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The HERMES collaboration has recently published a set of (correlated) beam charge, beam spin
and target spin asymmetries for the Deeply Virtual Compton Scattering process. This reaction
allows in principle to access the Generalized Parton Distributions of the nucleon. We have fitted, in
the QCD leading-order and leading-twist handbag approximation, but in a model independent way,
this set of data and we report our results for the extracted Compton Form Factors. In particular,
we are able to extract constrains on the H GPD.
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More than forty years after the discovery of partons
inside the nucleon, the precise way they compose the
nucleon and give rise to its properties remains a large
mystery. In this past decade, the powerful concept of
Generalized Parton Distributions (GPDs), which allows
to describe the nucleon structure in an unprecedented
way, has emerged. Among other features, the GPDs con-
tain the correlations between the spatial and momentum
distributions of the partons inside the nucleon. These
correlations, which are currently unknown, can thus al-
low for a tomographic image of the nucleon, by providing
spatial distributions of the quarks for different momen-
tum “slices”. Besides such an imaging, measuring GPDs
allows to access some fundamental properties of the nu-
cleon such as, through Ji’s sum rule, the orbital momen-
tum contribution of the quarks to the spin of the nucleon
(which is, classically, the cross product of position and
momentum). More generally, GPDs reflect the complex
non-perturbative dynamics of the strong force which gov-
erns the interaction between quarks and gluons. It is
one of the main challenges of today’s modern physics to
understand the confinement regime of the strong force
and its associated theory, Quantum Chromo-Dynamics
(QCD). Measuring GPDs, which can be modeled or cal-
culated theoretically, certainly opens a wide new window
onto these fundamental issues.

We refer the reader to refs. [1–8] for the original the-
oretical articles and recent comprehensive reviews on
GPDs and for more details on the theoretical formalism.
In short, formally, the GPDs are the Fourier transforms
of matrix elements of QCD light-cone bilocal operators
between nucleon states of different momenta. They can
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be measured through Deeply Virtual Exclusive Processes
such as, for the process the simplest theoretically and
the most accessible experimentally, the exclusive lepto-
production of a photon or a meson on a nucleon at large
Q2 (the lepton’s squared momentum-transfer). In the
following, we focus on the Deeply Virtual Compton Scat-
tering (DVCS) process on the proton, ep → epγ, which
has been recently the subject of an intense experimental
effort [9–12]. The process is illustrated on fig. 1.

The amplitude of the DVCS process is the convolu-
tion of the GPDs and a hard kernel which represents the
Compton scattering of a (virtual) photon with a quark
of the nucleon, which can be calculated perturbatively in
both QED (Quantum Electro-Dynamics) and QCD. For
helicity conserving quantities in the quark sector, there
are four GPDs, H, H̃, E, Ẽ which depend, in leading or-
der QCD perturbation theory and leading twist QCD, on
three variables: x, ξ and t. Both x and ξ express the lon-
gitudinal momentum fractions of the two quarks of the
bilocal operator, while t is the squared four-momentum
transfer between the final and initial nucleon. ξ is re-
lated to the well-known Deep Inelastic Scattering (DIS)
variable xB : ξ ≈ xB

2−xB
(at leading order).

In processes such as DVCS, if the ξ and t variables
are well measurable experimentally (by measuring the
kinematics, respectively, of the scattered lepton and the
recoil nucleon -or the final state photon-), the x variable
is a “mute” variable. Indeed, the GPDs enter the DVCS
amplitude under the form of a convolution integral over
x:

∫ +1
−1 dxGPD(x,ξ,t)

x+ξ−iε . Decomposing this expression into
a real and an imaginary part (and reducing the x-range
from {−1, 1} to {0, 1}), there are therefore in principle
eight GPD-related quantities that can be extracted in
the DVCS process, in the QCD leading twist and leading
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FIG. 1: The handbag diagram for the DVCS process on the
proton ep → e′p′γ′. Here x+ ξ and x− ξ are the longitudinal
momentum fractions of the initial and final quark, respec-
tively, and t = (p − p′)2 is the squared momentum transfer
between the initial and final protons (or equivalently between
the two photons). There is also a crossed diagram which is
not shown here.

order approximation, which is the frame of this study:

HRe = P

∫ 1

0
dx [H(x, ξ, t) − H(−x, ξ, t)]C+(x, ξ),(1)

ERe = P

∫ 1

0
dx [E(x, ξ, t) − E(−x, ξ, t)]C+(x, ξ), (2)

H̃Re = P

∫ 1

0
dx

[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
C−(x, ξ),(3)

ẼRe = P

∫ 1

0
dx

[
Ẽ(x, ξ, t) + Ẽ(−x, ξ, t)

]
C−(x, ξ),(4)

HIm = H(ξ, ξ, t) − H(−ξ, ξ, t), (5)
EIm = E(ξ, ξ, t) − E(−ξ, ξ, t), (6)
H̃Im = H̃(ξ, ξ, t) + H̃(−ξ, ξ, t) and (7)
ẼIm = Ẽ(ξ, ξ, t) + Ẽ(−ξ, ξ, t) (8)

with

C±(x, ξ) =
1

x − ξ
± 1

x + ξ
. (9)

In order to avoid any potential confusion for the Re and
Im symbols, let us note that we have slightly changed our
notation with respect to ref. [13] where these eight quan-
tities were called, respectively, Re(H), Re(E), Re(H̃),
Re(Ẽ), Im(H), Im(E), Im(H̃) and Im(Ẽ). We will
call them the Compton Form Factors (CFFs), in a slight
abuse of terminology. We point out that in our defini-
tion there is a π factor for the Im(H), Im(E), Im(H̃)
and Im(Ẽ) CFFs and a “-” sign for the Re(H), Re(E),
Re(H̃), Re(Ẽ) CFFs of difference with respect to the
original CFF definition of ref. [14]. Since we are fo-
cusing in this study on the proton, it has to be under-

stood in the following that we consider proton GPDs, i.e.
GPD(x, ξ, t) = 4

9GPDu(x, ξ, t) + 1
9GPDd(x, ξ, t).

Also, we recall that, experimentally, there is another
process leading to the same final state ep → epγ than
the DVCS: the Bethe-Heitler (BH) process, in which the
final state photon is radiated by the incoming or scat-
tered electron and not by the nucleon itself. The BH
process is very well calculable in QED and the only
non-perturbative QCD quantities entering are the pro-
ton form factors, which are relatively precisely known at
the relevant kinematics, i.e. small t.

Now the question arises: given the well calculable
leading-twist DVCS and BH amplitudes, to which ex-
tent the CFFs, which are unknown quantities, can be
extracted from real data ? The problem is not trivial
since the formulas linking the CFFs to the observables
are complex and non-linear. A dedicated study based on
Monte-Carlo simulations has been carried out in ref. [13]
showing that, given enough observables (charge- , sin-
gle and double-spin observables) and enough experimen-
tal accuracy (of the order of a few percent), essentially
all CFFs could be extracted from (pseudo-)data. This
study was based on the combination of the well-known
CERN minimization program MINUIT [17] and the VGG
code [15, 16] which calculates the DVCS and BH ampli-
tudes and the associated observables. The VGG code also
provides parametrizations of the GPDs. As a real appli-
cation, the recent Jefferson Laboratory (JLab) Hall A un-
polarized and beam-polarized cross sections data [9] were
fitted, this resulting in the first ever model-independent
(leading-twist) extraction of the HRe and HIm CFFs,
though with large uncertainties since only two observ-
ables were fitted.

In the present study, our aim is now to apply our fit-
ting procedure to the recent set of DVCS asymmetries
recently published by the HERMES collaboration. In
short, compared to the JLab/Hall A experiment, the
HERMES experiment, although in a different kinematic
regime, provides more observables but with lesser pre-
cision. The question is then: can we still extract some
(model independent) GPD information ?

Precisely, the HERMES collaboration has mea-
sured [11, 12]:

• charge asymmetries [11, 12]:

A{C} =
σ+(φ) − σ−(φ)
σ+(φ) + σ−(φ)

(10)

• correlated charge and beam-spin asymmetries [12]:

A{LU,DV CS} =
(σ+

+(φ) − σ+
−(φ)) + (σ−

+(φ) − σ−
−(φ))

σ+
+(φ) + σ+

−(φ) + σ−
+(φ) + σ−

−(φ)

A{LU,I} =
(σ+

+(φ) − σ+
−(φ)) − (σ−

+(φ) − σ−
−(φ))

σ+
+(φ) + σ+

−(φ) + σ−
+(φ) + σ−

−(φ)
(11)

• correlated charge and transversely polarized target-
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spin asymmetries [11] :

A{UT,DV CS} =
(σ+

+(φ) − σ+
−(φ)) + (σ−

+(φ) − σ−
−(φ))

σ+
+(φ) + σ+

−(φ) + σ−
+(φ) + σ−

−(φ)

A{UT,I} =
(σ+

+(φ) − σ+
−(φ)) − (σ−

+(φ) − σ−
−(φ))

σ+
+(φ) + σ+

−(φ) + σ−
+(φ) + σ−

−(φ)
(12)

where the first index of the asymmetry A refers to the
polarization of the beam (“U” for unpolarized and “L”
for longitudinally polarized) and the second one to the
polarization of the target (“U” for unpolarized and “T”
for a transversely polarized target). For AUT , one can
actually define two independent polarization observables
AUx and AUy corresponding to the two directions orthog-
onal to the virtual photon direction : “x” being in the
hadronic plane and “y” perpendicular to it (see fig. 2).
In eqs.(10,11,12), σ refers to the ep → epγ cross section,
the superscript being the charge of the beam and the sub-
script the (beam or target, accordingly) spin projection.
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FIG. 2: Reference frame and relevant variables for the de-
scription of the ep → epγ reaction.

The HERMES collaboration has measured several φ
moments of these asymmetries, leading to seventeen in-
dependent observables in all :

A{C}, Asin φ
{C} , Acos φ

{C} , Acos 2φ
{C} , Acos 3φ

{C}

A{LU,DV CS}, A
sin φ
{LU,DV CS}, A

cos φ
{LU,DV CS}, A

sin 2φ
{LU,DV CS}

A{LU,I}, A
sin φ
{LU,I}, Acos φ

{LU,I}, A
sin 2φ
{LU,I}

Asin φ
{Ux,I},

A{Uy,DV CS},

A{Uy,I} and Acos φ
{Uy,I} (13)

where Asin φ and Acos φ are the Fourier coefficients of
the asymmetry and when no subscript is present to its

simple integral normalized by 2π. In eq. 13, the moments
written in a bold font are those which are expected to be
significantly different from zero at leading twist DVCS.

In our study, we have considered the simultaneous fit
of all these seventeen asymmetries. Even though many
of these asymmetries are zero in the DVCS leading twist
approximation and therefore bring no constrain in our
minimization procedure, we have nevertheless decided to
keep them in our fit because they do carry some statisti-
cal significance. The fit was carried out at the four kine-
matic points displayed in the three leftmost columns of
Tab. I. We show in Tab. I two sets of kinematics because
the asymmetries of eq. 13 have been obtained via two
distinct analysis [11, 12] and the two sets of kinematics
do not match perfectly. Ref. [11] has measured the A{C}
and A{UT} asymmetries at the < xB >,< Q2 >,< −t >
values of the first three (leftmost) columns of Tab. I while
ref. [12] has measured the A{C} and A{LU} asymmetries
at the < xB >,< Q2 >,< −t > values of the last (right-
most) three columns of Tab. I. Actually, for this latter
analysis, two more kinematic points are available. How-
ever, they do not have any approximate equivalent in
ref. [11] and we have therefore not considered these extra
data in our fit since not enough observables to fit would
have been available.

As the two < xB >,< Q2 >,< −t > sets approxi-
matively match each other and, in order to be able to
fit simultaneously all seventeen observables, we have de-
cided to fit the A{C} and A{UT} asymmetries of ref. [11]
and the A{LU} asymmetries of ref. [12] at the common
kinematics of ref. [11] (i.e. the three rightmost columns
of Tab. I). This clearly introduces a slight bias for the
A{LU} asymmetries, which are therefore not calculated
at the exact kinematics at which they were measured.
Given the uncertainties on our final results, which we
will present shortly, this effect is considered negligible.

For the actual fit of the data, we have used the code
of ref. [13] as well as another independent recent code
developped by H. Moutarde, based on analytical formulas
for the ep → epγ amplitude [18] (i.e. sum of BH and
DVCS). An analysis of the DVCS JLab Halls A and B
data based on this code has recently been performed [19].
It has been checked that the two codes give results in
agreement, the code of ref. [19] being simply faster.

The parameters to be fitted are the CFFs of eq 1-1
However, like in ref. [13], we have considered only seven
CFFs, setting ẼIm to zero, based on the theoretical guid-
ance which approximates the Ẽ GPD by the pion ex-
change in the t-channel whose amplitude is real. For the
minimization procedure, we have used MINUIT and, the
problem at stake being non-linear and the parameters
being correlated, MINOS for the uncertainty calculation
on the fitted parameters [17]. The function which is min-
imized is :

χ2 =
n∑

i=1

(Atheo
i − Aexp

i )2

(δσexp
i )2

(14)
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where Atheo is the theoretical leading twist asymmetry,
Aexp is the corresponding HERMES experimental value
and δσexp is its associated experimental error bar. We
have summed quadratically the systematic and statistical
error bars of the HERMES data.

The only model dependent input in our approach is
that we have bounded the domain of variation of the
seven CFFs to be fitted. Indeed, without any bounds,
the fit would not converge or the result would depend on
the starting values of the CFFs. We have bounded the
allowed range of variation of the CFFs to five times some
“reference” VGG CFFs, like in ref. [13]. We stress that
this is the only place in our work where some model de-
pendency enters. However this bounded domain appears
to us as a rather conservative choice. We recall that the
normalization of the GPDs is in general constrained by
several relations, in particular forward parton distribu-
tion functions and form factor sum rules. Obviously, the
VGG GPDs obey these relations. Furthermore, GPDs
must obey dispersion relations [20–23] which state that
the “Re” CFFs can be deduced from an integral over x of
the “Im” CFFs [24], so that they are not completely inde-
pendent. Since refs. [9, 10, 13, 19] seem to establish that
the VGG value of HIm is very reasonable, at least in the
JLab regime, this means that the VGG HRe should not
be very much off either. However, it is to be noted that,
in the dispersion relation formalism, for the H and E
GPDs, there is an unknown subtraction constant, which
can be associated to the so-called D-term [25] and which
affects the normalization of HRe and ERe. The normal-
ization of the D-term is not well established but model
dependent estimations [25] or first lattice calculations do
not seem to imply values which would escape the domain
of variation considered in the present work. As a last
point, since the D-term is non-zero only in the (−ξ, ξ)
domain, its weight drops with xB decreasing and its in-
fluence should be significantly reduced at HERMES en-
ergies. The influence on our results of the bounds of the
domain of variation of the CFFs is studied furtherdown
and is found, within reasonable limits, to be modest.

The results of our fits to the seventeen HERMES asym-
metries are displayed in fig. 3 along with the Hermes data.
The numerical values of our fitted CFFs with their uncer-
tainties are displayed in Tab. II. The ∞ symbol means
in general that the MINOS uncertainties were “at limit”,
i.e. that MINOS could not reach the χ2+1 value, defining
σ, within our 7-dimensional domain which is bounded as
we recall. The ∞ symbol can also mean that, although
MINOS returned a finite error on the fitted parameter,
this parameter actually reached the boundary of the do-
main which makes this uncertainty unreliable. In such
case, we associate an asterisk to this value in Tab. II.
We have checked that the contribution to the χ2 of those
CFFs which happen to reach the boundaries of our do-
main are actually at the level of the percent over their
whole range of variation. Although it is not very sat-
isfying to have fitted parameters reaching their limit, it
simply shows that these have actually little influence on

our results and that the fit is barely sensitive to them.
As can be seen from Tab. II, the five CFFs ERe, H̃Re,

ẼRe, EIm and H̃Im can in general not be constrained
(except for upper or lower limits in some cases) and they
can take a whole range of values and accomodate the
HERMES data. We see that actually only the HIm and
HRe CFFs come out of our fitting procedure with mean-
ingful lower and upper error bars: this means that only
a limited range of values for the two HIm and HRe CFFs
is possible to fit the HERMES data. In other words, the
HERMES data constrain only those two CFFs. This was
also the case when we fitted the polarized and unpolar-
ized DVCS cross sections of the JLab Hall A collabora-
tion [13]. In the present case, we note that the uncer-
tainties on HIm range from ≈ 30% to ≈50%, which is
actually less than what we obtained for the JLab Hall A
data where the error bars were of the order of 100% [13].
This shows that, even without normalized data such as
cross sections, i.e. only with a (large) series of asymme-
tries, it is possible to constrain relatively strongly HIm

and, to a lesser extent, HRe.
We have carried out several checks to ensure the relia-

bility of our results. First, we have studied the influence
of the bounds of the domain over which the CFFs are al-
lowed to vary. Fig. 4 shows for the HIm and HRe which,
according to Tab. II are the only two CFFs with finite
uncertainties issued from our fits to the HERMES data,
their fitted central values and uncertainties for different
bounds : ±3, ±5, ±7 and ±10 times the VGG refer-
ence values. The figure shows that, for HIm, at the three
lowest t values, our results are essentially independent of
these bounds, at the few percent level. It can be noted
that the error bars increase as the domain of variation
increases, which is naturally understandable. Only for
the largest t value (-0.42 GeV2), some non-convergence
starts to appear if the domain of variation exceeds ±5
times the VGG reference values. The same conclusions
essentially apply to HRe. For this latter CFF, one can
note however that there is a more pronounced effect for
the second t value (-0.10 GeV2). This may be due to the
fact that HRe takes, at this t point, a value very close to
zero, even suggesting a change of sign of this CFF in this
t region. Being extremely small, it is understandable that
it is difficult to fit and have sensitivity to it. Although
it should be rather unrealistic to have CFFs more than
five times those given by the VGG parametrization, fig. 4
shows that our results remain stable for larger domains,
at least for the three smallest t values. Given the large
MINOS uncertaintities displayed in Tab. II, we do not
introduce any additional uncertainty due to this effect.
Fig. 4 also shows that one way to reduce the uncertain-
ties on the results of our fits is, besides obviously having
more numerous and more precise data to fit, to reduce the
domain of variation of the parameters : the smaller the
domain, the smaller the final uncertainties. In the current
study, our aim is to remain as much model-independent
as possible, so we do not pursue this direction for the mo-
ment but it is clear that if theory happens to impose some
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limit stronger than the ones we have presently taken, on
the values that some CFFs can take, the uncertainties on
the fit results can only diminish.

We have also made sure that the result of the fit did not
depend on the starting values of the minimization proce-
dure: we have taken these starting values either equal to
zero, or to the VGG reference value, or even randomly
chosen within the range of variation of the seven CFFs
(equal to, we recall, for our “reference” configuration, to
±5 times the reference VGG value). In each case, while
the resulting fitted values for ERe, H̃Re, ẼRe, EIm and
H̃Im could vary, the results for HIm and HRe would al-
ways converge to the same values of Tab. II.

FIG. 3: The seventeen HERMES observables, as defined in
eqs. 10-13, that have been fitted. For the first five rows, the
solid circles show the HERMES data of ref. [11] and the open
circles show the HERMES data of ref. [12]. For the following
four rows (the ALU asymmetries), the open circles show the
HERMES data of ref. [12] and the solid circles show these
SAME data offset to the kinematics of ref. [11], so as to fit all
seventeen observables simultaneously at the same kinematics.
In other words, the solid circles show the data point which
have been fitted. The results of our fit are the intersections of
the solid lines with the experimental points, the result of our
fits being simply linked by straight lines for the four t points.
The dashed lines show the results of the reference VGG cal-
culation, again calculated at the four HERMES kinematic
values of Tab. I (three leftmost columns), the four t points
being linked on the figure by straight lines.

We also show on this figure the prediction of the
VGG model which calculate these observables from GPD
parametrizations with standard parameters. We observe

FIG. 4: Fitted central values and uncertainties for the HIm

and HRe CFFs, fitted to the HERMES data of fig. 3. The
open upright triangles are the results for the domain of varia-
tion ±3 times the VGG reference values, the open squares for
±5, the open circles for for ±7 and the open upright triangles
for ±10. For these two latter domains, there are no values
displayed for the largest t value as the fit did not converge
(∞ incertainty). The solid squares are the results of the fit
for the “average” kinematics, i.e. fixed xB=0.09 and Q2=2.5
GeV2, for the four t values of Tab I -0.03, -0.10, -0.20 and
-0.42 GeV2 (third column). All points on this figure actually
correspond to these four t values: the open upright trian-
gles, the open circles, the open upright triangles and the solid
squares have been slightly shifted for visibility. We recall that
our definition of the “Im” and “Re” CFFs differ respectively
of a π factor and of a “-” sign with respect to the original
CFF definition of ref. [14].

that the basic VGG paramatrisation of the GPDs already
gives a decent description and the right trend of the data
as this was also shown in ref. [11]. The biggest discrep-
ancies between the standard VGG calculation and the
HERMES data lie in the Acos φ

{C} , A{Uy,DV CS} and Asin φ
{Ux,I}

observables.
We display on fig. 5, as a function of −t, the resulting

HIm and HRe CFFs issued from our fit to the HERMES
data (lower panels) along with the same two CFFs issued
from the fit of the JLab Hall A data (upper panels). The
values and kinematics of these two latter “JLab” CFFs
are recalled in Tab. III. The kinematics of the two ex-
periments do not perfectly match : for instance Q2=2.3
GeV2 for the JLab Hall A data while Q2 ranges from 1.9
to 3.5 GeV2 for HERMES (for an average < Q2 >=2.5
GeV2 [11]). However, in the leading-twist handbag and
leading order QCD approximation, which is the frame in
which this work is done, we do not take into account any
Q2 dependence of the CFFs. Such Q2 dependence can
actually not be really resolved with the present available
data sets. Also, while the JLab data are at a fixed xB

(=0.36) the HERMES data have been taken at varying
xB (from 0.07 to 0.12, resulting in an average < xB >
of 0.09 [11]). However, the solid square points on fig. 4
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FIG. 5: The t-dependence of the HIm and HRe CFFs result-
ing from our fitting procedure (open squares). Upper pan-
els: JLab kinematics (fit of the unpolarized DVCS cross sec-
tion and of the DVCS beam-polarized difference of cross sec-
tions [9, 13]), lower panels: HERMES kinematics (this work,
with the values of Tab. II). The largest t point for the HER-
MES fits is in a “box” to recall that this result is particu-
larly dependent on the boundary values of the domain over
which the CFFs are allowed to vary (see fig. 4). The solid
circles show the result of the reference VGG parametrisa-
tion. The solid curves show the results of the model-based
fit of ref. [30], based on the “high-energy” data of HER-
MES [11, 12], ZEUS [31], H1[32–34] and CLAS [10].

show that taking these average HERMES < xB > and
< Q2 > affect only at the percent level the HIm and HRe

values of Tab. II. We also show on fig. 5, the standard
VGG values for these two CFFs.

Although the error bars on the fitted CFFs are quite
significant, some general features and trends can never-
theless already be distinguished on fig. 5 :

• At fixed −t, HIm takes higher values at HERMES
than at JLab kinematics (for instance, at −t ≈ 0.2
GeV2, HIm ≈ 2 at JLab (see the asymmetric un-
certainties in Tab. III) while HIm ≈ 4 at HER-
MES (see the asymmetric uncertainties in Tab. II).
This means that HIm rises with decreasing ξ :
ξ=0.22 (xB=0.36) at JLab while ξ=0.06 (xB=0.11)
at HERMES (for −t= 0.2 GeV2). This is remi-
niscent of the x-dependence of the standard pro-
ton unpolarized parton distribution as measured in
DIS, to which HIm reduces in forward kinematics
(ξ = t = 0).

• Comparing at small t the values of HIm and HRe,
one sees that HIm is largely dominant (HRe is in
fact compatible with zero within one sigma for the

smallest t values). This is reminiscent of the Regge
prediction that diffractive processes have a dom-
inant imaginary amplitude at high energies (see
ref.[26] for instance).

• At both energies, HIm decreases with −t while HRe

increases (at least up to −t ≈ 0.3 GeV2) with, for
this latter CFF, possibly a change of sign, consider-
ing the central values of the fit, starting negative at
small −t and reaching positive values at larger −t.
Concerning HIm, the t−slope appears to increase
with the energy rising.

• As a side point, the VGG prediction for HIm is in
relative good agreement with the fitted value, at the
15% level in general, at most 30%, for both JLab
and HERMES kinematics. For HRe, the compari-
son with the VGG parametrisation is much worse,
the disagreement being the strongest, at HERMES
kinematics, for the lowest t value. As mentionned
earlier, the D-term whose normalization is barely
known, could be an explanation for this. We recall
that, at a couple of instances, it has been alluded
or speculated that an important piece in the VGG
GPD parametrization contributing to the real part
of the handbag amplitude, could be missing [27–
29].

Finally, the solid curves on fig. 5 show the result of
the model-based fit of ref. [30], which we will call K-M
in the following. In this work, only the H GPD, which
is parametrized by a Regge-inspired functional form, is
considered. This model is well suited to describe the low
xB regime and its parameters are fitted to the DVCS
data of HERMES [11, 12], ZEUS [31], H1 [32–34] and,
additionnally, of CLAS [10] for the low energy part. As
can be seen from fig. 5, it is remarkable that the cor-
responding K-M HIm and HRe CFFs have values and
behaviors as a function of t in relatively good agreement
with ours at both HERMES and JLab energies. The two
studies being independent and based on relatively differ-
ent approaches, this gives good confidence in the present
results. The only important discrepancy lies in the JLab
large t HRe CFF for which we obtain a higher value. The
inclusion of the JLab Hall A DVCS cross sections in the
K-M fit, which could shed light on this issue, requires
extra assumptions and complications beyond the simple
dominance of H (the introduction of H̃ in particular) and
we therefore do not dwell on this point, which is beyond
the scope of this article.

In summary, we have fitted for the first time in a model
independent way (at the QCD leading twist and lead-
ing order), the recently published HERMES DVCS data,
consisting of seventeen (correlated) beam charge, beam
spin and target transverse spin target asymmetries. We
have been able to extract numerical values for the HIm

and HRe CFFs with finite uncertainties (in particular, of
the order of 30% for HIm). We recall that these uncer-
tainties arise from the extremely conservative approach
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that we have decided to adopt as a first step, of bounding
the domain of variation of the fitted CFFs by a factor 5
with respect to the VGG CFFs reference values. It is
remarkable that with such loose constrain already finite
results come out. This encourages to pursue such ap-
proach with the extra input of bounding more severely
the domain of variation allowed for the CFFs, based on
as model independent as possible theoretical guidance.
We leave such study for later.

Comparing the results that we obtained with the HER-
MES data to those obtained with the same fitting proce-
dure with the JLab lower energies data [13], in spite of the
important error bars, we have begun to hint at a few key
features about the energy (xB) and t dependence of these
two CFFs: in particular, the dominance and increase of
HIm with increasing energy accompanied by the sharpen-
ing of its t slope. In contrast, HRe tends to exhibit a ris-
ing t slope, with possibly hints of a sign change. We have
also concluded that the VGG parametrisation of HIm

seems valid at the 30% level while the VGG parametri-

sation of HRe is most likely much less reliable. A rich
harvest of precise and numerous DVCS data and observ-
ables (cross sections, polarized beam and/or target, dou-
ble polarization observables,...), providing sensitivity to
new CFFs other than HIm and HRe and improved preci-
sion in these latter, are expected in the near future from
JLab and HERMES. Fitting analysis, model independent
or using educated parametrizations such as in ref. [30],
are necessary to fully exploit these data and further re-
veal the space-momentum structure of the nucleon.
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< xB > [11] < Q2 > (GeV2) [11] < −t > (GeV2) [11] < xB > [12] < Q2 > (GeV2) [12] < −t > (GeV2) [12]

0.08 1.9 0.03 0.07 1.71 0.02
0.10 2.5 0.10 0.10 2.44 0.08
0.11 2.9 0.20 0.11 2.72 0.14
0.12 3.5 0.42 0.12 3.63 0.46

TABLE I: The four HERMES kinematic points considered in this work. Ref. [12] has measured (correlated) beam charge and
beam spin asymmetries while ref. [11] has measured (correlated) beam charge and spin transverse target asymmetries. The
two sets of kinematics do not match each other perfectly but are reasonably close. In order to fit all seventeen observables
simultaneously, we have chosen to adjust all observables to the kinematics of ref. [11], meaning that the beam spin asymmetries
of ref. [11] have been slightly offset in our work.

HRe ERe H̃Re ẼRe HIm EIm H̃Im χ2/Ndof

< xB >=0.08 -0.56 22.87∗ -1.89∗ -5592.14∗ 7.14 -4.82 3.19∗

< Q2 >=1.9 GeV2 σ− 1.78 ∞ ∞ ∞ 2.23 ∞ ∞ 1.75
< −t >=0.03 GeV2 σ+ 1.62 ∞ ∞ ∞ 2.47 ∞ ∞
< xB >=0.10 0.38 9.21 -1.19∗ 1825.39∗ 3.58 3.37 -1.60
< Q2 >=2.5 GeV2 σ− ∞ ∞ ∞ ∞ 1.37 ∞ 2.92 1.06
< −t >=0.10 GeV2 σ+ 2.11 ∞ ∞ ∞ 1.68 4.64 ∞
< xB >=0.11 4.06 -12.09∗ -0.84∗ 708.59 3.95 -1.85 -2.48∗

< Q2 >=2.9 GeV2 σ− 3.53 ∞ ∞ ∞ 1.21 ∞ ∞ 0.76
< −t >=0.20 GeV2 σ+ 1.09 ∞ ∞ 904.13 1.38 2.66 ∞
< xB >=0.12 1.41 7.34∗ 0.51∗ 420.97∗ 2.14 -1.47 0.59
< Q2 >=3.5 GeV2 σ− 0.91 ∞ ∞ ∞ 1.12 2.05 ∞ 1.67
< −t >=0.42 GeV2 σ+ 5.32 ∞ ∞ ∞ 2.10 ∞ 0.74

TABLE II: The CFFs and their MINOS uncertainties (negative: σ− and positive: σ+) resulting from our fit to the seventeen
HERMES observables. The ∞ symbol means that the uncertainty could not be defined by MINOS, i.e. that the χ+1 value,
defining one σ, was out of the variation range of our seven parameters. The corresponding fitted central value are therefore
not constrained and meaningful. These values have been obtained with the bounds -5,5 times the VGG reference values. The
asterisk symbol ∗ means that the parameter actually reached the boundary of the domain.

< −t > (GeV2) -0.17 -0.23 -0.28 -0.33

HIm 2.17 2.03 2.00 1.80
σ− 1.84 1.70 1.53 0.40
σ+ 0.35 0.29 0.15 0.06

HRe 0.11 1.08 2.99
σ− 0.51 0.53 0.50
σ+ 2.24 1.74 0.49

TABLE III: Reminder of the values and their uncertainties of the HIm and HRe CFFs found in ref. [13], resulting from the fit
of the JLab Hall A unpolarized DVCS cross section and DVCS beam-polarized difference of cross sections [9].


