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Abstract—Multi-channel high speed ADCs with a serial output 

interface operating at several hundred Mbps have been 
introduced several years ago. Interfacing to these high speed 
devices poses new challenges to the designer. Existing techniques 
usually rely on delay locked loops, require several milliseconds to 
reach stable operation, and do not guarantee a fixed latency 
making the accurate synchronization of several multi-channel 
ADCs difficult to achieve. A new interface technique is 
introduced to overcome these limitations. We detail the proposed 
method and show an implementation where a single field 
programmable gate array is used to collect data from twenty four 
12-bit ADC channels clocked at 20 MHz.   
 

Index Terms—Field Programmable Gate Arrays, high speed 
analog to digital converters, source synchronous interfaces. 
 

I. INTRODUCTION 

ULTI-CHANNEL analog to digital converters (ADCs) 
operating at several tens of Msps have been introduced 

to the market several years ago. Common devices contain 4 to 
8 channels and offer a resolution of 8-bit to 12-bit at a 
sampling rate of up to 100 Msps [1], [2], [3]. Pin count 
limitations, package cost and signal integrity issues make the 
traditional unipolar CMOS parallel output interface 
unpractical for these devices. The scheme unanimously 
adopted by manufacturers uses serial links and low voltage 
differential signaling (LVDS). Building an interface to readout 
multiple ADCs poses new challenges to the designer of digital 
electronics: the aggregate data rate quickly exceeds several 
Gbps and multiple flows of data have to be synchronized 
consistently. We propose a new technique for interfacing to 
multiple multi-channel ADCs which is able to synchronize 
multiple channels with guaranteed zero-skew. It features 
deterministic latency and fast locking time. The proposed 
method is meant for implementation in low cost field 
programmable gate arrays (FPGAs). Internal FPGA resource 
usage is minimized: no internal delay locked loop (DLL) or 
programmable delay taps in I/O pad (a feature only found in 
latest generation devices) are used. 

After a description of traditional interface techniques to 
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high-speed ADCs, we expose the specific constraints of the 
intended application that brought the need for a new method. 
We describe our proposal in details and demonstrate the 
operation of a system where a single Xilinx Virtex 2 Pro 
FPGA is interfaced to 6 quad-channel 12-bit ADCs operating 
at 20 Msps. The proposed technique can easily be adapted to 
other digitizer boards that require aggregation of data from 
several multi-channel high speed ADCs in the same FPGA 
with guaranteed clock cycle-accurate synchronization. 

II. COMMON TECHNIQUES FOR INTERFACING TO ADCS 

A. Parallel unipolar interface  

Single channel, medium to high-speed ADCs almost always 
use a parallel output interface. The width of the parallel output 
bus is determined by the resolution of the converter. Unipolar 
signaling (low voltage CMOS) is the most common standard. 
The interface to such device is conceptually simple: a clock 
(derived from the sampling clock of the ADC) triggers a 
parallel register to latch the converted data. In order to reduce 
the impact of digital current switching on noise sensitive 
analog parts, current limiting resistors are often placed 
between the digital outputs of the ADC and the receiver logic. 
Although this scheme is adequate for single channel ADCs at 
up to ~100 Msps, it would not be effective for multi-channel 
devices: a quad-channel 12-bit ADC would require a 48-bit 
wide parallel bus. This would be inefficient in terms of pin 
count and becomes extremely difficult to operate as speed is 
increased: signal skew is hard to manage on wide busses due 
to unavoidable trace length mismatches, and ground bounce 
issues arise when large number of bus lines switch 
simultaneously. To overcome these limitations, silicon vendors 
have introduced two concepts: serial interfaces (to address the 
pin count limitation and signal skew issues) and differential 
signaling (to improve signal integrity). 

B.   Conventional serial differential interface  

We briefly recall the principle of operation of a typical high 
speed serial output ADC. Using the sampling clock as a 
reference, the ADC generates a high speed clock (DCO) to 
serialize data on its data output lines. Double data rate 
clocking is used and, for example, the DCO clock is 6 times 
faster than the sampling clock for a 12-bit ADC. The ADC 
also generates a framing signal (FCO), phase aligned with the 
serial data. The DCO clock is intended for data capture. The 
FCO signal can be used as a clock to latch data when it is 
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aligned, or it can be seen as a pseudo data channel that outputs 
a constant framing pattern (e.g. “111111000000”). This can be 
used to retrieve word boundaries in the serial stream. One of 
the simplest methods to interface to such ADC device is 
described in [4]. It is pictured in Fig. 1. 
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Fig. 1. Conventional de-serializer interface to a serial output 12-bit ADC. 

The high speed DCO clock controls a dual 6-bit shift 
register to de-serialize the incoming serial data Din on both 
edges of the clock. It is assumed that the most significant bit, 
D11 is shifted-in first. The framing clock FCO is used to latch 
parallel data after de-serialization when it is properly aligned 
on 12-bit word boundaries. Although simple, this scheme is 
not suitable for interfaces running at high speed (e.g. over ~30 
Msps) because it cannot compensate for data and clock skews. 
A more robust scheme is described in [4]. It uses a delay 
locked-loop to produce 8 copies of the DCO clock shifted by 
1:8th of a period. Eight shift registers skewed by 1:8th of a 
clock period capture data, and arbitration logic dynamically 
selects the optimal output. This scheme is effective but it 
consumes a substantial amount of logic, one DLL and at least 
8 clock tree nets per interface. The quantity of DLLs and 
global clock networks available in low cost to mid-range 
FPGAs is typically limited to 8 and 16 respectively. Global 
clock trees and DLL blocks are generally needed in other parts 
of the design and cannot be entirely assigned to the interface to 
ADCs. Embedded DLLs that provide 8 outputs are also 
uncommon. Xilinx “Digital Clock Manager” blocks provide up 
to 4 outputs shifted by 45°. A design based on this technology 
is described in [5]. 

Another scheme for interfacing to a serial-output ADC 
consists in using some programmable delay on clock and data 
lines. Specific logic is used to determine the optimal delay 
setting to deskew each individual data line with respect to the 
fast clock (DCO) provided by the ADC. Delay settings can be 
static, i.e. they are calibrated once, or they can be monitored 
and adjusted in real-time. This method is generally used for 
high speed source synchronous interfaces such as memory 
interfaces [6]. Adjustable delay lines are only available in the 
most recent FPGAs. In Xilinx parts, the Virtex 2 Pro and 
Spartan 3 only allow one optional delay to be set in an input 
pad, Spartan 3E and Spartan 3A families have 6 and 8 input 
delay settings respectively; the Virtex 4 and Virtex 5 families 
have a fully dynamically controllable 64-tap delay line per 
input pad. 

III. NEED FOR A NEW INTERFACE SCHEME  

The motivation for a new scheme to interface to serial 
output ADCs comes from the requirements of the readout 
electronics for the time projection chambers in the T2K 
experiment [7]. In this application, a single digital front-end 
mezzanine card (FEM) receives data from 6 analog front-end 
cards (FECs). Each FEC contains 4 “AFTER” ASICs [8] that 
are readout by a quad-channel 12-bit ADC (Analog Devices 
AD9229 [9]) clocked at 20 MHz. The net throughput of each 
individual ADC channel is 240 Mbps (120 MHz double data 
rate) leading to an aggregate bandwidth of 5.76 Gbps for the 
24 ADC channels connected to an FEM board. 

The AFTER chip comprises 72 charge sense amplifiers 
coupled to a 72 x 511 time buckets switched capacitor array 
(SCA). During the sampling phase of detector signals in the 
SCA, sensitive front-end pre-amplifiers must be kept in the 
lowest possible noise ambiance. To achieve that goal, the 
clock of the ADCs is turned off and the receiver logic is placed 
in standby mode. Upon the reception of an external trigger 
signal, the content of the SCA in all AFTER devices is frozen. 
The clock is applied to each ADC, the receiver logic is woken 
up, synchronized and digitization takes place. Current leakage 
in the SCA imposes a minimum digitization rate of 20 Msps to 
perform the complete readout of all AFTER chips in less than 
2.5 ms. The dynamic control of the clock applied to the ADCs 
imposes selecting a device that has a low wake-up time and 
requires the receiver logic to re-synchronize quickly. For our 
application, we require the total re-synchronization time be 
less than 200 µs, from the time the clock is applied to the ADC 
until valid data can be digitized. The dispersion of the re-
synchronization time from one acquisition to the next must 
also be minimized. A peak-to-peak variation of 100 µs is 
acceptable in our case. PLL-based techniques or methods that 
require a delay calibration procedure usually suffer from 
potentially long (e.g. several milliseconds) and unpredictable 
settling times. These methods are inadequate for our needs. 

The sequence of samples output by each AFTER chip has to 
be precisely retrieved by the FEM board: all 24 streams of data 
must be timely aligned to synchronized before further 
processing. Each of the 24 ADC and receiver logic paths must 
have equal, predictable, repeatable and deterministic latency. 
The required precision is one sampling clock period (i.e. 50 ns 
in our application). 

Other constraints are more common: we require the logic be 
sufficiently simple to fit in a small/medium size FPGA target, 
optimizations should be made to conserve power and favor the 
use of a low speed grade device (for cost reasons). Because 
none of the interface techniques reported so far are able to 
satisfy simultaneously all the constraints previously listed, we 
propose a new scheme. It is based on a combination of several 
known concepts and original improvements. 

IV. CHOICE OF THE ADC DEVICE 

As previously stated, our application requires the clock 
applied to the ADC be periodically suppressed/re-applied and 
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correct operation of the ADC be restored in few tens of µs. 
Not all ADC devices support dynamic control of the sampling 
clock and fast recovery time from such idle state. This 
capability and the corresponding recovery time are usually not 
documented in component datasheets. This parameter is 
particularly critical for serial output ADCs because these 
devices have some intrinsic uncertainty on the wakeup time 
because an on-chip PLL is used in the output interface. We 
investigated 2 candidate devices: the AD9229 from Analog 
Devices and the ADS5240 from Texas Instruments. Both 
manufacturers were questioned and we used evaluation kits to 
test the parts ourselves. We found that the AD9229 is able to 
reach stable operation within ~35 µs on average from the time 
the sampling clock is applied. For the ADS5240, locking times 
in excess of several milliseconds were occasionally observed 
and investigations of that part were not pursued. We show in 
Fig. 2. the histogram of the wake-up time of the AD9229 alone 
and (in anticipation) the total synchronization time of the ADC 
interface that is described in this paper. The wakeup time of 
the ADC is defined from the time the sampling clock is 
applied to the time an arbitrary chosen number of clock cycles 
(16 in our case) are counted on the fast clock output DCO. 
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Fig. 2. AD9229 wakeup time and global synchronization time.   

The total synchronization time is measured from the instant 
when the clock is applied to the ADC until the time the 
receiver logic detects the framing pattern on the FCO line 
more than twice in a row to avoid spurious detection. We 
checked in an independent series of measurements that the 
nominal performance of the ADC is reached within the total 
synchronization time. All the requirements on the wakeup time 
(mean, peak-to-peak and maximum value) for our application 
are comfortably met. In addition to a fast recovery time we 
measured that the AD9229 draws 10% less power when the 
sampling clock is idle. The improvement is appreciable, 
although marginal compared to the low power mode of the 
device (97% power reduction compared to the active state, but 
the recovery time from that state is 4 ms).  

V. DETAILED DESCRIPTION OF THE INTERFACE SCHEME 

A. General concept 

The block diagram of the proposed ADC interface logic is 

shown in Fig. 3. The logic is entirely implemented in an 
FPGA, although our application requires an external memory 
due to the large amount of data to be buffered (~1.2 MByte per 
event). The sampling clock of all ADCs is provided by the 
FPGA. The data capture logic block is responsible for 
capturing the data lines and the framing pattern line of each 
multi-channel ADC. A source-synchronous interface is used at 
that level: data capture is clocked by the fast clock (DCO) 
provided by each ADC. There is one data capture block per 
multi-channel ADC, each resides in its own clock domain. 
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Fig. 3. Block diagram of the proposed multi-channel ADC interface. 

The data re-capture logic is used to cross each DCO clock 
domain to bring all captured data in a common clock domain, 
called the FPGA clock domain (Fclk). The next blocks are the 
frame aligners. These delineate serial data to retrieve 12-bit 
word boundaries. Once this is done, global channel deskew is 
performed. This operation compensates for the differences in 
latency between the multi-channel ADCs. This block 
guarantees that all the digital samples at any given Fclk clock 
cycle correspond to the same sampling clock period at the 
analog inputs of all ADCs. The next stage is data re-ordering. 
This block re-organizes data to facilitate storage and fast 
retrieval to/from the external memory. 

B. Data capture 

The data capture logic is pictured in Fig. 4. Double data rate 
LVDS input pads (with the delay option enabled) are used to 
drive the two flip-flops embedded in an I/O pad. These are 
followed by 2 flip-flops located in the FPGA fabric, next to the 
I/O pad. To avoid the use of any DLL, the data capture logic is 
clocked directly by the DCO signal supplied by the ADC. An 
inverter is automatically inferred by the synthesis tool to clock 
data on the falling edge. 

The location of all input pads must be carefully chosen to 
minimize internal routing delays. The DCO clock signal 
deserves specific attention. Pad location must be chosen for 
the optimal routing of the local clock tree net [10]. It is 
necessary to turn on the optional delay in the input pad of the 
DCO signal and apply some appropriate timing constraints. 
Manual placement of individual flip-flops in the FPGA fabric 
was not found necessary for operation at 120 MHz (20 Msps 
for the ADCs) in the slowest speed grade of a XC2VP4 FPGA 
(Xilinx Virtex 2 Pro family). On the other hand, imposing that 
the FIFO of the data re-capture logic (described later) is placed 
at the location closest to the data capture logic is required to 
meet timing constraints. 
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Fig. 4. Data capture logic. 

The physical layout of a data capture logic block for an 
interface located on the left side of the FPGA die is shown in 
Fig. 5. Routing is cleaner on the left side of the die because 
logic resources inside the FPGA are built by translation of 
some design pattern while mirroring around a left/right 
symmetry axis would be required for optimal routing on the 
right side of the device. Higher speed designs would probably 
require manual placement of all the flip-flops of the data 
capture block, and should preferably connect to the external 
ADCs via the row of input pads located on the left side of the 
FPGA die.  
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Fig. 5. Physical layout of a data capture block. 

The data capture block is duplicated 5 times per multi-
channel ADC. The output of that block consists of 5 four-bit 
wide busses clocked in the DCO domain (QR0, QR1, QF0 and 
QF1). Four busses correspond to the 4 data channels of the 
ADC; the fifth bus corresponds to the framing pattern line 
(FCO). Only three out of each series of six consecutive 4-bit 
words on any particular bus need to be accumulated to build 
complete 12-bit samples. The framing pattern 
“111111000000” is always output in a fixed sequence of six 4-
bits words of the form: {“1111”; “1111”; “1100”; “0000”; 
“0000”; “0011”} and only one word out of two has to be 
retained to retrieve the correct pattern. 

The data capture block performs a partial de-serialization: 
each 1-bit double data rate 120 MHz differential line is 
converted to a 4-bit wide bus that can be sampled at 60 MHz. 
This provides some optimal trade-off between internal speed 
and bus width. The global interface to 6 quad-channel ADC 
leads to a 120-bit wide internal bus clocked at 60 MHz. A 
complete de-serialization into 12-bit words as in [4] would 

need an unpractical 360-bit wide bus clocked at 20 MHz. 
Performing only double data rate to single data rate conversion 
at this stage would lead to a 60-bit wide bus clocked at 120 
MHz which is not trivial to deal with inside an FPGA fabric. 

C. Data re-capture 

The data re-capture logic is used to transport the data 
captured by the front-end logic from the 6 different DCO clock 
domains (one domain per multi-channel ADC) to a common 
clock domain (Fclk), inside the FPGA. The structure of this 
block is shown in Fig. 6. 
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Fig. 6. Data re-capture logic. 

We use a 512 word 36-bit synchronous dual port memory 
block configured as a self-addressing FIFO [5] to perform this 
operation. The depth of the FIFO is set to 6 words. This offers 
the guarantee (by design) that no more than one complete 12-
bit sample is stored in a FIFO slice at any time. This aspect is 
important to ensure that no unpredictable delay greater than 
one ADC sampling clock period can possibly be introduced 
when crossing clock domains during data-recapture. The width 
of the input data bus of the FIFO is 20 bits in order to interface 
directly to the data capture logic of the quad-channel ADC. 
The feedback path of the write section of the FIFO takes 6 data 
lines and uses one-hot encoding for addresses. Consequently, 
no logic is needed in the feedback path: the next address is 
simply obtained by a hardwired cyclic shift of the current 
address by one bit. Avoiding the need for logic in the feedback 
path enables the highest possible operating speed and does not 
reduce the skew margin on the local DCO clock tree net 
because there isn’t any flip-flop to clock at that level. The 
feedback path of the read section of the FIFO shifts the read 
address by 2 bits instead of one on every FPGA clock cycle: 
this enables reading out one word out of two being written in 
the FIFO, i.e. the read side of the FIFO operates at half the 
frequency of the write side. This is particularly important in 
high speed designs because only flips flops located inside (or 
close to) the I/O pads can be clocked at high frequency, while 
those distributed in the FPGA fabric are generally limited in 
speed by internal routing delays caused by the comparatively 
long distances to cover. Note that the feedback path of the read 
side of the FIFO contains flip-flops, but this is not critical 
because a global clock tree net is used on this side, and 
operating frequency is halved compared to the write side. The 
initial content of the block RAM used as a FIFO needs to be 
properly set and the initial value of the write pointer (DCO 
clock domain) and read pointer (FPGA clock domain) need to 
be initialized every time the logic needs re-synchronization. 
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This is achieved by a preset of the output registers of the dual 
port RAM via the Init signal. Note that two cascaded flip-flops 
are used to avoid metastability when transporting the Init 
signal from the FPGA clock domain to the DCO clock domain. 

The output of the re-capture logic of each multi-channel 
ADC is a 20-bit wide bus (i.e. 120-bit wide in total) clocked at 
60 MHz. Three consecutive 20-bit words are needed to 
assemble the four 12-bit samples that correspond to the 
conversion of the analog inputs and the 12-bit framing pattern. 
Depending on the (unknown) skew of the preset signal with 
respect to the sampling clock of each ADC, there are only 6 
possible sequences being written into the FIFO for the framing 
pattern. These sequences are listed in Table I. 

TABLE I. LIST OF ALL POSSIBLE SEQUENCES WRITTEN INTO THE DATA RE-
CAPTURE FIFO FOR THE CONSTANT FRAMING PATTERN “111111000000”. 

1111

1111

0011

0000

0000

1100

case5

0011

0000

0000

1100

1111

1111

case4

0000

0000

1100

1111

1111

0011

case3

1100

1111

1111

0011

0000

0000

case2

000011110x20

110000110x10

111100000x08

111100000x04

001111000x02

000011110x01

case6case1Address

1111

1111

0011

0000

0000

1100

case5

0011

0000

0000

1100

1111

1111

case4

0000

0000

1100

1111

1111

0011

case3

1100

1111

1111

0011

0000

0000

case2

000011110x20

110000110x10

111100000x08

111100000x04

001111000x02

000011110x01

case6case1Address

 
For each possible case, there is one and only one address 

read sequence that allows recovering the correct framing 
pattern. For cases 1, 2 and 3, the addresses to consider are 
0x02, 0x08 and 0x20 while for cases 3, 4 and 5, only data at 
address 0x01, 0x04 and 0x10 shall be read. Proper alignment 
is obtained with the read address sequences: Seq_1={0x20; 
0x02; 0x08}, Seq_2={0x08; 0x20; 0x02}, Seq_3={0x02; 
0x08; 0x20}, Seq_4={0x01; 0x04; 0x10}, Seq_5={0x10; 
0x01; 0x04} and Seq_6={0x04; 0x10; 0x01} for case 1, 2, 3, 
4, 5 and 6 respectively.  

D. Frame alignment 

The frame alignment logic is shown in Fig. 7. It consists in a 
finite state machine that tries to identify the framing pattern in 
3 consecutive 4-bit words output by the data re-capture logic. 

Pa,b,c=111111000000?
Pi = P19..16 (FCO signal)
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Lost Get Pa

Get Pb

Get Pc

Synch Req=1?

YesNo

Aligned
cnt >2?

=7 =4

Set
POS

<4

Set
ALI

Clear ALI,
Aligned cnt

Yes
No

YesNo

Slip count? Clear
POS

Aligned
cnt ++

 
Fig. 7. Frame alignment logic. 

 Upon request for synchronization (signal Synch. Req), the 
initial value of the FIFO read pointer and write pointer are set 
to 0x02 and 0x01 respectively. The sequence of FIFO 
addresses being read is therefore Seq_3 = {0x02; 0x08; 0x20}. 
Three consecutive 4-bit words, Pa, Pb and Pc, corresponding to 
the framing pattern lane are concatenated and compared 

against the expected 12-bit constant. If alignment is not found, 
a slip of one Fclk clock cycle is introduced. If alignment is still 
not obtained after trying the 2 circular shifts of Seq_3 (i.e. 
Seq_1 and Seq_2); the alternate family of FIFO read address 
sequences, Seq_4, Seq_5 and Seq_5 are successively tried. In 
normal operating conditions there is always one and only one 
sequence of addresses that lead to correct frame alignment. 
Synchronization failure at this stage is a fatal error: the frame 
alignment logic stays in the “Lost” state until the next 
synchronization request. Note that the frame aligner block 
does not guarantee that the address on the write side of the 
FIFO always differ from that on the read side. This ill-defined 
situation is however extremely improbable because the clock 
on the write side (DCO) is frequency locked to that on the read 
side (Fclk): the two clocks do not drift with respect to each 
other and only a fixed (but unknown) phase shift between the 2 
clock domains needs to be absorbed by the FIFO. Although 
this was not found necessary in our implementation, a more 
sophisticated scheme for clock synthesis could be devised to 
control the phase shift between the ADC sampling clocks (and 
consequently that of the DCO clocks) and the local FPGA 
clock to guarantee an optimal time margin.   

The signal ALI is asserted when the framing pattern has 
been found more than twice in a row and is de-asserted as soon 
as one incorrect framing pattern is found. The lock time of the 
frame alignment logic is unpredictable but has fixed 
boundaries (only 6 possible sequences of read address have to 
be tried). The latency introduced by the data re-capture block 
reaches a different value depending on which of the 6 possible 
sequences of read addresses leads to frame alignment. In our 
implementation, we found that the delay mismatch between the 
6 multi-channel ADCs is sufficiently low to ensure that only 2 
different values of latency are ever reached: the 2 ADCs 
closest to the FPGA always exhibit one Fclk clock cycle latency 
less than the 4 ADCs located further away. A single bit (POS 
signal) per ADC interface is used to make the distinction 
between the two possible latency values. 

E. Global deskew 

As previously explained the data re-capture block skews 
data because the latency introduced by the FIFO used to cross 
clock domains differs from one multi-channel ADC to the 
other. This skew must be compensated to ensure that all ADC 
samples are aligned to the same Fclk clock cycle. This is 
achieved on a per ADC basis by applying a delay of one Fclk 
clock cycle to the re-captured data when the corresponding 
POS signal is asserted. 

The ALI signals of all ADCs are AND’ed together to 
indicate the completion of the alignment procedure at the 
global level. Each ALI signal can be individually masked to 
allow correct operation when only a subset of the ADCs is 
present. Masking also allows operation in a degraded mode 
when one or several ADCs cause frequent or permanent 
synchronization failures. 
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F. Data formatting 

At this stage, data are re-organized for storage in the 
external memory buffer. The three 4-bit words that make each 
12-bit sample are converted into two 6-bit words. This 
conversion is easily achieved in pipe-line logic. The output of 
this block consists of one 30-bit wide bus clocked at 60 MHz 
for each multi-channel ADC. These six busses are time 
multiplexed towards an external memory (2 zero-bus 
turnaround Cypress CY7C1354CV25 static RAM) over a 60-
bit wide data bus operating at 120 MHz. The two 6-bit words 
that make a 12-bit sample are stored at consecutive addresses 
in the external memory (burst of 2 access during write and 
read). Because the frequency of the external RAM is exactly 
twice that of the internal FPGA logic, only one Fclk clock cycle 
is needed to access 12-bit data samples stored in the external 
RAM. 

In our application, the operations performed on the data 
after temporary storage comprise an optional pedestal 
equalization, zero-suppression with a programmable threshold 
value per channel, and transmission towards back-end 
electronic cards via a 2 Gbps optical link. The description is 
outside of the scope of this paper. 

VI. IMPLEMENTATION 

The logic previously described has been fitted into a Xilinx 
XC2VP4 (672 pin BGA package; slowest speed grade) placed 
at the center of the FEM board. It interfaces to each quad-
channel ADC of the 6 FECs connected to the FEM board via 
right-angled rear side connectors. This is shown in Fig. 8. 

 
Fig. 8. View of the FEM board connected to 6 FECs. 

The distance between the FPGA and the ADC is ~4 cm for 
the 2 cards located close to the center of the FEM board and 
reaches ~18 cm for the farthest cards. Extensive behavioral 
simulations have been made and tests of several FEM cards 
and FECs have shown very stable operation over many days.  

VII. CONCLUSION AND PERSPECTIVE 

A new scheme for interfacing several multi-channel high 
speed ADCs to programmable logic has been described. The 
main advantages compared to designs reported so far are: a 
minimal use of internal PLL/DLL and global clock networks in 

the FPGA, guaranteed sampling clock accurate alignment of 
data on all channels, fast locking time (less than 100 µs), and 
internal rate conversion to run the core of the logic at one 
quarter of the speed of the external serial lines. 

The source synchronous-side of the interface uses direct 
clocking. The main limitation of the proposed implementation 
is that fixed delays are used to compensate the skew of the data 
lines with respect to the clock used for capture. It is estimated 
that this would limit operation to 30 Msps ADCs. Using a 
more sophisticated FPGA device (Virtex 4 or Virtex 5) would 
allow higher speed because finer control on the input pad 
delay is necessary to bring data in the middle of the capture 
window. The limitation on the number of multi-channel ADCs 
that can be controlled by the same FPGA is primarily 
determined by the complexity of the printed circuit board. 
Connecting six quad-channel ADCs to the FPGA on the FEM 
board was very difficult using a 12-layer class 7 PCB (100 µm 
traces, 120 µm spacing). A design that comprises 8-10 quad-
channel ADCs is probably close to the limits of what can be 
built at an affordable cost with today’s industrial technology. 

The proposed interface technique will be deployed on the 
72 digitizer boards for the readout of the time projection 
chamber in the T2K experiment. The technique can be 
transposed to other designs where the aggregation of data 
delivered by multiple multi-channel high speed ADCs in a 
time coherent fashion is required.  
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