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Abstract

Radiative electron-proton scattering is studied in peripheral kinematics, where the scattered elec-

tron and photon move close to the direction of the initial electron. Even in the case of unpolarized

initial electron the photon may have a definite polarization. The differential cross sections with

longitudinally or transversal polarized initial electron are calculated. The same phenomena are

considered for the production of an electron-positron pair by the photon, where the final positron

(electron) can be also polarized. Differential distributions for the case of polarized initial photon

are given. Both cases of unscreened and completely screened atomic targets are considered.
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I. INTRODUCTION

It was shown in the well-known paper of E. Haug [1] that the main contribution to the

differential cross section for Bremsstrahlung and pair production processes on the electron,

is given by peripheral kinematics, which dominates starting from rather small energies of

initial electron or photon in the laboratory frame. For photon energies larger than 50 MeV,

the contributions of kinematical regions outside the peripheral region are below 5%.

Peripheral kinematics corresponds to the case when the scattered electron and the photon,

with small invariant mass (of the order of electron mass m), move close to the direction of the

initial particle (here and further we imply the laboratory reference frame). The contribution

from peripheral kinematics to the cross section does not decrease when the energy of the

initial particle increases.

The differential (and total) cross section of peripheral kinematics is of the order of α3/m2,

whereas the contribution of non-peripheral one is ∼ α3/s, s = 2Mω, or s = 2EM with M-

the target mass and ω ∼ E-initial photon or electron energies. Omitting non-peripheral

kinematics, the uncertainty (error) on the cross section is of the order of 1+O(m2/s). Even

for energies ∼ 10 MeV, for the scattering of electron on proton, this error does not exceed

a fraction of percent.

Therefore, peripheral kinematics represents the dominant contribution, starting almost

from the threshold of the process.

Bremsstrahlung emission was object of intensive theoretical work, in the 60’s [2, 3].

Accurate calculations were done including the radiative corrections due to multiple virtual

photons exchange with the target. Results were derived for the total cross section and

single-parameter distributions. In Ref. [5] detailed distributions for the photon in the

bremsstrahlung processes was investigated.

In modern experiments, due to the high luminosity and the performances of the detector it

is possible to achieve precise measurements of the multi-differential cross section, as function

of the different observables which define completely the kinematics. The motivation of our

paper is to calculate the cross section and the polarization observables for Bremsstrahlung

(pair production) in ep scattering, as functions of the energy fraction and of the emission

angle of the emitted photon (the electron). Explicit expressions are given, which can be

directly used as input for Monte Carlo simulations and analysis programs.
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Our paper is organized as follows. We start from considerations on the Bremsstrahlung

process in the collision of an electron with the target. Even in the case of unpolarized initial

electron, the emitted photon may acquire a non vanishing polarization. The relevant Stokes

parameters related with its linear polarization, are calculated. Corresponding results are

obtained when the initial electron is longitudinally or transversally polarized with respect

to the beam direction. The analysis is performed at the lowest order of perturbation theory.

Section II is devoted to the pair production by photons on a target. A linear polarization

of the positron (electron) belonging to the the pair appears even in the case of the unpo-

larized photon. The cases of the linearly polarized as well as circularly polarized photons

are considered.In Section III we consider the distributions integrated on the momentum

transferred to the target. Both cases of unscreened and completely screened atom-target are

considered. In the Conclusions the effects of multi photon exchange are considered and the

results of the numerical calculations for the relevant quantities are presented.

II. FORMALISM FOR BREMSSTRAHLUNG PROCESS

Let us consider the process:

e−(p) + T (P ) → γ(k, e) + e−(p′) + T (P ′), (1)

where T is a heavy target nucleus with electric charge Z. The particle four momenta are

indicated in brackets. Let us define e = e(k) the polarization four-vector of the photon. The

relevant kinematical variables are:

s = 2Pp, p2 = p′2 = m2, P 2 = P ′2 = M2, k2 = 0, p + q = p′ + k, P ′ + q = P, (2)

where q is the momentum transferred to the target. Using the advantages of the infinite

momentum technique [4], the matrix element can be written as:

M =
(4πα)3/2 Z

q2
· 2

s
[ū (P ′) p̂u (P )] · [ū (p′)Oμνu (p)] eν (k) P̃ μ, (3)

Oμνe
ν (k) P̃ μ = ˆ̃P

p̂ − k̂ + m

−2pk
ε̂ + ε̂

p̂′ + k̂ + m

2p′k
ˆ̃P, (4)
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where we used the light-cone decomposition (Sudakov parametrization) of vectors:

p =
m2

s
P̃ + p̃,

q = αP̃ + βp̃ + q⊥,

p′ = α′P̃ + xp̃ + p′⊥,

k = αkP̃ + x̄p̃ + k⊥, x̄ = 1 − x,

e = αeP̃ + e⊥,

P̃ = P − p
M2

s
= (P0, Pz, Px, Py) =

M

2
(1,−1, 0, 0) ,

p̃ = p − P
m2

s
= E(1, 1, 0, 0). (5)

where c⊥P = c⊥p = 0 for any vector c⊥ and P̃ 2 = p̃2 = 0. We will use the following notation:

q2
⊥ = −�q2, p′2⊥ = −�p2, k2

⊥ = −�k2. (6)

The phase volume then reads:

dΓ =
1

(2π)5
δ4 (p + P − p′ − k − P ′)

d3k

2Ek

d3p′

2Ep′

d3P ′

2EP ′
=

=
1

(2π)5
1

4s

dx

xx̄
d2pd2q, d4q =

s

2
dαdβd2q⊥. (7)

Using the on mass shell conditions αk = �k2/x̄; α′ = (�p2 + m2)/x, we obtain

2pk =
D

x̄
, D = �k2 + m2x̄2, �k = �q − �p;

2p′k =
1

xx̄
D′, D′ = �r2 + m2x̄2, �r = x�q − �p. (8)

Let us note the useful relations:

D − D′ = x̄
(
�q2 (1 + x) − 2 (�p�q)

)
,

D′ − xD = x̄
(
�p2 + m2x̄2 − �q2x

)
.

Using the Dirac equation for the spinors of the initial and the scattered electrons one can

write the expression for OμνP̃
μeν as

OμνP̃
μeν = Asê + B ˆ̃P q̂ê + Cêq̂ ˆ̃P,

A = xx̄(
1

D′ −
1

D
), B =

x̄

D
, C =

xx̄

D′ . (9)
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Note that only the transversal component of q is relevant: q̂ → q̂⊥. From the gauge condition

e(k)k = 0 we can express the light-cone component of e as αe = 2�k�e/(sx̄). At this point let

us introduce the polarization density matrix of the photon

eie
∗
j =

1

2

⎛
⎝ 1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1 − ξ3

⎞
⎠

ij

, i, j = x, y. (10)

The case of polarized initial electron can be considered by introducing its density matrix:

u(p, a)ū(p, a) = (p̂ + m)(1 − γ5â). (11)

where, for longitudinal electron polarization, the Sudakov decomposition for the polarization

vector gives a = λ[(m/s)P̃ − (1/m)p̃] and, in the case of transversal electron polarization

a = a⊥.

The general expression for the cross section is:

dσeT→eγT = dσeT→eγT
0 Pe,

Pe = 1 + λξ2PT + λξ2Pa + τpp + τpq + τqq, (12)

which becomes, in the unpolarized case:

dσeT→eγT
0 =

2α3Z2d2qd2pRp(1 − x)dx

π2(DD′)2 (q2)2 ,

Rp = �q2(1 + x2)DD′ − 2xm2(D − D′)2. (13)

The effective degrees of polarization are

PT =
1

Rp

[
−�q2DD′ (1 − x2

)
+ 2m2xx̄ (D − D′)2

]
,

Pa =
2xm

Rp

[
(�p�a) (D − D′)2

+ (�q�a) (D − D′) (D′ − xD)
]
,

τpp =
�p2

Rp

2x (D − D′)2

x̄2
[ξ3 cos (2φp) + ξ1 sin (2φp)] , (14)

τqq =
�q2

Rp

2x (xD − D′)2

x̄2
[ξ3 cos (2φq) + ξ1 sin (2φq)] ,

τpq =
1

Rp

4x (D − D′) (xD − D′)
x̄2

|�q| |�p| [ξ3 cos (φp + φq) + ξ1 sin (φp + φq)] ,

where φq and φp are the azimuthal angles of vectors �q and �p.

The momentum transfer squared, q2, which enters in the definition of the unpolarized

Bremsstrahlung cross section must be understood as q2 = −(�q2 + q2
min) with q2

min = (�p2 +

m2x̄2)2/(4E2(xx̄)2).
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III. PAIR PRODUCTION

Let us consider the process:

γ(k, e) + T (P ) → e+(q+) + e−(q−) + T (P ′), (15)

where T is a heavy target with electric charge Z. The kinematics is defined as:

s = 2Pk, q2
± = m2, P 2 = P ′2 = M2, k2 = 0, k + q = q+ + q−, P ′ + q = P, (16)

where q is the four momentum transferred to the target, and e = e(k) is the polarization

vector of the initial photon. The matrix element is written as:

M =
(4πα)3/2 Z

q2
· 2

s

[
ū (P ′) k̂u (P )

]
· [ū (q−)Oμνv (q+)] eν (k) P̃ μ, (17)

Oμνe
ν (k) P̃ μ = ˆ̃P

−q̂+ + k̂ + m

2 (kq+)
ê + ê

q̂− − k̂ + m

2 (kq−)
ˆ̃P, (18)

where we used again the light-cone decomposition of vectors

P̃ = P − k
M2

2 (pk)
,

q± = α±P̃ + x±k + q±⊥, x+ + x− = 1,

q = αP̃ + βk + q⊥,

e = e⊥. (19)

Similarly, the polarization vector a of the positron can be written in the form

a = αaP̃ + a⊥, αa =
2�a�q+

sx+
, (20)

where the condition aq+ = 0 was applied, to find the expression for αa. One finds:

2kq± =
1

x±
D±, D± = �q2

± + m2, (q+ + q−)2 =
1

x+x−
[�ρ2 + m2],

�q = �q+ + �q−, �ρ = x−�q+ − x+�q−. (21)

The phase volume then reads:

dΓ =
1

(2π)5 δ4 (k + P − q+ − q− − P ′)
d3q+

2E+

d3q−
2E−

d3P ′

2EP ′
=

=
1

(2π)5

1

4s

dx−
x−x+

d2q+d2q−. (22)
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The expression Oμνε
ν (k) P̃ μ, applying the momentum conservation law k+ q = q+ + q−, can

be written in the form

Oμνe
ν (k) P̃ μ = sêAγ + Bγ êq̂ ˆ̃P + Cγ ˆ̃P q̂ê,

Aγ = x+x−(
1

D−
− 1

D+
); Bγ = − x−

D−
; Cγ =

x+

D+
. (23)

The cross section becomes:

dσγT→e+e−T = dσγT→e+e−T
0 Pγ,

dσγT→e+e−T
0 =

2α3Z2d2q−d2q+dx−
π2 (q2)2

Rγ

(D+D−)2
,

Pγ = 1 + ξ2PT + ξ2Pa + τq+q+ + τq+q + τqq, (24)

with

Rγ = �q2(x2
+ + x2

−)D+D− + 2m2x+x−(D+ − D−)2 (25)

and

PT =
(x2

− − x2
+)

Rγ
D+D−�q2;

Pa =
2x−m

Rγ

[
(�a�q)D+(D− − D+) + (�q+�a)(D− − D+)2

]
,

τq+q+ = −2x+x−
Rγ

(D+ − D−)2 �q2
+ [ξ3 cos (2φ+) + ξ1 sin (2φ+)] ,

τq+q =
4x+x−

Rγ
(D+ − D−)D+ |�q+| |�q| [ξ3 cos (φ+ + φq) + ξ1 sin (φ+ + φq)] ,

τqq = −2x+x−
Rγ

D2
+�q2 [ξ3 cos (2φq) + ξ1 sin (2φq)] ,

where φq and φ+ are the azimuthal angles of vectors �q and �q+, ξ1,2,3 are the Stokes polarization

parameters of the initial photon. The final positron acquires the polarization a in the case

when the initial photon is circularly polarized.

The square of the transferred momentum to the target, q2, entering in the definition of

the unpolarized photo-production cross section must be understood as: q2 = −(�q2 + q2
minγ)

with q2
minγ = D2

+/[4ω2(x+x−)2].

IV. DISTRIBUTIONS WITH AND WITHOUT SCREENING

In an inclusive experimental set-up, tagging one of produced particles (photon in

Bremsstrahlung process or positron in photo-production process), the distributions obtained

by integration on the momentum transferred to the target become important.
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Performing the integration on the transversal component of the produced particles we

obtain the distributions on the energy fraction of one of them and the momentum transferred

to the target �q2 = 4m2t:

dσeT→eγT

dxdt
=

α3Z2

2m2x̄t2
Φe; t >>

m2x̄2

16E2x2
,

dσγT→e+e−T

dx+dt
=

α3Z2

2m2t2
Φγ , t >>

m2

16ω2(x+x−)2
, (26)

with,

Φe =
2[t(1 + x2) + x]√

t(t + 1)
L − 4x;

Φγ =
2[t(x2

+ + x2
−) − x+x−]√

t(t + 1)
L + 4x+x−;

with L = ln

√
t + 1 +

√
t√

t + 1 −√
t
. (27)

In absence of screening, performing the integration on the transferred momentum and on

the transversal component of the produced particles one obtains the spectral distributions

for the unpolarized case [7]

dσeT→eTγ
0

dx
=

2α3

m2x̄

[
4

3
x + x̄2

] [
2 ln

s

m2
+ 2 ln

x

x̄
− 1
]
; x̄ = 1 − x =

ω

E
,

dσγT→e+e−T
0

dx+
=

2α3

m2

[
1 − 4

3
x+x̄+

] [
2 ln

sx+x̄+

m2
− 1
]
. (28)

The spectra show a logarithmic enhancement (Weizsaecker- Williams enhancement). The

different distributions for these processes, calculated within the Born approximation, can be

found in [4].

The effect of complete screening can be taken into account in frames of Molière model

[6] by replacing

4πα

−q2
→ 4πα[1 − F (−q2)]

−q2
, (29)

with

1 − F (�q2)

�q2
=

3∑
1

αi

�q2 + m2βi
=

1

4m2

3∑
1

αi

t + βi/4
,

α1 = 0.1, α2 = 0.55, α3 = 0.35;

βi = (
Z1/3

121
)bi, b1 = 6.0; b2 = 1.2; b3 = 0.3. (30)
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The resulting spectral distributions without screening (26) and the ones for the case of

complete screening are respectively:

dσeT→eTγ
0scr

dx
=

α3Z2

2m2x̄

∞∫
0

(
3∑
1

αi

t + βi/4

)2

Φedt;

dσγT→e+e−T
0scr

dx
=

α3Z2

2m2

∞∫
0

(
3∑
1

αi

t + βi/4

)2

Φγdt.

(31)

The expressions for differential cross sections obey explicitly to the gauge invariance require-

ment

(�q2)2 dσ

d2q
|�q→0 = 0. (32)

Keeping in mind the relation
2π∫
0

F (cosφ) sinφdφ = 0 and introducing ψ = φp − φq the

differential distributions integrated on final particles transversal momenta become:

dσeT→eγT

dtdxdφ
=

α3Z2

2πm2

∞∫
0

dy

(t + tmin)2
F e(t, y, x), tmin =

m2

4E2(xx̄)2

(
y +

x̄2

4

)2

, (33)

where we used the notation φq = φ, for simplicity. The result is

F e = F e
unp + λξ2(F

e
L + �n�aF e

a ) + [ξ3 cos(2φ) + ξ1 sin(2φ)]F e
τ , (34)

with �n = �q/ |�q| and

F e
unp =

1

ρ

[
t(1 + x2) + x

] (
I

(0)
1 − xJ

(0)
1

)
− x

2

(
I

(0)
2 + J

(0)
2

)
,

F e
L = −1

ρ

[
t(1 − x2) + xx̄

] (
I

(0)
1 − xJ

(0)
1

)
+

xx̄

2

(
I

(0)
2 + J

(0)
2

)

F e
a =

[
−2

ρ

(
I

(1)
1 − xJ

(1)
1

)
+ I

(1)
2 + J

(1)
2

]√
y +

+

[
1 + x

ρ

(
I

(1)
1 − xJ

(1)
1

)
− I

(1)
2 − xJ

(1)
2

]√
t,

F e
τ =

2x

x̄2

{
y

[
2I

(2)
2 − I

(0)
2 + 2J

(2)
2 − J

(0)
2 − 2

ρ

(
I

(2)
1 − xJ

(2)
1

)]
+

+ t

[
I

(0)
2 + x2J

(0)
2 − 2x

ρ

(
I

(0)
1 − xJ

(0)
1

)]
+

+ 2
√

yt

[
I

(1)
2 + xJ

(1)
2 − 1 + x

ρ

(
I

(1)
1 − xJ

(1)
1

)]}
, (35)
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with ρ = x̄
[
y − tx + x̄2

4

]
and the quantities I

(i)
k , J

(i)
k are derived in Appendix A.

Similar calculations for the photo-production process lead to

dσγT→e+e−T

dtdxdφ
=

α3Z2

2πm2

∞∫
0

dy

(t + tminγ)2
F γ(t, y, x), tminγ =

m2

4ω2(x+x−)2
d2

+, d+ = y +
1

4
, (36)

with

F γ =
1

2
x+x−

(
K

(0)
2 − 2

d+
K

(0)
1 +

1

d2
+

)
+ t(x2

+ + x2
−)

1

d+
K

(0)
1 +

λξ2x−�a�n

[√
t

(
1

d+
K

(0)
1 − K

(0)
2

)
+
√

y

(
− 2

d+
K

(1)
1 + K

(1)
2

)]
+

2x+x− [ξ3 cos(2φ) + ξ1 sin(2φ)]

{
−tK

(0)
2 − y

[
2K

(2)
2 − K

(0)
2 − 2

d+

(
2K

(2)
1 − K

(0)
1

)
+

2
√

ty

(
K

(1)
2 − 1

d+

K
(1)
1

)]}
. (37)

In order to take into account the screening effects one must replace

1

(t + tmin)2
→
(

3∑
1

αi

t + βi/4

)2

. (38)

V. DISCUSSION AND RESULTS

In frame of the Weizsaecker-Williams approximation one obtains from the differential

distributions given above:

- for the Bremsstrahlung process

dσeT→eγT

dp2dxdφp
=

α3Z2

πd4
[(1 + x2)d2 − 4m2p2x̄2 +

λξ2[−d2(1 − x2) + 4m2p2xx̄3 + 2xx̄2m�p�a(2p2 − d)] +

4xp2[ξ3 cos(2φp) + ξ1 sin(2φp)][p
2 + d]] ln

4E2(xx̄)2

d
, (39)

with d = p2 + m2x̄2.

- for the pair production process

dσγT→e+e−T

dq2
+dx+dφ+

=
α3Z2

πc4
[(x2

+ + x2
−)c2 + 4m2q2

+x+x− +

λξ2mx−�q+�a(2q2
+ − c) +

4x+x−q2
+[ξ3 cos(2φ+) + ξ1 sin(2φ+)][−q2

+ + c]] ln
4ω2(x+x−)2

c
, (40)
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with c = q2
+ + m2.

For large values of Z, Coulomb corrections due to an arbitrary number of photons inter-

acting with the charged leptons and with the nuclei has to be taken into account.

The total cross sections of pair photoproduction in case of absence of screening is [7]:

σγ =
28

9

Z2α3

m2

[
ln

(
2ω

m

)
− 109

42
− f(Z)

]
, (41)

in case of complete screening

σγ =
28

9

Z2α3

m2

[
ln
(
183Z−1/3

)− 1

42
− f(Z)

]
, (42)

where f(Z) is the Bethe-Maximon-Olsen function

f(Z) = (Zα)2
∞∑

n=1

1

n
[
n2 + (Zα)2] . (43)

The photon spectrum of the Bremsstrahlung process in case of complete screening has

the form

dσeγ =
4Z2α3

m2

dx

1 − x

[(
1 + x2 − 2

3
x

)
ln
(
183 Z−1/3

)
+

x

9

]
, (44)

while in case of absence of screening we have:

dσeγ =
4Z2α3

m2

dx

1 − x

[(
1 + x2 − 2

3
x

)
ln

(
2ω

m

)
− 1

2
− f(Z)

]
. (45)

The relevant formula for photoproduction in the case of complete screening

dσγ

dx+
=

4Z2α3

m2

[(
1 − 4

3
x+ (1 − x+)

)
ln
(
183Z−1/3

)− 1

9
x+ (1 − x+) − 7

9
f (Z)

]
, (46)

The effects of Coulomb interaction for light nuclei (Z < 10) are of order of one percent. They

correspond to radiative corrections related to the lepton vertex, which are not discussed here.

In the case where the target (T) is a nucleon, the factor D(�q2) = F 2
1 (−�q2)+ �q2

4M2 F
2
2 (−�q2)

has to be taken into account. Such factor parametrizes the internal structure of the nucleon

in terms of the Dirac and Pauli form factors F1, F2.

The distribution on the momentum transferred to the nuclei is equivalent to the distri-

bution on the square of the three-momentum of the recoil proton �p:

�p2 = �q2

(
1 +

�q2

4M2

)
;

dσ

d�q2
=

dσ

2MdE ′ , (47)
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where E ′ =
√

p2 + M2 is the energy of the recoil proton, and M its mass. It is useful to

recall the relation between the recoil proton momentum p with the emission angle θp, relative

to the initial beam direction;
p

2M
=

cos θp

sin2 θp

. (48)

In practice, the ratio p/2M ∼ 1 ÷ 2, θp ∼ 60◦. Therefore approximate formulae for the

emission angles of the produced particles can be used, as these angles are small compared

with θp. For the Bremsstrahlung process one has:

θe =
|�pe|
Ex

; θγ =
|�k|

E(1 − x)
; θe ∼ θγ � 1, (49)

and for the pair production process:

θ+ =
|�q+|
ωx+

; θ− =
|�q−|
ωx−

; θ+ ∼ θ− � 1. (50)

The results are shown in Figs. 1-6. Three energies have been considered for the numerical

applications, E=3, 10, 100 MeV, in both cases, no screening and complete screening.

For the Bremsstrahlung process, the unpolarized and polarized functions, correspond-

ing to Eqs. (B2) and (B3), omitting kinematical coefficients, are shown in Figs. 1 and

2, as functions of the fraction of incident energy carried by the photon. The transverse

polarization, P γ, (Eq. (B4)) is built as their ratio and it is shown in Fig. 3.

Similarly, in the case of pair production, the unpolarized and polarized functions, are

shown in Figs. 4 and 5 as function of the electron energy fraction, for the case of longi-

tudinal electron polarization, when the initial photon is circularly polarized. The degree of

polarization P γe is shown in Fig. 6 (see Eqs. (B10-B12)).

In all cases, fully screened distributions are independent of energy. When screening is

switched off, the polarized as well as the unpolarized distributions increase with energy (in

absolute value).

VI. CONCLUSIONS

Multi-differential cross section for brehmsstrahlung and pair creation processes, in ep

scattering have been calculated at first order perturbation theory. The calculation is done

in frame of the light-cone parametrization of four-vectors, which is very well suited to small

angle scattering.

12



General expressions for different observables have been given for unpolarized and po-

larized scattering, in case of unscreened and fully screened atomic target. The screened

distributions are essentially independent of the energy.

For numerical applications two cases have been illustrated: the transverse polarization

of the photon, when the electron is longitudinally polarized in the Bremsstrahlun process

and the longitudinal polarization of the electron,, created in pair production process by a

circularly polarized photon.

The present work is particularly useful for straightforward application in polarized

positron sources.
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APPENDIX A: THE QUANTITIES I
(i)
k , J

(i)
k

The quantities I
(i)
k , J

(i)
k are defined as

Im
k =

1

2π

2π∫
0

dφ
(cos φ)m

(a − b cos φ)k
. (A1)

Their explicit expressions are

I
(0)
1 =

1

d
, d =

√
a2 − b2;

I
(1)
1 =

1

b

[a
d
− 1
]
;

I
(2)
1 =

a

b2

[a
d
− 1
]
;

I
(0)
2 =

a

d3
; I

(1)
2 =

b

d3
;

I
(2)
2 =

1

b2

[
1 +

a(2b2 − a2)

d3

]
, I

(3)
2 =

a

b3

[
2 − 3a

d
+

a3

d3

]
. (A2)

The relations with the other functions are

J
(i)
j = I

(i)
j (a → a1, b → b1); K

(i)
j = I

(i)
j (a → a−, b → b−), (A3)
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with

a = y + t +
x̄2

4
; b = 2

√
yt;

a1 = y + tx2 +
x̄2

4
; b1 = 2x

√
yt;

a− = t + y +
1

4
; b− = 2

√
ty. (A4)

APPENDIX B: DETAILS OF CALCULATIONS

For practical use, let us introduce dimensionless variables. Let us consider first the

Bremsstrahlung process and calculate the differential distribution on the energy fraction

and the emission angle of photon. Let us define:

κ =
|�k|
m

=
|�k|
Ex̄

Ex̄

m
= θγ · γ · x̄, γ = E/m, x̄ =

ω

E
= 1 − x (B1)

as functions of the γ-factor of the initial electron, and of the photon energy fraction, x̄. We

can rewrite the distributions (see (13), (14) ) as:

dσunp

dx
=

4α3Z2x̄

m2d2

∞∫
0

qdq

(q2 + q2
m)2

2π∫
0

dφ

2π(d′)2

[
q2(1 + x2)dd′ − 2x(d − d′)2

]
=

=
4α3Z2x̄

m2d2
Iγe
unp; (B2)

(dσpol)circ
long

dx
=

4α3Z2x̄

m2d2

∞∫
0

qdq

(q2 + q2
m)2

2π∫
0

dφ

2π(d′)2

[−q2(1 − x2)dd′ + 2xx̄(d − d′)2
]

=

=
4α3Z2x̄

m2d2
Iγe
pol. (B3)

The degree of transverse polarization is calculated as the ratio:

P γe
T =

Iγe
pol

Iγe
unp

. (B4)

We use the parametrization

d = κ2 + x̄2, d′ = α + β cos φ, α = κ2 + x̄2 + x̄2q2, β = −2κqx̄,

α > β, d − d′ = −x̄q[x̄q − 2qκ cos φ]. (B5)
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The angular integration is analitically performed using A(3). The remaining q−integration,

keeping in mind that

q2
m =

(κ2 + x̄2)2

4γ2(xx̄)2
� 1, (B6)

can be performed, in case of slow convergency, using an auxiliary numerically small param-

eter σ:

γ−2 � σ � 1. (B7)

As a result we have:

I =

∞∫
0

q3dq

(q2 + q2
m)2

f(q2) = lim
σ→0

⎡
⎣ σ∫

0

q3dq

(q2 + q2
m)2

f(0) +

∞∫
σ

dq

q
f(q)

⎤
⎦ . (B8)

The explicit expressions for f γe
unp, fγe

pol are

fγe
unp =

d(1 + x2)

R
− 2xx̄2

R3
T γe; fγe

pol = −d(1 − x2)

R
+

2xx̄3

R3
T γe;

T γe = x̄2q2α + 4x̄κqβ +
4κ2

β2
(R3 − α3 + 2αβ2); R =

√
α2 − β2. (B9)

For the case of pair production we have

Iγ
unp =

∞∫
0

q3dq

(q2 + qγ
m

2
)2

{
d−(x2

+ + x2
−)

R
+ (B10)

2
x+x−
R3

[
q2α + 4qκ−β +

4κ2
−

β2

(
R3 − α3 + 2αβ2

)]}
;

Iγ
pol =

∞∫
0

q3dq

(q2 + qγ
m

2
)2

(x2
− − x2

+)d−
R

;

α = 1 + q2 + κ2
−, β = −2qκ−, R =

√
α2 − β2,

d− = κ2
− + 1, κ− = θe−γx−, qγ

m
2 =

d2
−

4γ2(x+x−)2
, x+ + x− = 1. (B11)

The relevant degree of longitudinal electron polarization is

P γcirc
L =

Iγ
pol

Iγ
unp

. (B12)

The case of complete screening can be obtained by the similar calculations with the replace-

ment

1

(q2 + q2
m)2

→
(

3∑
1

αi

q2 + βi

)2

. (B13)
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FIG. 1: (Color online)Unpolarized cross section Iunp, for the Brehmsstrahlung process at Ee−=3

MeV (black, solid line), Ee−=10 MeV (red, dashed line), Ee−=100 MeV (green, dotted line), and

in the ase of full screened process, at Ee−=3 MeV (blue, dash-dotted line), Ee−=10 MeV (yellow,

dash-doubledotted line), Ee−=100 MeV (magenta, dash-tripledotted line).
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FIG. 2: (Color online)Polarized cross section Ipol, for the brehmstrahlung process. Notations as in

Fig. 1
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FIG. 3: (Color online) Degree of transverse polarization PT = Ipol/Iunp, as a function of x =

Eγ/Ee− . The polarization is nearly independent on the energy, in all cases.Notations as in Fig. 1
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FIG. 4: (Color online)Unpolarized cross section Iunp, for the pair production process. Notations

as in Fig. 1

20



γ/E−e=E−x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
ai

r
p

o
l

I

−3

−2

−1

0

1

2

3

FIG. 5: (Color online)Polarized cross section Ipol, for the pair production process. Notations as in

Fig. 1
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FIG. 6: (Color online)Degree of linear polarization PL = Ipair
pol /Ipair

unp , as a function of x− = Ee−/Eγ ,

for the pair production process. Notations as in Fig. 1

22


