
To be published in IEEE Transactions on Nuclear Science

1

Abstract—Multi-channel high speed ADCs with a serial output

interface operating at several hundred Mbps have been
introduced several years ago. Interfacing to these high speed
devices poses new challenges to the designer. Existing techniques
usually rely on delay locked loops, require several milliseconds to
reach stable operation, and do not guarantee a fixed latency
making the accurate synchronization of several multi-channel
ADCs difficult to achieve. A new interface technique is
introduced to overcome these limitations. We detail the proposed
method and show an implementation where a single field
programmable gate array is used to collect data from twenty four
12-bit ADC channels clocked at 20 MHz.

Index Terms—Field Programmable Gate Arrays, high speed
analog to digital converters, source synchronous interfaces.

I. INTRODUCTION

ULTI-CHANNEL analog to digital converters (ADCs)
operating at several tens of Msps have been introduced

to the market several years ago. Common devices contain 4 to
8 channels and offer a resolution of 8-bit to 12-bit at a
sampling rate of up to 100 Msps [1], [2], [3]. Pin count
limitations, package cost and signal integrity issues make the
traditional unipolar CMOS parallel output interface
unpractical for these devices. The scheme unanimously
adopted by manufacturers uses serial links and low voltage
differential signaling (LVDS). Building an interface to readout
multiple ADCs poses new challenges to the designer of digital
electronics: the aggregate data rate quickly exceeds several
Gbps and multiple flows of data have to be synchronized
consistently. We propose a new technique for interfacing to
multiple multi-channel ADCs which is able to synchronize
multiple channels with guaranteed zero-skew. It features
deterministic latency and fast locking time. The proposed
method is meant for implementation in low cost field
programmable gate arrays (FPGAs). Internal FPGA resource
usage is minimized: no internal delay locked loop (DLL) or
programmable delay taps in I/O pad (a feature only found in
latest generation devices) are used.

After a description of traditional interface techniques to

Manuscript received April 30, 2008; revised June 26, 2008.
D. Calvet is with Commissariat à l’Energie Atomique, Institut de

Recherche sur les lois Fondamentales de l’Univers, Centre de Saclay, F-
91191 Gif-sur-Yvette Cedex, France (phone: +33-1-69086909; e-mail:
calvet@hep.saclay.cea.fr).

high-speed ADCs, we expose the specific constraints of the
intended application that brought the need for a new method.
We describe our proposal in details and demonstrate the
operation of a system where a single Xilinx Virtex 2 Pro
FPGA is interfaced to 6 quad-channel 12-bit ADCs operating
at 20 Msps. The proposed technique can easily be adapted to
other digitizer boards that require aggregation of data from
several multi-channel high speed ADCs in the same FPGA
with guaranteed clock cycle-accurate synchronization.

II. COMMON TECHNIQUES FOR INTERFACING TO ADCS

A. Parallel unipolar interface

Single channel, medium to high-speed ADCs almost always
use a parallel output interface. The width of the parallel output
bus is determined by the resolution of the converter. Unipolar
signaling (low voltage CMOS) is the most common standard.
The interface to such device is conceptually simple: a clock
(derived from the sampling clock of the ADC) triggers a
parallel register to latch the converted data. In order to reduce
the impact of digital current switching on noise sensitive
analog parts, current limiting resistors are often placed
between the digital outputs of the ADC and the receiver logic.
Although this scheme is adequate for single channel ADCs at
up to ~100 Msps, it would not be effective for multi-channel
devices: a quad-channel 12-bit ADC would require a 48-bit
wide parallel bus. This would be inefficient in terms of pin
count and becomes extremely difficult to operate as speed is
increased: signal skew is hard to manage on wide busses due
to unavoidable trace length mismatches, and ground bounce
issues arise when large number of bus lines switch
simultaneously. To overcome these limitations, silicon vendors
have introduced two concepts: serial interfaces (to address the
pin count limitation and signal skew issues) and differential
signaling (to improve signal integrity).

B. Conventional serial differential interface

We briefly recall the principle of operation of a typical high
speed serial output ADC. Using the sampling clock as a
reference, the ADC generates a high speed clock (DCO) to
serialize data on its data output lines. Double data rate
clocking is used and, for example, the DCO clock is 6 times
faster than the sampling clock for a 12-bit ADC. The ADC
also generates a framing signal (FCO), phase aligned with the
serial data. The DCO clock is intended for data capture. The
FCO signal can be used as a clock to latch data when it is

A new interface technique for the acquisition of
multiple multi-channel high speed ADCs

Denis Calvet

M

To be published in IEEE Transactions on Nuclear Science

2

aligned, or it can be seen as a pseudo data channel that outputs
a constant framing pattern (e.g. “111111000000”). This can be
used to retrieve word boundaries in the serial stream. One of
the simplest methods to interface to such ADC device is
described in [4]. It is pictured in Fig. 1.

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D1 D3 D5 D7 D9 D11

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D0 D2 D4 D6 D8 D10

Din

DCO

D
Q

D
Q

D11 – D0 12
12

FCO
Q11 – Q0

Fig. 1. Conventional de-serializer interface to a serial output 12-bit ADC.

The high speed DCO clock controls a dual 6-bit shift
register to de-serialize the incoming serial data Din on both
edges of the clock. It is assumed that the most significant bit,
D11 is shifted-in first. The framing clock FCO is used to latch
parallel data after de-serialization when it is properly aligned
on 12-bit word boundaries. Although simple, this scheme is
not suitable for interfaces running at high speed (e.g. over ~30
Msps) because it cannot compensate for data and clock skews.
A more robust scheme is described in [4]. It uses a delay
locked-loop to produce 8 copies of the DCO clock shifted by
1:8th of a period. Eight shift registers skewed by 1:8th of a
clock period capture data, and arbitration logic dynamically
selects the optimal output. This scheme is effective but it
consumes a substantial amount of logic, one DLL and at least
8 clock tree nets per interface. The quantity of DLLs and
global clock networks available in low cost to mid-range
FPGAs is typically limited to 8 and 16 respectively. Global
clock trees and DLL blocks are generally needed in other parts
of the design and cannot be entirely assigned to the interface to
ADCs. Embedded DLLs that provide 8 outputs are also
uncommon. Xilinx “Digital Clock Manager” blocks provide up
to 4 outputs shifted by 45°. A design based on this technology
is described in [5].

Another scheme for interfacing to a serial-output ADC
consists in using some programmable delay on clock and data
lines. Specific logic is used to determine the optimal delay
setting to deskew each individual data line with respect to the
fast clock (DCO) provided by the ADC. Delay settings can be
static, i.e. they are calibrated once, or they can be monitored
and adjusted in real-time. This method is generally used for
high speed source synchronous interfaces such as memory
interfaces [6]. Adjustable delay lines are only available in the
most recent FPGAs. In Xilinx parts, the Virtex 2 Pro and
Spartan 3 only allow one optional delay to be set in an input
pad, Spartan 3E and Spartan 3A families have 6 and 8 input
delay settings respectively; the Virtex 4 and Virtex 5 families
have a fully dynamically controllable 64-tap delay line per
input pad.

III. NEED FOR A NEW INTERFACE SCHEME

The motivation for a new scheme to interface to serial
output ADCs comes from the requirements of the readout
electronics for the time projection chambers in the T2K
experiment [7]. In this application, a single digital front-end
mezzanine card (FEM) receives data from 6 analog front-end
cards (FECs). Each FEC contains 4 “AFTER” ASICs [8] that
are readout by a quad-channel 12-bit ADC (Analog Devices
AD9229 [9]) clocked at 20 MHz. The net throughput of each
individual ADC channel is 240 Mbps (120 MHz double data
rate) leading to an aggregate bandwidth of 5.76 Gbps for the
24 ADC channels connected to an FEM board.

The AFTER chip comprises 72 charge sense amplifiers
coupled to a 72 x 511 time buckets switched capacitor array
(SCA). During the sampling phase of detector signals in the
SCA, sensitive front-end pre-amplifiers must be kept in the
lowest possible noise ambiance. To achieve that goal, the
clock of the ADCs is turned off and the receiver logic is placed
in standby mode. Upon the reception of an external trigger
signal, the content of the SCA in all AFTER devices is frozen.
The clock is applied to each ADC, the receiver logic is woken
up, synchronized and digitization takes place. Current leakage
in the SCA imposes a minimum digitization rate of 20 Msps to
perform the complete readout of all AFTER chips in less than
2.5 ms. The dynamic control of the clock applied to the ADCs
imposes selecting a device that has a low wake-up time and
requires the receiver logic to re-synchronize quickly. For our
application, we require the total re-synchronization time be
less than 200 µs, from the time the clock is applied to the ADC
until valid data can be digitized. The dispersion of the re-
synchronization time from one acquisition to the next must
also be minimized. A peak-to-peak variation of 100 µs is
acceptable in our case. PLL-based techniques or methods that
require a delay calibration procedure usually suffer from
potentially long (e.g. several milliseconds) and unpredictable
settling times. These methods are inadequate for our needs.

The sequence of samples output by each AFTER chip has to
be precisely retrieved by the FEM board: all 24 streams of data
must be timely aligned to synchronized before further
processing. Each of the 24 ADC and receiver logic paths must
have equal, predictable, repeatable and deterministic latency.
The required precision is one sampling clock period (i.e. 50 ns
in our application).

Other constraints are more common: we require the logic be
sufficiently simple to fit in a small/medium size FPGA target,
optimizations should be made to conserve power and favor the
use of a low speed grade device (for cost reasons). Because
none of the interface techniques reported so far are able to
satisfy simultaneously all the constraints previously listed, we
propose a new scheme. It is based on a combination of several
known concepts and original improvements.

IV. CHOICE OF THE ADC DEVICE

As previously stated, our application requires the clock
applied to the ADC be periodically suppressed/re-applied and

To be published in IEEE Transactions on Nuclear Science

3

correct operation of the ADC be restored in few tens of µs.
Not all ADC devices support dynamic control of the sampling
clock and fast recovery time from such idle state. This
capability and the corresponding recovery time are usually not
documented in component datasheets. This parameter is
particularly critical for serial output ADCs because these
devices have some intrinsic uncertainty on the wakeup time
because an on-chip PLL is used in the output interface. We
investigated 2 candidate devices: the AD9229 from Analog
Devices and the ADS5240 from Texas Instruments. Both
manufacturers were questioned and we used evaluation kits to
test the parts ourselves. We found that the AD9229 is able to
reach stable operation within ~35 µs on average from the time
the sampling clock is applied. For the ADS5240, locking times
in excess of several milliseconds were occasionally observed
and investigations of that part were not pursued. We show in
Fig. 2. the histogram of the wake-up time of the AD9229 alone
and (in anticipation) the total synchronization time of the ADC
interface that is described in this paper. The wakeup time of
the ADC is defined from the time the sampling clock is
applied to the time an arbitrary chosen number of clock cycles
(16 in our case) are counted on the fast clock output DCO.

0

5

10

15

20

25

30

34.5 35.5 36.5
Time (µs)

O
cc

ur
en

ce
(%

)

ADC alone

ADC+logic

Fig. 2. AD9229 wakeup time and global synchronization time.

The total synchronization time is measured from the instant
when the clock is applied to the ADC until the time the
receiver logic detects the framing pattern on the FCO line
more than twice in a row to avoid spurious detection. We
checked in an independent series of measurements that the
nominal performance of the ADC is reached within the total
synchronization time. All the requirements on the wakeup time
(mean, peak-to-peak and maximum value) for our application
are comfortably met. In addition to a fast recovery time we
measured that the AD9229 draws 10% less power when the
sampling clock is idle. The improvement is appreciable,
although marginal compared to the low power mode of the
device (97% power reduction compared to the active state, but
the recovery time from that state is 4 ms).

V. DETAILED DESCRIPTION OF THE INTERFACE SCHEME

A. General concept

The block diagram of the proposed ADC interface logic is

shown in Fig. 3. The logic is entirely implemented in an
FPGA, although our application requires an external memory
due to the large amount of data to be buffered (~1.2 MByte per
event). The sampling clock of all ADCs is provided by the
FPGA. The data capture logic block is responsible for
capturing the data lines and the framing pattern line of each
multi-channel ADC. A source-synchronous interface is used at
that level: data capture is clocked by the fast clock (DCO)
provided by each ADC. There is one data capture block per
multi-channel ADC, each resides in its own clock domain.

M
em

ory C
ontroller

Din

DCO

4
FCO

Data
Capture

Data
Re-

Capture

Frame
Aligner

Global
Channel
Deskew

Data
Re-

order

DCO clock domains (6)

4
Data

Capture

Data
Re-

Capture

Frame
Aligner

Duplicated 6 times

Din

DCO

FCO

FPGA clock domain (1)

.

.

.

Fig. 3. Block diagram of the proposed multi-channel ADC interface.

The data re-capture logic is used to cross each DCO clock
domain to bring all captured data in a common clock domain,
called the FPGA clock domain (Fclk). The next blocks are the
frame aligners. These delineate serial data to retrieve 12-bit
word boundaries. Once this is done, global channel deskew is
performed. This operation compensates for the differences in
latency between the multi-channel ADCs. This block
guarantees that all the digital samples at any given Fclk clock
cycle correspond to the same sampling clock period at the
analog inputs of all ADCs. The next stage is data re-ordering.
This block re-organizes data to facilitate storage and fast
retrieval to/from the external memory.

B. Data capture

The data capture logic is pictured in Fig. 4. Double data rate
LVDS input pads (with the delay option enabled) are used to
drive the two flip-flops embedded in an I/O pad. These are
followed by 2 flip-flops located in the FPGA fabric, next to the
I/O pad. To avoid the use of any DLL, the data capture logic is
clocked directly by the DCO signal supplied by the ADC. An
inverter is automatically inferred by the synthesis tool to clock
data on the falling edge.

The location of all input pads must be carefully chosen to
minimize internal routing delays. The DCO clock signal
deserves specific attention. Pad location must be chosen for
the optimal routing of the local clock tree net [10]. It is
necessary to turn on the optional delay in the input pad of the
DCO signal and apply some appropriate timing constraints.
Manual placement of individual flip-flops in the FPGA fabric
was not found necessary for operation at 120 MHz (20 Msps
for the ADCs) in the slowest speed grade of a XC2VP4 FPGA
(Xilinx Virtex 2 Pro family). On the other hand, imposing that
the FIFO of the data re-capture logic (described later) is placed
at the location closest to the data capture logic is required to
meet timing constraints.

To be published in IEEE Transactions on Nuclear Science

4

D
Q

D
Q

D
Q

QR0 QR1

D
Q

D
Q

D
Q

QF0 QF1

FCO,
Din<3..0>

DCO
Delay

I/O Block FPGA fabric

Duplicate 5 times per quad-channel ADC

Fig. 4. Data capture logic.

The physical layout of a data capture logic block for an
interface located on the left side of the FPGA die is shown in
Fig. 5. Routing is cleaner on the left side of the die because
logic resources inside the FPGA are built by translation of
some design pattern while mirroring around a left/right
symmetry axis would be required for optimal routing on the
right side of the device. Higher speed designs would probably
require manual placement of all the flip-flops of the data
capture block, and should preferably connect to the external
ADCs via the row of input pads located on the left side of the
FPGA die.

DCO

FCO

FIFO

Data in 2
Data in 3

Data in 0
Data in 1

DCO local clock tree netLVDS
Input
pads

Flip-Flop

Fig. 5. Physical layout of a data capture block.

The data capture block is duplicated 5 times per multi-
channel ADC. The output of that block consists of 5 four-bit
wide busses clocked in the DCO domain (QR0, QR1, QF0 and
QF1). Four busses correspond to the 4 data channels of the
ADC; the fifth bus corresponds to the framing pattern line
(FCO). Only three out of each series of six consecutive 4-bit
words on any particular bus need to be accumulated to build
complete 12-bit samples. The framing pattern
“111111000000” is always output in a fixed sequence of six 4-
bits words of the form: {“1111”; “1111”; “1100”; “0000”;
“0000”; “0011”} and only one word out of two has to be
retained to retrieve the correct pattern.

The data capture block performs a partial de-serialization:
each 1-bit double data rate 120 MHz differential line is
converted to a 4-bit wide bus that can be sampled at 60 MHz.
This provides some optimal trade-off between internal speed
and bus width. The global interface to 6 quad-channel ADC
leads to a 120-bit wide internal bus clocked at 60 MHz. A
complete de-serialization into 12-bit words as in [4] would

need an unpractical 360-bit wide bus clocked at 20 MHz.
Performing only double data rate to single data rate conversion
at this stage would lead to a 60-bit wide bus clocked at 120
MHz which is not trivial to deal with inside an FPGA fabric.

C. Data re-capture

The data re-capture logic is used to transport the data
captured by the front-end logic from the 6 different DCO clock
domains (one domain per multi-channel ADC) to a common
clock domain (Fclk), inside the FPGA. The structure of this
block is shown in Fig. 6.

20

QR0 QF0 QR1 QF1
(5 times)

DCO

6 6

Data outA

AddressA
Data inA
ClockA
WriteA
Synchronous SetA

20

Data outB
AddressB

ClockBFclk

D
Q

D
Q

D
Q

D
Q

Init

logic

512 x 36 bit dual port RAM

P19,0

Fig. 6. Data re-capture logic.

We use a 512 word 36-bit synchronous dual port memory
block configured as a self-addressing FIFO [5] to perform this
operation. The depth of the FIFO is set to 6 words. This offers
the guarantee (by design) that no more than one complete 12-
bit sample is stored in a FIFO slice at any time. This aspect is
important to ensure that no unpredictable delay greater than
one ADC sampling clock period can possibly be introduced
when crossing clock domains during data-recapture. The width
of the input data bus of the FIFO is 20 bits in order to interface
directly to the data capture logic of the quad-channel ADC.
The feedback path of the write section of the FIFO takes 6 data
lines and uses one-hot encoding for addresses. Consequently,
no logic is needed in the feedback path: the next address is
simply obtained by a hardwired cyclic shift of the current
address by one bit. Avoiding the need for logic in the feedback
path enables the highest possible operating speed and does not
reduce the skew margin on the local DCO clock tree net
because there isn’t any flip-flop to clock at that level. The
feedback path of the read section of the FIFO shifts the read
address by 2 bits instead of one on every FPGA clock cycle:
this enables reading out one word out of two being written in
the FIFO, i.e. the read side of the FIFO operates at half the
frequency of the write side. This is particularly important in
high speed designs because only flips flops located inside (or
close to) the I/O pads can be clocked at high frequency, while
those distributed in the FPGA fabric are generally limited in
speed by internal routing delays caused by the comparatively
long distances to cover. Note that the feedback path of the read
side of the FIFO contains flip-flops, but this is not critical
because a global clock tree net is used on this side, and
operating frequency is halved compared to the write side. The
initial content of the block RAM used as a FIFO needs to be
properly set and the initial value of the write pointer (DCO
clock domain) and read pointer (FPGA clock domain) need to
be initialized every time the logic needs re-synchronization.

To be published in IEEE Transactions on Nuclear Science

5

This is achieved by a preset of the output registers of the dual
port RAM via the Init signal. Note that two cascaded flip-flops
are used to avoid metastability when transporting the Init
signal from the FPGA clock domain to the DCO clock domain.

The output of the re-capture logic of each multi-channel
ADC is a 20-bit wide bus (i.e. 120-bit wide in total) clocked at
60 MHz. Three consecutive 20-bit words are needed to
assemble the four 12-bit samples that correspond to the
conversion of the analog inputs and the 12-bit framing pattern.
Depending on the (unknown) skew of the preset signal with
respect to the sampling clock of each ADC, there are only 6
possible sequences being written into the FIFO for the framing
pattern. These sequences are listed in Table I.

TABLE I. LIST OF ALL POSSIBLE SEQUENCES WRITTEN INTO THE DATA RE-
CAPTURE FIFO FOR THE CONSTANT FRAMING PATTERN “111111000000”.

1111

1111

0011

0000

0000

1100

case5

0011

0000

0000

1100

1111

1111

case4

0000

0000

1100

1111

1111

0011

case3

1100

1111

1111

0011

0000

0000

case2

000011110x20

110000110x10

111100000x08

111100000x04

001111000x02

000011110x01

case6case1Address

1111

1111

0011

0000

0000

1100

case5

0011

0000

0000

1100

1111

1111

case4

0000

0000

1100

1111

1111

0011

case3

1100

1111

1111

0011

0000

0000

case2

000011110x20

110000110x10

111100000x08

111100000x04

001111000x02

000011110x01

case6case1Address

For each possible case, there is one and only one address

read sequence that allows recovering the correct framing
pattern. For cases 1, 2 and 3, the addresses to consider are
0x02, 0x08 and 0x20 while for cases 3, 4 and 5, only data at
address 0x01, 0x04 and 0x10 shall be read. Proper alignment
is obtained with the read address sequences: Seq_1={0x20;
0x02; 0x08}, Seq_2={0x08; 0x20; 0x02}, Seq_3={0x02;
0x08; 0x20}, Seq_4={0x01; 0x04; 0x10}, Seq_5={0x10;
0x01; 0x04} and Seq_6={0x04; 0x10; 0x01} for case 1, 2, 3,
4, 5 and 6 respectively.

D. Frame alignment

The frame alignment logic is shown in Fig. 7. It consists in a
finite state machine that tries to identify the framing pattern in
3 consecutive 4-bit words output by the data re-capture logic.

Pa,b,c=111111000000?
Pi = P19..16 (FCO signal)

Slip

Lost Get Pa

Get Pb

Get Pc

Synch Req=1?

YesNo

Aligned
cnt >2?

=7 =4

Set
POS

<4

Set
ALI

Clear ALI,
Aligned cnt

Yes
No

YesNo

Slip count? Clear
POS

Aligned
cnt ++

Fig. 7. Frame alignment logic.

 Upon request for synchronization (signal Synch. Req), the
initial value of the FIFO read pointer and write pointer are set
to 0x02 and 0x01 respectively. The sequence of FIFO
addresses being read is therefore Seq_3 = {0x02; 0x08; 0x20}.
Three consecutive 4-bit words, Pa, Pb and Pc, corresponding to
the framing pattern lane are concatenated and compared

against the expected 12-bit constant. If alignment is not found,
a slip of one Fclk clock cycle is introduced. If alignment is still
not obtained after trying the 2 circular shifts of Seq_3 (i.e.
Seq_1 and Seq_2); the alternate family of FIFO read address
sequences, Seq_4, Seq_5 and Seq_5 are successively tried. In
normal operating conditions there is always one and only one
sequence of addresses that lead to correct frame alignment.
Synchronization failure at this stage is a fatal error: the frame
alignment logic stays in the “Lost” state until the next
synchronization request. Note that the frame aligner block
does not guarantee that the address on the write side of the
FIFO always differ from that on the read side. This ill-defined
situation is however extremely improbable because the clock
on the write side (DCO) is frequency locked to that on the read
side (Fclk): the two clocks do not drift with respect to each
other and only a fixed (but unknown) phase shift between the 2
clock domains needs to be absorbed by the FIFO. Although
this was not found necessary in our implementation, a more
sophisticated scheme for clock synthesis could be devised to
control the phase shift between the ADC sampling clocks (and
consequently that of the DCO clocks) and the local FPGA
clock to guarantee an optimal time margin.

The signal ALI is asserted when the framing pattern has
been found more than twice in a row and is de-asserted as soon
as one incorrect framing pattern is found. The lock time of the
frame alignment logic is unpredictable but has fixed
boundaries (only 6 possible sequences of read address have to
be tried). The latency introduced by the data re-capture block
reaches a different value depending on which of the 6 possible
sequences of read addresses leads to frame alignment. In our
implementation, we found that the delay mismatch between the
6 multi-channel ADCs is sufficiently low to ensure that only 2
different values of latency are ever reached: the 2 ADCs
closest to the FPGA always exhibit one Fclk clock cycle latency
less than the 4 ADCs located further away. A single bit (POS
signal) per ADC interface is used to make the distinction
between the two possible latency values.

E. Global deskew

As previously explained the data re-capture block skews
data because the latency introduced by the FIFO used to cross
clock domains differs from one multi-channel ADC to the
other. This skew must be compensated to ensure that all ADC
samples are aligned to the same Fclk clock cycle. This is
achieved on a per ADC basis by applying a delay of one Fclk
clock cycle to the re-captured data when the corresponding
POS signal is asserted.

The ALI signals of all ADCs are AND’ed together to
indicate the completion of the alignment procedure at the
global level. Each ALI signal can be individually masked to
allow correct operation when only a subset of the ADCs is
present. Masking also allows operation in a degraded mode
when one or several ADCs cause frequent or permanent
synchronization failures.

To be published in IEEE Transactions on Nuclear Science

6

F. Data formatting

At this stage, data are re-organized for storage in the
external memory buffer. The three 4-bit words that make each
12-bit sample are converted into two 6-bit words. This
conversion is easily achieved in pipe-line logic. The output of
this block consists of one 30-bit wide bus clocked at 60 MHz
for each multi-channel ADC. These six busses are time
multiplexed towards an external memory (2 zero-bus
turnaround Cypress CY7C1354CV25 static RAM) over a 60-
bit wide data bus operating at 120 MHz. The two 6-bit words
that make a 12-bit sample are stored at consecutive addresses
in the external memory (burst of 2 access during write and
read). Because the frequency of the external RAM is exactly
twice that of the internal FPGA logic, only one Fclk clock cycle
is needed to access 12-bit data samples stored in the external
RAM.

In our application, the operations performed on the data
after temporary storage comprise an optional pedestal
equalization, zero-suppression with a programmable threshold
value per channel, and transmission towards back-end
electronic cards via a 2 Gbps optical link. The description is
outside of the scope of this paper.

VI. IMPLEMENTATION

The logic previously described has been fitted into a Xilinx
XC2VP4 (672 pin BGA package; slowest speed grade) placed
at the center of the FEM board. It interfaces to each quad-
channel ADC of the 6 FECs connected to the FEM board via
right-angled rear side connectors. This is shown in Fig. 8.

Fig. 8. View of the FEM board connected to 6 FECs.

The distance between the FPGA and the ADC is ~4 cm for
the 2 cards located close to the center of the FEM board and
reaches ~18 cm for the farthest cards. Extensive behavioral
simulations have been made and tests of several FEM cards
and FECs have shown very stable operation over many days.

VII. CONCLUSION AND PERSPECTIVE

A new scheme for interfacing several multi-channel high
speed ADCs to programmable logic has been described. The
main advantages compared to designs reported so far are: a
minimal use of internal PLL/DLL and global clock networks in

the FPGA, guaranteed sampling clock accurate alignment of
data on all channels, fast locking time (less than 100 µs), and
internal rate conversion to run the core of the logic at one
quarter of the speed of the external serial lines.

The source synchronous-side of the interface uses direct
clocking. The main limitation of the proposed implementation
is that fixed delays are used to compensate the skew of the data
lines with respect to the clock used for capture. It is estimated
that this would limit operation to 30 Msps ADCs. Using a
more sophisticated FPGA device (Virtex 4 or Virtex 5) would
allow higher speed because finer control on the input pad
delay is necessary to bring data in the middle of the capture
window. The limitation on the number of multi-channel ADCs
that can be controlled by the same FPGA is primarily
determined by the complexity of the printed circuit board.
Connecting six quad-channel ADCs to the FPGA on the FEM
board was very difficult using a 12-layer class 7 PCB (100 µm
traces, 120 µm spacing). A design that comprises 8-10 quad-
channel ADCs is probably close to the limits of what can be
built at an affordable cost with today’s industrial technology.

The proposed interface technique will be deployed on the
72 digitizer boards for the readout of the time projection
chamber in the T2K experiment. The technique can be
transposed to other designs where the aggregation of data
delivered by multiple multi-channel high speed ADCs in a
time coherent fashion is required.

ACKNOWLEDGMENT

The author wishes to thank the main contributors to the
design of the time projection chamber readout electronics for
the T2K experiment: P. Baron, X. de la Broïse, C. Coquelet,
E. Delagnes, F. Druillole, A. Le Coguie, E. Monmarthe, E.
Zonca and particularly D. Besin who laid out the FEM board.

REFERENCES

[1] “ADS5273, 8-Channel, 12-Bit, 70MSPS Analog-to-Digital Converter
with Serial LVDS Interface”, component datasheet, Texas Instruments,
September 2005. online: http://www.ti.com

[2] “AD9287 Quad, 8-Bit, 100 MSPS Serial LVDS 1.8 V A/D Converter”,
component datasheet, Analog Devices, July 2007. online:
http://www.analog.com

[3] “ADC12EU050 Ultra-Low Power, Octal, 12-bit, 40-50 MSPS Analog-
to-Digital Converter”, component datasheet, National Semiconductor,
January 2008. online: http://www.national.com

[4] G. Dutta, N. Viswanathan and A. Udupa, “Interfacing High Speed
LVDS outputs of the ADS527x/ADS524x”, Application report SBOA
104, Texas Instruments Inc., February 2005.

[5] M. Defossez, “Connecting Xilinx FPGAs to Texas Instruments
ADS527x Series ADC”, Application note XAPP774, Xilinx Inc.
November 2004.

[6] M. George, “Memory Interfaces Data Capture Usign Direct Clocking
Technique”, Application note XAPP701, Xilinx Inc. November 2004.

[7] Y. Yamada, “The T2K program”, Nuclear Physics B (Proc. Suppl.) vol.
155, pp. 28–32, 2006. online: http://www.sciencedirect.com

[8] P. Baron et al., “AFTER, an ASIC for the Readout of the Large T2K
Time Projection Chambers”, Nuclear Science Symposium Conference
Record NSS 2007, Vol.3, pp.1865-1872.

[9] “AD9229 Quad 12-Bit, 50/65 MSPS, Serial LVDS A/D Converter”,
component datasheet, Analog Devices, September 2005.

[10] E. Eto and L. Lewis, “Local Clocking Resources in Virtex-II Devices”,
Application note XAPP609, Xilinx Inc. November 2004.

