates. 
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Spherical coordinates. 
 
 With equation (2) in mind we naturally try to use a basis of eigenfunctions of  in spherical 
coordinates. The solutions are known and of the form (

Δ
β  real) : 

                                      ,   ΔΦ = − (1+ β 2 )Φ ( ) ( , )l m
lYβφ χ θΦ ϕ                                   (9) 

 where  Y  are the usual spherical harmonic functions, l
m (θ,ϕ) 1 ( )l B

sh
μ

β λφ χ
χ

 , and  

are Legendre functions with 

Bλ
μ (χ)

λ = −
1
2
+ iβ  and  μ = −

1
2
− l  (see [2] for instance). The solution 

Φ = Constant  corresponds to the 0 eigenvalue, and will not be considered anymore. These 

functions are regular and for example : φβ
0 =

sin(βχ )
β shχ

. 

An infinitesimal transvection along Oz  has the form : 

                      Φ(x ') = Φ(x) + ε T Φ , T = c∂χ +
chχ
shχ

s2 ∂c                                      (10a) 

while in cylindrical coordinates it is simply :    T = ∂z                                                  (10b) 
The expression of  the transvection component of  is the exponentiation of the operator γ 0 T . 
 
A rotation by an angle ω  is simply : χ → χ , θ →θ , ϕ →ϕ +ω  . 
Using the recurrence relations for the Legendre functions [2], one obtains : 
 

         
(2l +1) T (φβ

l Y l
m ) = (l + m)

2l +1
2l −1

l − m
l + m

φβ
l−1 Y l−1

m

− (l +1− m) (β 2 + (l +1)2 )
2l +1
2l + 3

l +1+ m
l +1− m

φβ
l+1 Y l+1

m

            (11) 

 
It is then possible to build functions that are eigenfunctions of  Δ  and  . We write such 
functions as :   

γ 0

,
( , , ) exp( ( )) ( ) ( , )l m

l mz z l
l m

I i z a Yβμ ν ρ μ νϕ φ χ θ ϕΦ + =∑  .  The orthogonality 

of the  on  implies eiνϕ 0,2π[ ] m = ν , and by applying twice the operator T  to both members 

of the latter equation one has : −μz
2Φ = al m T 2 φβ

l (χ) Y l
m (θ,ϕ )( )

l ,m
∑  which, using (11), gives a 

matrix equation for the calculation of the al m  coefficients. 
 
Unfortunately, although these equations are simple, their use in numerical calculations meets 
important problems as we explain now. 
Let us consider the example of the Weber-Seifert manifold which has a high degree of 
symetry. Its fondamental domain is a regular dodecahedron. The transvection of the 
generators  have all the same length, and their rotation angles are all equal to 3γ i π 5 . Their 
base geodesics go through the origin, and through the middle of the corresponding faces. The 
generators can be deduced from one another by simple rotation around the origin : 

 . Therefore it seems that spherical coordinates are well suited to study that case. γ j = Rγ i R−1
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As said above, Φ  must be periodic on the base geodesics of the generators , and, on them,  
we can expand  Φ  as : Φ =   where : 

γ i

rj∑ ei k j χ k j = 2π j L  and j  is an integer .  By analogy 
with the spherical Bessel functions, one can write : 
                                                                                               (12) ei kχ = il (2l +1)bl

l
∑ φβ

l (χ)

By derivating twice both members of this equation and using the Legendre function 
recurrence relations, the b  cofficients are related by : l

                                                                           (13) k (2l +1)bl = (l +1)bl+1 + l(β 2 + l2 )bl−1

                            b0 = 1 , b1 = k , b1 = 1
2 (3k 2 − (1+ β 2 )) , ... 

When one wants to implement this numerically, because of the shape of the functions  
the number of terms necessary for 

φβ
l (χ)

χ  larger than 2,  increases very rapidly. But at high  
values and for 

l
χ  smaller than or of the order of 1, the recurrence relations used to compute 

these functions fail, unless one uses 128 bits calculations. For these reasons we have worked 
with  cylindrical coordinates. 
Note that, in the case ν = 0  , the coefficients al m  are simply :  

                                   al 0
Yl

0 (c = 1)
Y 0

0 = (2l +1) il bl (k =
2πmz

L
)  

 
 
Cylindrical coordinates. 
 
In cylindrical coordinates the Laplacian takes the form : 

                  1
shρ chρ

∂ρ (shρ chρ ∂ρΦ) +
1

ch2ρ
∂z

2Φ +
1

sh2ρ
∂ϕ

2Φ = −(1+ β 2 )Φ  

and inserting (8) : 

                    
1

shρ chρ
∂ρ (shρ chρ ∂ρ I ) −

μz
2

ch2ρ
I −

ν 2

sh2ρ
I = −(1+ β 2 ) I                        (14) 

 
The radial function has the following properties : 
 
For ρ→ 0   we set : I = q(u) chρ   where : u = shρ  . With that, (14) looks like a Bessel 
function when 1ρ , and one has the following expansion : 
                                                                         (15) q = uα (1+ a1 u + a2 u2 + ...+ ap u p + ...)
with : α = ν  (in order to have a regular function at ρ = 0 ) , a2 p+1 = 0  ,  

                 ,  4(ν +1) a2 = μz
2 + 1− (β 2 + ν 2 )

                ,  … 8(ν + 2) a4 = a2 (μz
2 +1− β 2 − ν 2 ) + (β 2 + ν 2 − 2(μz

2 + 1))
(4) may suggest also to make the variable change u = thρ  and try an expansion of the form : 
                              I = uα (1+ a1 u + a2 u2 + ...+ ap u p + ...)
one obtains coefficients which are very similar to the above ones :  α = ν  (in order to have a 
regular function at ρ = 0 ) ,  ,  a2 p+1 = 0

                 ,  4(ν +1) a2 = μz
2 + ν 2 − (1+ β 2 )

                ,  … 8(ν + 2) a4 = a2 (μz
2 + ν 2 − (1+ β 2 )) + (μz

2 + ν 2 − 2(1+ β 2 ))
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but the former expansion (with u = shρ ) has better convergence properties, in the parameter 
domain in which we have used them. 
 
For ρ → ∞   we set : I = q(ρ) shρ chρ   (this is suggested by the fact that, assymptotically, 

we expect an oscillating function and that g = shρ chρ ). The radial equation becomes : 

                             ∂ρρ q + β 2 q −
(μz

2 + 1
4 )

ch2ρ
q −

(ν 2 − 1
4 )

sh2ρ
q = 0                                          (16) 

We write : q = A cos(S)  , the radial function has the following assymptotic expansion : 

                         A = A0 (1+
a2

ch2ρ
+

a4

ch4ρ
+ ...)    ,    dS

dρ
=

β
(A A0 )2                                 (17) 

                 a2 =
μz

2 + ν 2

4 (1+ β 2 )
     ,    S = ϕ(β,ν,μz )+ β ρ + 2a2 β (1− thρ)+ ...  

where  ϕ(β,ν,μz )  is a phase , and  is an overall normalisation constant which must be 
determined numerically. 

A0

 The values of the radial function at low values of ρ  ( ρ ≤ 0.25 ) are calculated using the 
expansion (15) up to the twelvth order in shρ .  For higher ρ  values, the differental equation 
(14) is solved numerically. Figure 1 shows some examples of radial functions and 
comparisons with the ρ→ ∞  assymptotic expansion up to terms of order 1 ch8ρ  (included), 
where the phase and are numerically adjusted. A0

 
We could also have set : I = q(u) chρ  with u = chρ  
In that case the radial equation looks like a Legendre equation when ρ → ∞  : 

            (1− u2 )
d 2q
du2 − 2u

dq
du

− (β 2 +
1
4

) q + (μz
2 +

1
4

)
1
u2 q +

ν 2

u2 −1
q = 0       

                   I ρ→∞⎯ →⎯⎯
1
chρ

B− 1
2 + i β

μ (ρ) , μ2 = μz
2 +ν 2 +

1
4

                                      (18) 

 
I have not been able to find any reccurrence relations which could link the radial functions at 
different ν  or μz  values. 
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                                     Figure 1.    Examples of cylindrical functions. 

 
 
 
 
We shall choose the following basis of real functions : 
                                      Φ0, m,ν = I (β,μz ,ν,ρ) cos(μz z + νϕ )                                           (19a) 
                                      Φ1, m,ν = I(β,μz ,ν,ρ) sin(μz z + νϕ )                                            (19b) 
where :  μz L0 +νω0 = 2π mz  ,  integer . mz

 
These functions are orthogonal on any cylinder of  axis  and height L. This is important 
for the least square method used to find solutions satisfying the periodicity relations (7), as 
described in the next section. 

Oz

 
A first consequence of the assymptotic expansion  (17) is that Φ  can not be simply of the 
form (19). This can be seen by using again the example of the Weber-Seifert manifold. Φ  
must be periodic on the base geodesics of the generators  which go through the 
origine  , that is to say, Φ  must be a periodic function of  

γ i , i ≠ 0
O χ . When χ → ∞  ,   z → zlim
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such that thzlim = 1 5  and χ → ρ + Ct  .  The expansion (17) shows that functions of the 
form (19) can not satisfy the periodicity condition since they are decreasing when ρ  
increases. Analogously to (12),  must be a sum : Φ
                                                   Φ = am,ν φm,ν

m,ν
∑                                                                (20) 

with  , because if both  and m ≥ 0 m ν  change sign, φm,ν  remains the same up to a sign. We 
use again the example of the Weber-Seifert manifold to argue that, in (20) the sum can not be 
reduced to a sum over  or m ν  only. In this example, Φ  , wich must be a periodic function of  
χ  on the base geodesics  can be expanded on each of them as :  gi Φ = rk∑ ei 2π k χ / L  , k∈  . 

The   can be expanded on a set ei 2π k χ / L φβ
μ{ } (the functions  are linearly independent). The 

relations (13) shows that the decomposition implies the  

φβ
μ

φβ
μ+ j{ } ,  j∈  , But, according to 

(18), this is impossible if  or m ν  is fixed, and (20) must be a sum on both indices  and m ν . 
 
In practice, one can only calculate a limited number of terms in the sum (20), and the method 
used will be described in section 5. Since we consider only manifolds without border, we can 
use Rayleigh’s theorem [3], which puts some constraints on the eigenvalues, by saying that 
the lowest eigenvalues are associated to the states having the lowest « kinetic energy ». 
In the remaining of this section we consider functions  and  defined on a manifold f g M  
(without border, by hypothesis) which  satisfy (using (6)) :  
                                                     (21) f + Δg dV

M∫ = − ∂α f gα β ∂βg dV
M∫ = (Δf )+ g dV

M∫
where the second integral is the scalar product of the gradients of the functions. 
 
Rayleigh’s theorem states that : 
Let λ1 ≤ λ2 ≤ ...  be the eigenvalues repeated the number of times equal to their multplicity. 

Then for any function  satisfying (21), we have : f ≠ 0 λ1 ≤ ( ∇f .∇g dV∫ ) / f 2   with equality 
if and only if   is an eigenfunction of  f λ1  . If  φ1, φ2 ,... is a complete orthonormal basis such 
that φ j  is an eigenfunction of λ j  , then for f ≠ 0  satisfying : ( f ,φ1) = ... = ( f ,φk−1) = 0  

we have : λk ≤ ( ∇f .∇g dV∫ ) / f 2   , with equality if and only if   is an eigenfunction of f λk . 
 
 
In order to use directly this theorem, one needs to construct functions on H 3  which satisfy 
(7). One possibility woulb be, given any function h  on H 3 , to write : ( ) ( )f x h

γ
xγ

∈Γ∑∼  , 

but this would be very time consuming.  
In fact we shall use this theorem only qualitatively. The inequalities say that the lowest 
eigenvalues will be best constrained if we use functions which do not vary rapidly, or, in other 
words,  that the main contribution in (20) should come from the low  and m ν  values of the 
basis functions (19). This justify a limited expansion in (20). 
Note that, since the first eigenfunction is the constant function associated to the eigenvalue 0, 
if Φ  , in equation (20), is periodic on H 3  , it is orthogonal to the first eigenfunction on M  by 
(21), and the requirements of Rayleigh’s theorem are automatically satisfied for the second 
eigenfunction. 
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4  Description of the manifolds used as examples. 
 
Thurston manifold. 
Γ  has 8 generators, and the fundamental domain domain has 16 faces. It is the second 
smallest compact hyperbolic manifold known today, with a volume of  .  (the smallest 
known manifold being the Weeks manifold with 9 generators and a volume of  ). 

0.98∼
0.94∼

The spectrum of the Laplacian eigenvalues has been calculated in [4] using a different 
method. We shall compare our results with those of this reference. 
 
Weber_Seifert manifold. 
It has been briefly described above. The fundamental domain is a regular dodecahedron. Its 
high degree of symetry, and the fact that the base geodesics of the generators all go through 
the origine makes it an attractive toy for understanding and tentative analytic calculations. 
The Weber-Seifert manifold is not the only one whose fundamental domain is a regular 
dodecahedron, there are 7 others (see [5]). In the tiling of H 3 ,  each edge is common to 5 
dodecahedrons and each summit is common to 20 volumes. The volume of the fondamental 
domain is  . The distance  between the center of the fundamental domain and the 
center of the faces is : 

11.2∼ h
ch2 (h) = (5 + 2 5) 4  . There exists ideal dodecahedron (whose 

summits are at infinity but having finite volume), but this case will not be considered here. 
 
 
Manifolds whose fundamental domains is a regular icosahedron. 
 
They have 10  generators and the fundamental domain has 20 faces and 12 summits. There 
are 7 compact mainfolds. The tables of Appendix A show how the faces and their summits are 
identified. The volume is  . The distance  between the center of the fundamental 
domain and the center of the faces is : 

4.69∼ h
ch2 (h) = 3 2(3− 5)   . There is no ideal icosahedron. 

In the tiling of H 3 ,  each edge is common to 3 icosahedrons and each summit is common to 
12 volumes. 
 
 
 
 
5  Numerical calculation of approximate solutions. 
 
For any value of  β ,  functions defined by equation (19) are eigenfunctions of both the 
Laplacian and   (wich is such that its based geodesic  defines the  axis), but the 
solutions must also satisfy all the constraints (7). In order to find approximate solutions, 

γ 0 g0 Oz
Φ  is 

developped, as in (20), on the basis of  cylindrical functions (19) using a limited number of 
terms, and the constraints (7) are enforced using a  method to determine a set of 
coefficients . Then we look at the behaviour of the function  to find satisfying 
solutions. The fact that the functions (19) forms an orthogonal basis, on cylinders of  axis Oz , 
allows a good mode decoupling. 

χ 2

am,ν χ 2 (β )

The calculations are done as follows : 
- points xj  are chosen randomly in a volume containing the fundamental domain, then 

their images  are calculated for all the generators  and their 
inverse.  

yj
k = γ k x j γ k , k ≠ 0
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- Since  Φ  is defined up to a multiplicative constant, we set either :  ,  or, for 
some arbitrary point A  on  Oz  : 

Φ(O) = 1
Φ(O) = 0 , Φ(A) = 1  . 

- We define :     ,  where the index i  corresponds to a pair 

(xj , yj
k ) . If one wants to enforce the periodicity condition one sets : 

χ 2 = (ζ i − am,ν
i
∑ ψ m,ν )2 /σ i

2

ζ i = 0  and  
ψ m,ν = φm,ν (yi )−φm,ν (xi )  where the  φm,ν  are the basis functions (19) . For the 
normalisation constraints : ψ m,ν = φm,ν (xi )  and ζ i = 0  or 1  . σ i  is an arbitrary error. 

 
The calculations are local, which means that : 

- both elements of the couple (xj , yj
k )  must be inside the fondamental domain or close  

to it. 
- The periodicity conditions are imposed for the generators γ k  (and their inverse) not 

for all the elements of Γ . 
 
The reason for local calculations is due to the  behaviour of the radial function I(β,μz ,ν,ρ) . 
At small radii it is given by (15).  The position of the fisrst maximum increases if ν  increases. 
In other words, the larger the working volume the larger  the number of modes one has to 
consider. 
The covariance matrix is inverted using the SVD decomposition of the SGL library. 
 
  
6  Results 
 
For the following calculations, the parameter values used are typically ν ≤ 20  ,  . In 
order to impose the periodicity conditions (7), points were chosen in a sphere of radius 2, and 
their image should lie in a cylinder of radius ranging from 1.4 to 2. The number of these 
points is chosen to be . With such representative parameters, the calculation time 
necessary to explore the range 0

m ≤ 5

4000∼
≤ β ≤ 9  by steps of 0.025,  is around 140 mn on a 

MacBookPro, without special efforts to optimise the program. 
 
 
Thurston manifold. 
 
For the Thurston manifold, the function  is shown in figure 2  for the case  . χ 2 (β ) Φ(0) = 1
Our results are compared with those of  [4] in the following table. The first column 
reproduces Table 1 of [4], and the second column gives (-) the eigenvalues of the Laplacian, 
which is −  in the notations of [4]. The third column gives the value of  k2 β  for which we 
have found a solution. If there is no correspondance, that means we have not found any 
solution for this value of k . The uncertainties on the values of β  are of  the order of  0.01, 
and depends only on the β  step used to study the behaviour of  . The last column gives 
the type of solution found according to section 5. 

χ 2 (β )
Φ(0) = 0  does not necessary means that the 

solution is antisymetric with respect to the origin on the Oz  axis.  
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                                                               Figure 2.  
 
 
 

k  [4] k 2       β   1  + β 2 Φ(0)  

5.41 29.27 5.31 29.2 1. 
5.79 33.5 5.70 33.5 1. 
6.81   46.4 6.72   46.2     1. 
6.89   47.5 6.80   47.2     1. 
7.12   50.7 7.06   50.8     1. 
7.69   59.1 7.62   59.1   0. , 1. 
8.30   68.9    
8.60   74. 8.53   73.8     1. 
8.73   76.2 8.67   76.2   0. , 1. 
9.26   85.7 9.20   85.6   0. , 1. 
9.76   95.3    
9.91   98.2 9.85  98.      1. 
9.99 99.8 9.94  99.8     1. 

 
 
In [4] the multiplicity associated to each eigenvalue is one except for k = 9.26  , where it is 2.  
The shape of the function for the lowest eigenvalue is rather jittery. For the lowest eigenvalue, 

 on the  axis is approximately constant, while for the two next ones, it oscillates with 
a period equal to the length of the transvection of  which is  . 
Φ(z) Oz

γ 0 1.04L
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Weber-Seifert manifold. 
  
The function  is shown in figure 3 for the case χ 2 (β ) Φ(0) = 1 . Except for the lowest β  
values, the structures of   are less visible than in the case of the Thurston manifold. 
This is due to the fact that the Weber-Seifert manifold has a large volume. In the expansion 
(20) the basis functions must be computed at larger radii, but 

χ 2 (β )

φmν  with larger ν  becomes non 
negligible, and should be included in the calculations, which would increases the computation 
time. 
 

    β    Φ(O)  

2.925 1 
3.79 0 
4.275 1 
5.58 1 
5.65 0 
5.775 0 
6.57 0 
6.925 0 
7.225 1 

 
 

            
                                                                Figure 3. 
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The structures of the function  are not very clear, howewer, if we require the 
solutions to be symetric with respect to rotations around the Oz  axis with angles 
multiple of 

χ 2 (β )

2π 5  (that we can impose by requiring ν  to be a multiple of 5 in (20)), they 

all appear very neatly. In this case we have used  ν ≤ 30  , m ≤ 10  . The five first 

eigenmodes are such that the periodicity on the  axis is  . On the  Oz  axis, the first 
eigenfunction is well described by 

Oz L
0.89 0.12*cos(2 / ) 0.012*cos(4 / )z L z Lπ πΦ + −∼  . The 

shape of this function on the other base geodesics is of the form : 
cos(2 / )a b L phaseπχΦ + +∼  which shows that it is a « low energy » solution. 

 Although not detailed here, one can use the expansion (9) in the neighbourhood of the 
origin to show that there is no solution having the full symetry of the Weber_Seifert 
manifold. In fact, there is no solution with the same Φ(χ)  on all the base geodesics 
associated to the generators.  
  
 
The fundamental domain is an icosahedron. 
 
The results are presented in the following table, and an example is given in figure 4. 
The first line is the number of the space described in appendix A.  The second line gives the 
length of the longest transvection. Each column gives the β  values for which there is a 
solution. A question mark means that the situation is not clear, at least for the limited 
expansion used. The letter a means a solution of type Φ(0) = 1, and the letter b   . 
Here again a question mark means that the type is uncertain. 

Φ(0) = 0

 
 

 1 2 3 4 5 6 7 

L  1.629 1.465 1.629 1.736 1.008 1.736 1.736 

β  2.525 a 2.675 a 2.925 a 3.40 b 2.47 a 3.40 b 3.40 a 

 3.275 a 2.925 a 3.27 a 4.125 a 4.33 a 4.125 a 3.525 a? 

 4.11 a 4.125 a 4.05 b 5.45 a 5.50 a ? 5.45 a 4.125 a 

 4.39 b 4.48 a 4.125 a 5.75 b 6.75 a 5.75 b 4.29 b 
 4.60 a 5.25 a 4.25 b 5.90 ? b  5.925 ? b 5.45 a 

 5.075 a 5.50 b? 4.84 b 6.60 ? b  6.50 ? b 5.75 a? 

 5.43 a 5.80 a? 5.10 ? a 7.02 b  6.60 b  
 5.60 b  5.175 b 7.82 b  7.025 b  

   5.45 a 8.11 a  7.79 b  

   6.02 a   8.10 a  

 
  
 
In all the cases, for the lowest eienvalues, the field Φ , on the base geodesic used as 
coordinate axis, is well approximated by functions of the form : a + b cos(2π z L + phase)  , 
where a  and b  are constants, and  is the length of the transvection on this geodesic, which  
means that these functions have « low energy ». 

L
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There does not seem to be any correlation between the lowest values of  β  and the length of 
the longest transvection, the whole structure of Γ  is involved although all these spaces have 
the same fundamental dommain. The structures of the functions  are not always as clear 
as in the case of the Thurston manifold. This is the case for  spaces number 2, 3, 5 and 7. As 
already said, this is mainly due to the limitation in the expansion (20), which could be 
overcome by increasing the computation time. 

χ 2 (β )

We have repeated some of the calculations by changing the generator whose base geodesic 
defines the Oz  axis, even if it has a shorter transvection, with identical results. 
 
 
 

 
                                                           Figure 4. 
 
 
 
Conclusion. 
 
We have shown that a basis of functions which are eigenfunctions of the Laplacian and of  
one generator of the group of  deck transformations defining a hyperbolic 3-d compact space, 
can be used to compute numerically solutions of the Laplacian eigenvalue problem in that 
space. The method is well suited to compute the lowest eigenmodes. 
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Appendix A. 
 
The following figure represents an icosahedron as if it were a stereographic projection but 
without respecting the lengths. Faces are named with letters and summits with numbers. 

      

a
bc

d

e

f

g

h

ij

k
l

m

n

op

q

rs

t

0

1

2

34

5

6

78

910
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Each of the following tables shows how the faces of the icosahedron are associated to build a 
manifold. Each line gives the corresponding faces, and how the summits are associated. The 
first 3 summits belong to the face in the first column, and the next 3 to the face in the second 
column. For instance in the next table, the correspondance between the faces   and    is 
done according to :   . The next 6 tables correspond to the solutions 

a d
0→ 5, 1→ 2, 2→ 0

14, 12, 13, 10, 9, 11 of [5]. 
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a d 0 1 2 5 2
b h 0 1 3 4 8
c i 4 1 2 7 0
e s 6 1 3 11 10
f o 0 7 3 7 11

0
2
5
8
5

g r 4 1 6 11 7 9
j n 8 5 2 10 4 8
k m 6 9 3 10 4
l t 9 7 3 11 10

6
9

p q 8 5 11 6 9 1

     summits     summits    faces

0  
 
 

a d 0 1 2 2 0
b j 0 1 3 5 2
c k 4 1 2 9 6
e i 6 1 3 0 7
f t 0 7 3 10 11 9
g s 4 1 6 8 11 1
h o 4 8 2 11 5 7
l r 9 7 3 11 9 7
m n 4 10 6 10 8
p q 8 5 11 9 10 6

5
8
3
5

0

4

   faces         summits        summits

 
 
 

a d 0 1 2 2 0 5
b j 0 1 3 5 2 8
c l 4 1 2 3 7 9
e n 6 1 3 4 8 1
f

0
q 0 7 3 6 10 9

g t 4 1 6 9 10 11
h s 4 8 2 11 10
i r 0 5 7 7 9 1
k

8
1

p 6 9 3 5 8 1
m o 4 10 6 5 11 7

   faces        summits        summits

1

 
 
 

a d 0 1 2 2 0
b

5
j 0 1 3 5 2

c
8

q 4 1 2 10 6
e r 6 1 3 11 7
f t 0 7 3 11 9 1

9
9
0

g m 4 1 6 6 4
h l 4 8 2 3 9
i k 0 5 7 6 9
n o 4 8 10 7 5 11

10
7
3

p s 8 5 11 10 11

    faces        summits        summits

8  
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a j 0 1 2 2 5 8
b i 0 1 3 5 7 0
c n 4 1 2 10 8 4
d o 0 5 2 11 7 5
e l 6 1 3 3 9 7
f r 0 7 3 7 9 11
g q 4 1 6 6 10
h

9
p 4 8 2 8 5 1

k t 6 9 3 11 10
m s 4 10 6 11 8 1

   faces        summits        summits

1
9
0  

 
 

a j 0 1 2 2 5 8
b l 0 1 3 9 3 7
c o 4 1 2 5 11
d k 0 5 2 6 3 9
e n 6 1 3 4 8 1
f s 0 7 3 11 10

7

0
8

g t 4 1 6 11 9
h

10
q 4 8 2 10 9 6

i m 0 5 7 4 10 6
p r 8 5 11 7 11

       summits       summits   faces

9  
 
 

a j 0 1 2 2 5
b

8
q 0 1 3 9 10

c k 4 1 2 9 6
d t 0 5 2 11 10
e

6
3
9

p 6 1 3 5 11
f

8
g 0 7 3 4 6

h r 4 8 2 7 9 1
i n 0 5 7 10 4
l o 9 7 3 7 5 1
m s 4 10 6 10 11

    faces        summits        summits

1
1
8
1
8  

 
 
 
The Weber Seifert is described by the next table. The associated faces are diametrically 
opposed. 
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a

bc

d

e

f

g

h

i

j

k

l

0

1

2

3

4

5

67

8

9

10

11

1213

14

15

16

17

18

19

 

a k 0 1 5 8 3 16 19 18 13 12
b l 0 1 4 6 2 18 15 14 17 19
c j 0 3 9 7 2 17 19 16 10 11
d i 1 4 10 11 5 13 18 15 9 7
e h 6 12 13 7 2 8 5 11 17 14
f g 3 8 14 15 9 10 16 12 6 4

  faces             summits             summits
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