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UMR5797, F-33175 Gradignan, France

4CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan,

UMR5797, F-33175 Gradignan, France
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Configuration mixing calculations performed in terms of Skyrme, Gogny or rel-

ativistic Energy Density Functionals (EDF) rely on extending the Single-Reference

energy functional into non-diagonal EDF kernels. The standard prescription to do

so, based on an analogy with a Hamiltonian theory and the use of the general-

ized Wick theorem, is responsible for the recently observed divergences and steps in

Multi-Reference calculations. We summarize the minimal solution to this problem

recently proposed [1] and applied with success to particle number restoration [2].

Such a regularization method provides suitable corrections for EDF depending on

integer powers of one-body density matrices only. The specific case of fractional

powers of the density [3] is also briefly discussed.
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I. ENERGY DENSITY FUNCTIONAL METHODS

The nuclear Energy Density Functional (EDF) method is a unique tool to study

static and dynamical properties of nuclei in a unified framework [4]. Although the

nuclear EDF shares several features with Density Functional Theory [5] (DFT), the

strategy used is different as it embraces two successive levels of description.

On the first level, traditionally called ”self-consistent mean-field theory”, Hartree-

Fock (HF) or Hartree-Fock-Bogoliubov (HFB), a single product state Φ0 provides

the normal ρ00 and anomalous κ00 density matrices the many-body energy is a

functional of. We call this method a single-reference (SR) EDF approach and denote

by ESR[Φ0] = ESR[ρ00, κ00, κ00 ∗] the actual EDF. Although such a restriction is not

necessary, one usually builds the EDF from an auxiliary effective vertex (of the

Skyrme or Gogny type) or an auxiliary effective Lagrangian, whose parameters are

adjusted to reproduce a selected set of experimental observations. Independently of

the starting point, the EDF can be written in any arbitrary basis as

ESR[ρ00, κ00, κ00 ∗] =
∑
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tij ρ00
ji +
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2
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ijkl
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00
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where the first term accounts for the uncorrelated kinetic energy, whereas v̄ρρ, v̄κκ,

v̄ρρρ, . . . denote effective vertices associated with the different terms of the EDF.

There are a few important comments to be made at this point. First, and although

it formally resembles it, Eq. (1) should not be confused with the expectation value

of a Hamiltonian containing two-body, three-body, . . . interactions in the Hartree-

Fock-Bogolyubov state Φ0. For this to be true, specific properties, e.g. v̄ρρ
ijkl = v̄κκ

ijkl

and v̄ρρ
ijkl = −v̄ρρ

ijlk for all (i, j, k, l), would have to be satisfied, which is usually not

the case in the EDF context. Second, most popular and high-performance EDF
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cannot be written under the form of Eq. (1) as they contain a dependence on a

non-integer power of the (local) normal density [4]. We anticipate, however, that

future EDFs will be constructed under such a form, typically truncated at forth or

fifth power. Indeed, the regularization procedure presented here is inapplicable to

EDFs containing non-integer powers of the density matrices [3].

While static collective correlations, e.g. pairing and deformation, can be ac-

counted for within the SR EDF formalism through the symmetry breaking of the

auxiliary state Φ0, including dynamical collective correlations associated with col-

lective quantum fluctuations requires to perform a so-called Multi-Reference (MR)

calculations, traditionally denoted as ”beyond-mean-field”. Such an extension, built

by analogy with the Generator Coordinate Method (GCM) in the Hamiltonian for-

malism [6], allows one not only to incorporate additional correlations but also to

describe low-energy spectroscopy and transition probabilities between states char-

acterized by symmetry-restored quantum numbers. In strict analogy with the Hamil-

tonian formalism, the MR EDF is written as

E [Ψ] ≡

∑

{0,1}∈MR f ∗
0 f1 EMR[Φ0, Φ1] 〈Φ0|Φ1〉

∑

{0,1}∈MR f ∗
0 f1 〈Φ0|Φ1〉

, (2)

where non-diagonal matrix elements 〈Φ0|Ĥ|Φ1〉/〈Φ0|Φ1〉 have been replaced by their

EDF counterpart EMR[Φ0, Φ1]. The weight functions f are determined either by

symmetry considerations, by diagonalization, or both depending on the MR modes

included in the calculation. The product states Φi belonging to the MR set are

chosen according to the collective modes one wants to describe. In the absence of

a well-founded prescription to build EMR[Φ0, Φ1], only specific constraints can be

imposed. For a number of reasons [7], it is necessary to impose that EMR[Φ0, Φ0] ≡

ESR[Φ0] and EMR[Φ1, Φ0] = E∗
MR[Φ0, Φ1]. Following the Hamiltonian formalism, the

most natural guidance is provided by the generalized Wick theorem [8] (GWT)

which suggests that EMR[Φ0, Φ1] is obtained by replacing SR density matrices by

transition ones, i.e. [ρ01, κ01, κ10 ∗], in Eq. (1). However, we have shown that the use

of GWT-based functional energy kernels is the source of the pathologies recently
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observed in MR-EDF calculations [1–3].

A. Pathologies observed in configuration mixing calculations

An example of deformation energy surface obtained through a MR calculation

based on Particle-Number Restoration (PNR) is given for 18O in the left panel

of Fig. 1 using the SLy4 Skyrme EDF together with a density-dependent zero-

range pairing interaction. Starting from the SR-EDF built from the auxiliary state

Φ0 that breaks the gauge symmetry associated with particle-number conservation,

dynamical pairing correlations associated with PNR can be incorporated through a

MR EDF calculation. Building the MR set from product states rotated in gauge

space |Φϕ〉 = eiϕN̂ |Φ0〉, Eq. (2) specified to PNR reads [1]

EN ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

EMR[Φ0, Φϕ] 〈Φ0|Φϕ〉 . (3)

In practice, Eq. (3) is numerically calculated using the Fomenko [10] discretization

procedure. Figure 1 presents results obtained for two different numbers of mesh

points in the discretization (dotted and dashed lines). Obvious pathologies are

visible, i.e. (i) the estimate of the energy landscape does not converge and (ii) non-

physical steps and divergencies appear at particular deformations as one increases

the number of mesh points used in the Fomenko procedure. Authors have not

only faced the problem for PNR [11, 12] but also in angular-momentum restoration

calculations [13]. As visible in Fig.1, it has been recognized [11] that divergences in

PNR may appear when either a proton or neutron single-particle level crosses the

Fermi en energy, as pair of states differing by π/2 are orthogonal in this case, i.e.

〈Φ0|Φϕ〉 = 0. When the same (density-independent) vertices are used in the p-h

and p-p channel and the exchange is properly taken into account, problems do not

appear. The problem has been characterized more precisely thanks to a complex

plane analysis [14], demonstrating in particular the less obvious but more profound

occurrence of finite steps. The latter analysis could not, however, lead to a practical

solution of the problem.



5

FIG. 1: Particle-number restored deformation energy surface of 18O calculated with SLy4

and a density-dependent pairing interaction and the corresponding single-particle spectra

of protons and neutrons as a function of the axial quadrupole deformation for L = 5 and

199 discretization points of the integral over the gauge angle (lowest panel).

II. MINIMAL SOLUTION TO THE PROBLEM

We have recently shown that the origin of those difficulties can be traced back

to the strategy used to design energy kernels entering the MR-EDF, i.e. the use

of the GWT as a guidance. An early hypothesis [11], confirmed later on [12], was

that problems could be avoided in PNR calculations by using another prescription

than the one based on the GWT to defined the non-diagonal energy kernels. More

recently, this idea has been used to design a general solution that applies to any

type of MR mode [1]. The technique makes use of the following trick: given a pair

of quasi-particle vacua, denoted by |Φ0〉 and |Φ1〉 (with possibly 〈Φ0|Φ1〉 = 0), one
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can always find a simple ”BCS like” expression connecting these two states, i.e. [6]:

|Φ1〉 = C̃01

∏

p>0

(

Ā∗
pp + B̄∗

pp̄ α̃+
p α̃+

p̄

)

|Φ0〉 . (4)

In the canonical quasi-particle basis where Eq. (4) is valid, GWT-based energy

kernels read, e.g. for a strictly bilinear EDF, as (omitting the kinetic term)
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1

4
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+
1
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1

4

∑
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v̄κκ
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Z̄νν̄ Z̄µµ̄ , (8)

where (µ, µ̄) denote a canonical pair in the specific quasi-particle representation,

Z̄ν̄ν = (B̄ν̄ν/Ā
−1
νν )∗ while ϕν and φµ stand for the upper and lower components of

the quasi-particle states [1]. Expressions (5-8) allow one to understand the origin of

the spurious steps and divergences. As the energy kernel is multiplied by 〈Φ0|Φ1〉 ∝
∏

ν Ā∗
νν in the MR energy (see Eq. (2)), terms with ν = µ or ν = µ̄ in line (8) can

lead to divergences and steps when Ā∗
νν = 0. In the pure Hamiltonian case, i.e.

v̄ρρ
ijkl = v̄κκ

ijkl and v̄ρρ
ijkl = −v̄ρρ

ijlk for all (i, j, k, l), the dangerous contributions coming

from the two terms in Eq. (8) exactly cancel out and no divergence or step occurs.

However, when different or non-antisymmetrized vertices are used, as in the EDF

context, divergences and/or steps are observed, as seen on the left panel of Fig. 2 for

PNR. The fact that the spurious terms that should cancel out in Eqs.(5-8) generates

finite steps can be understood thanks to the complex plane analysis [14].

The quasi-particle basis introduced above allows one to use the standard Wick

theorem in the Hamiltonian formalism. By analogy, one can thus define a new

extension procedure to define non-diagonal energy kernels that is free from any of

the problems discussed above. Indeed, comparing the results of the two schemes,

one proves [1] that terms with ν = µ or ν = µ̄ in line (8) should be zero in the
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FIG. 2: Left: Uncorrected (dotted and dashed lines) and corrected (solid line) particle-

number restored quadrupole deformation energy obtained for 18O with SIII and calculated

with L = 5 and 199 discretization points of the integral in gauge space. The two corrected

curves are superimposed. Right: attempt to regularize the particle-number restored energy

of 18O obtained with SLy4 that contains a non-integer power of the (local) normal density.

first place and must be removed altogether. This does not only regularize spurious

infinities and steps but also removes finite spurious contributions to MR energy

kernels. Such a regularization method can be applied to any type of configuration

mixing performed in terms of an EDF depending on integer powers of the density

matrices. It has been successfully applied to PNR [2], as is exemplified on the left

panel of Fig. 2 using the SIII Skyrme EDF together with a density-independent

zero-range pairing interaction. The correction not only removes the dependence on

the number of mesh points and the non-physical steps, but also corrects the energy

landscape away from those steps. Note that the fact that the energy did not diverge

in the first place at critical deformation points is specific to the analytical form of

the SIII functional that only depends quadratically on the density matrix of a given

isospin [2].

The case of EDFs depending on non-integer powers of the density matrix has

also been analyzed [3]. Although divergences can be removed using a variant of the
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method proposed in Ref. [1], the complex-plane analysis demonstrates that the left-

over fractional power ργ with 0 < γ < 1 is ill-defined as it generates cusps in the PNR

energy landscape. This is demonstrated on the right panel of Fig. 2) for a calculation

based on the SLy4 Skyrme EDF complemented with a density-independent zero-

range pairing interaction. Generally speaking, one cannot use a functional that

is multi-valued over the complex plane. This has important consequences on the

present and future of EDF methods. In particular, this calls for the design of high

quality EDF parameterizations that only depend on integer powers of the density

matrices.

[1] D. Lacroix, T. Duguet and M. Bender, Phys. Rev. C79, 044318 (2009).

[2] M. Bender, T. Duguet and D. Lacroix, Phys. Rev. C79, 044319 (2009).

[3] T. Duguet, M. Bender, K. Bennaceur, D. Lacroix and T. Lesinski, Phys. Rev. C79,

044320 (2009).

[4] M. Bender, P.-H. Heenen and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

[5] A Primer in Density Functional Theory, Ed. C. Fiolhais and F. Nogueira and M.

Marques, Lecture Notes in Physics 620, 2003, Springer, Berlin and Heidelberg.

[6] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).

[7] L. M. Robledo, Int. J. Mod. Phys. E16 (2007) 337.
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