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Abstract
New possibilities of high precision measurements of hadron form factors in
annihilation and scattering reactions over an unexplored kinematical region
suggest a compared analysis, in view of a global description of the nucleon
structure.

1 Introduction

The study of hadron electromagnetic form factors (FFs) is a very active field of high energy physics since
a few decades, as FFs are fundamental quantities which contain information on the internal structure of
composite particles. They constitute a privileged playground for the test of theoretical models, and should
reflect the transition from the non perturbative regime, where effective degrees of freedom describe the
nucleon structure, to the asymptotic region where QCD applies. The possibility to transfer high momenta,
and therefore to access small internal distances, allows to test pQCD predictions, such as quark counting
rules and helicity conservation.

In the space-like region, high precision measurements in an extended kinematical range are an
important part of the present and future experimental program at Jefferson Laboratory (USA). In the
time-like region, a program is foreseen by the PANDA collaboration at FAIR (Germany), using high
intensity antiproton beams up to 15 GeV kinetic energy. Similar studies are also discussed as part of
the experimental program at electron positron colliders, in Frascati (Italy), Novosibirsk (Russia), Beijing
(China).

The traditional way to measure electromagnetic hadron FFs is based on elastic electron proton
scattering e− + p ↔ e− + p and on the annihilation reactions related by crossing symmetry e+ + e− ↔
p + p̄, assuming that the interaction occurs through the exchange of one virtual photon, of mass q2. In
recent years, very surprising results have been obtained in ep elastic scattering, due to the possibility of
applying the polarization method [1]: the electric and magnetic distributions inside a proton do not have
the same dipole dependence, as a function of q2 [2], as it was previously assumed.

The understanding and the interpretation of the data at large momenta in the full kinematical
region requires to investigate carefully not only the nucleon structure but also the reaction mechanism.
The simple extrapolation of models and methods should be taken very carefully. A large debate recently
arose, due to inconsistencies among form factors extracted from polarized and unpolarized experiments
in space-like region (for a review, see [3]). As no bias has been found in both types of experiment and
as the extraction of form factors follows the same formalism (based on one-photon exchange), possible
explanations are related to higher order radiative corrections.

The measured observables are the differential cross section in unpolarized ep scattering and the
ratio of the longitudinal to transverse proton polarization in elastic scattering of longitudinally polarized
electron on an unpolarized proton target. Radiative corrections are very large for the unpolarized cross
section, and are neglected in polarization experiments. High order corrections have not yet been applied
to the data. The presence of two-photon exchange would induce a more complicated spin structure of
the matrix element and it has been discussed in the frame of a compared analysis of space-like [4,5] and
time-like data [6–8].



2 Formalism

2.1 Space -like region

Assuming one-photon exchange the reduced elastic differential cross section for ep elastic scattering,
may be written as [10]:

σred(θ,Q2) = ε(1 + τ)
[
1 + 2

E

m
sin2(θ/2)

]
4E2 sin4(θ/2)
α2 cos2(θ/2)

dσ

dΩ
= τG2

M (Q2) + εG2
E(Q2), (1)

ε = [1 + 2(1 + τ) tan2(θ/2)]−1, τ = Q2/(4m2), Q2 = −q2 (2)

where α = 1/137, m is the proton mass, E and θ are the incident electron energy and the scattering angle
of the outgoing electron in the laboratory system, respectively. GM (Q2) and GE(Q2) are the magnetic
and the electric proton FFs, functions of Q2, only. Measurements of the elastic differential cross section
at different angles for a fixed value of Q2 allow GE(Q2) and GM (Q2) to be determined as the slope and
the intercept, respectively, from the linear ε dependence (2). The normalization is chosen in order to have
static values proportional to the proton electric charge and magnetic moment μ, respectively GE(0) = 1
and GM (0) = μ.

From unpolarized cross section measurements the determination of GE and GM has been done
up to Q2 � 8.8 GeV2 [11] and GM (Q2) has been extracted up to Q2 � 31 GeV2 [12] under the
assumption that GE = 0, and it is often approximated, for practical purposes, according to a dipole
form: GD(Q2) = (1 + Q2/0.71 GeV2)−2. Polarization transfer measurements suggest a monotonical
decrease of the ratio μGE(Q2)/GM (Q2) with Q2:

μGE/GM = 1 for Q2 < 0.4 [(GeV/c)2], μGE/GM = 1.0587 − 0.14265 for Q2 ≤ 6 [(GeV/c)2], (3)

at larger Q2, at least up to Q2 ∼ 6 GeV2, deviating from unity as Q2 increases [2].

At large Q2 the contribution of the electric term to the cross section becomes very small, as the
magnetic part is amplified by the kinematical factor τ . This is illustrated in Fig. 1, where the ratio of the
electric part to the reduced cross section FE = εG2

E(Q2)/σred(θ,Q2), is shown as a function of Q2, for
different values of ε. The different curves correspond to different values of ε, assuming FFs scaling (thin
lines) or in the hypothesis of the linear dependence of Eq. (3) (thick lines). In the second case, one can
see that, for example, for ε = 0.2 the electric contribution becomes lower than 3% starting from 2 GeV2.
This number should be compared with the absolute uncertainty of the cross section measurement. When
this contribution is larger or is of the same order, the sensitivity of the measurement to the electric term
is lost and the extraction of GE(Q2) becomes meaningless.

Higher precision can be obtained in polarization experiments. As it was firstly shown in [1],
measuring the polarization of the outgoing proton in the scattering of longitudinally polarized elec-
trons on an unpolarized proton target, gives access to an interference term which contains the product
GE(Q2)GM (Q2) and it is more sensitive to a small electric contribution than the cross section itself.
The following expressions hold for the transverse and longitudinal components Pt and P� of the proton
polarization vector (in the scattering plane) in terms of the proton electromagnetic FFs:

DPt = −2λ cot
θ

2

√
τ

1 + τ
GEGM ,DP� = λ

E + E′

m

√
τ

1 + τ
G2

M , (4)

D = 2τG2
M + cot2

θ

2
G2

E + τG2
M

1 + τ
. (5)

where E′ is the scattered electron energy and D is proportional to the differential cross section with
unpolarized particles. So, for the ratio of these components one can find the following formula:

Pt

P�
= −2 cot

θ

2
m

E + E′
GE(q2)
GM (q2)

(6)
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Fig. 1: Contribution of the GE(Q2) dependent term to the reduced cross section (in percent) for ε = 0.2 (solid
line), ε = 0.5 (dashed line), ε = 0.8 (dash-dotted line), in the hypothesis of FF scaling (thin lines) or following Eq.
(3) (thick lines).

which shows the direct link between the polarization components of the recoil proton and the electric
and magnetic FFs.

The results obtained with such technique display a large precision compared to the Rosenbluth
separation, due to the large sensitivity to the electric FF. Moreover, the electron beam polarization as
well as the analyzing powers of the polarimeter cancel in the ratio, reducing the systematic errors.

2.2 Time-like region

Due to unitarity, in TL region hadron FFs are complex functions of q2. The unpolarized cross section
depends on their moduli, the measurement of which is, in principle, simpler than in SL region where
the Rosenbluth separation requires at least two measurements at fixed q2 and different angles implying
a change of incident energy and scattered electron angle at each q2 point. In TL region, the individual
determination of |GE | and |GM | requires the measurement of the angular distribution of the outgoing
leptons, at fixed total energy s = q2. All the information, of the nucleon structure as well as of the
reaction mechanism, as discussed below, is contained in the differential cross section.

The differential cross section for the annihilation process

p̄ + p → �+ + �−, � = e, μ (7)

was first obtained in ref. [13]. It is expressed in terms of the proton electromagnetic FFs as:

dσ

d(cosθ)
=

πα2

8m2τ
√

τ(τ − 1)

[
τ |GM |2(1 + cos2 θ) + |GE |2 sin2 θ

]
, (8)

where θ is the electron production angle in the center of mass system (CM). The cos2 θ dependence of
Eq. (8) results directly from the one-photon exchange mechanism, assuming that the spin of the photon
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Fig. 2: (a) Relative contribution of the electric σE (dashed lines) and magnetic σM (solid lines) terms to the
differential cross section for p̄ + p → e+ + e−, as functions of cos θ for two different values of q 2: 5 GeV2 (red
lines) and q2 =8 GeV2 (black lines); (b) Relative contribution of the electric (dashed lines) and magnetic (solid
lines) terms to the total cross section FE and FM (black lines) and to the angular asymmetry, AE and AM (red
lines).

is equal to one and that the electromagnetic hadron interaction satisfies C-invariance. This corresponds,
by crossing symmetry, to the linear Rosenbluth cot2(θ/2) dependence [14].

The electric term is accompanied by a dependence in sin2 θ. It means that, whatever is the model
used for |GE(q2)|2, it has a maximum at cos θ = 0 and vanishes at cos θ = ±1. The magnetic term has
a maximum at cos θ = ±1, which equals to 2τ |GM (q2)|2 and a minimum at cos θ = 0, which equals to
τ |GM (q2)|2. The relative contribution of the electric σE (dashed lines) and magnetic σM (solid lines)
terms to the differential cross section are illustrated in Fig. 2a, for two values of q2 = 5 and 8 GeV2.

The total cross section is a quadratic combination of FFs, which does not contain interference
terms:

σ =
πα2

6m2τ
√

τ(τ − 1)

(
2τ |GM |2 + |GE |2

)
. (9)

Let us introduce the angular asymmetry, A, which enhances the different angular behavior of the electric
and magnetic terms with respect to θ = 90◦. One can express the angular dependence of the differential
cross section in terms of the angular asymmetry A as:

dσ

d(cos θ)
= σ0

[
1 + A cos2 θ

]
, (10)

where σ0, the differential cross section at θ = π/2, and A can be written as functions of the FFs as:

σ0 =
α2

4q2

√
τ

τ − 1

(
|GM |2 +

1
τ
|GE |2

)
; A =

τ |GM |2 − |GE |2
τ |GM |2 + |GE |2 =

τ −R2

τ + R2
, R =

|GE |
|GM | . (11)

The angular asymmetry A lies in the range −1 ≤ A ≤ 1. For GE = 0 one obtains A = 1 and for
GE = GM one obtains A = (τ − 1)/(τ + 1).

The electric and magnetic contributions to the total cross section and to the angular asymmetry are
illustrated in Fig. 2b, as function of q2. The unphysical region is indicated by a dashed area. Although the
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magnetic contribution largely dominates in the physical region, the relative contribution of the electric
term to the cross section is larger than 10% for q2 ≤ 15 GeV2, and it is even larger for the angular
asymmetry.

From the total cross section, it is possible to extract |GM | under a definite hypothesis on the ratio.
The experimental results are usually given in terms of |GM |, under the hypothesis that GE = 0 or
|GE | = |GM |. The first hypothesis is arbitrary whereas the second one is strictly valid at threshold only,
and there is no theoretical argument which justifies its validity at any other momentum transfer, where
q2 �= 4m2. However, GE plays a minor role in the cross section and different hypothesis for |GE | do not
affect strongly the extracted values of GM , due to the kinematical factor τ , which weights the magnetic
contribution to the differential cross section and makes the contribution of the electric FF to the cross
section smaller and smaller as q2 increases.

The individual determination of the FFs in time-like region has not yet been done. The ratio
R = GE/GM has been determined from a two parameter fit of the differential cross section, by PS170
at LEAR [15], and more recently by the BABAR Collaboration using initial state radiation, e+ + e− →
p + p + γ [16]. Data are very limited and affected by large errors, mainly due to statistics. The results
from BABAR suggest a ratio larger than one, in a wide region above threshold, whereas data from [15]
suggest smaller values. The results from PANDA are expected to clarify this issue.

2.3 Discussion

A general illustration of the world data for the proton form factors is given in Fig. 3, where proton FFs
are shown as function of |q2|, allowing a straightforward comparison in the whole kinematical region. In
order to eliminate the steep q4 dependence, all FFs are rescaled by the dipole function.

From top to bottom, one can see the magnetic proton FF in TL region, under the assumption
|GE | = |GM |, the magnetic proton FF in SL region which is obtained for q2 ≤ 8.8 GeV2 obtained under
the assumption |GE | = 0 (blue circles) and the electric FF in SL region. Two series of data clearly show
the discrepancy between unpolarized (red triangles) and polarized (green stars) measurements.

The expected precision of the future measurements with PANDA (black solid squares) is shown
in comparison with the existing data. For PANDA each point corresponds to an integrated luminosity
of 2 fb−1, which can be obtained in four months of data taking. These results have been obtained in
frame of Montecarlo simulations, which takes into account the geometry of the detector, efficiency and
acceptance and is based on a realistic parametrization of FFs [17]. One can see that PANDA will cover a
large kinematical range and bring useful information with respect to the determination of the asymptotic
region.

A more direct representation of FFs is given by the Dirac F1 and Pauli F2 FFs, which are linear
combinations of GE and GM . PQCD predicts the asymptotic behavior F1 ∼ Q−4 and F2 ∼ Q−6 which
is followed by the Rosenbluth measurements, but not compatible with polarization data, which suggest
instead the following ratio: F2/F1 ∼ Q−1.

The values of GM in the TL region, obtained under the assumption |GE | = |GM |, are larger
than the corresponding SL values. A difference up to a factor of two in the absolute values in SL and
TL regions can be seen also for other hadron FFs, including pions and neutrons, up to the largest value
at which TL FFs have been measured. This has been considered as a proof of the non applicability of
the Phràgmen-Lindelöf theorem, or as an evidence that the asymptotic regime is not reached [19]. The
Phragmèn-Lindelöf theorem constrains definitely FFs in TL and in SL regions to have the same value at
large q2. This theorem has other applications in particle physics, such as, for example, the Pomeranchuk
theorem, concerning the asymptotic behavior of the total cross sections for a + b and ā + b collisions (a
and b any hadrons): σT (ab) = σT (āb). However, to be rigorous, the applicability of this theorem to FFs,
which seems evident, has not yet been proved.

In principle, asymptotic properties should be discussed for F1 and F2. The analyticity of FFs
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Fig. 3: World data on proton form factors, in time and space-like regions, as functions of |q 2|, rescaled by dipole.
From top to bottom, magnetic FF in time-like region including PANDA simulated results (black solid squares),
magnetic FF in space-like region (blue circles), electric FF in space-like region, from unpolarized (red triangles)
and polarized (green stars) experiments.

allows to apply the Phragmèn-Lindelöf theorem which gives a rigorous prescription for the asymptotic
behavior of analytical functions:

lim
q2→−∞

F (SL)(q2) = lim
q2→∞

F (TL)(q2). (12)

This means that, asymptotically, FFs have the following constraints: 1) the imaginary part of FFs, in TL
region, vanishes: ImFi(q2) → 0, as q2 → ∞; 2) the real part of FFs, in TL region, coincides with the
corresponding value in SL region, because FFs are real functions in SL region, due to the hermiticity of
the corresponding electromagnetic Hamiltonian.

Unfortunately, this theorem does not allow to indicate the physical value of q2, starting from which
it is working at some level of precision. For this aim one needs some additional dynamical information.
The assumption of the analyticity of FFs allows to connect the nucleon FFs in SL and in TL regions and
to extend a parametrization of FFs available in one kinematical region to the other kinematical region.
Dispersion relation approaches, which are based essentially on the analytical properties of nucleon elec-
tromagnetic FFs, can be considered a powerful tool for the description of the q2 behavior of FFs in the
entire kinematical region. The vector meson dominance (VDM) models, can be also extrapolated from
the SL region to the TL region (see [8] and Refs. therein). The quark-gluon string model [18] allowed
firstly to find the q2 dependence of the electromagnetic FFs in TL region, in a definite analytical form,
which can be continued in the SL region.

In order to test these requirements, the knowledge of the differential cross section for e+ + e− ↔
p+ p̄ is not sufficient, and polarization phenomena have to be studied. In this respect, T-odd polarization
observables, which are determined by ImF1F

∗
2 , are especially interesting. The simplest of these observ-

ables is the Py component of the proton polarization in e+ + e− → p+ p̄ that in general does not vanish,
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even in collisions of unpolarized leptons, or the asymmetry of leptons produced in p + p̄ → e+ + e−, in
the collision of unpolarized antiprotons with a transversally polarized proton target (or in the collision of
transversally polarized antiprotons on an unpolarized proton target) [8, 19]. These observables are espe-
cially sensitive to the different parametrizations of FFs, and suggest that the corresponding asymptotics
are very far [20].

3 Two photon exchange

As stressed in the introduction, the expressions of the cross section Eqs. (2, 8) assume one-photon ex-
change. In principle, the interaction can occur through two (or more) photon exchange (TPE). Although
if such mechanisms are suppressed by powers of α they could play a role at large q2, due to possible
enhancement from a mechanism where the momentum is equally shared between the photons. In such
case the decrease of the cross section due to α counting would be compensated by the steep decrease of
FFs with q2. Recently, the possibility of a sizable TPE contribution has been discussed as possible solu-
tion to discrepancies between experimental data, on elastic electron deuteron scattering [14] and elastic
electron proton scattering [3].

The model independent analysis of experimental observables taking into account the TPE con-
tribution, for ep scattering and for the crossed annihilation channels can be found in Ref. [5–7]. The
presence of TPE induces a more complicated spin structure of the matrix amplitude. In the scattering
channel, instead that two real FFs, functions of one kinematical variable, q2, one has to determine three
FFs, complex functions of two kinematical variables, and the ε linearity of the Rosenbluth formula does
not hold anymore. However, it is still possible to measure the real FFs, using electron and positron scat-
tering on proton, in the same kinematical conditions, or measuring three T-odd or five T-even polarization
observables. In the annihilation channel TPE induces four new terms in the angular distribution, of the
order of α compared to the dominant contribution and which are odd in cos θ.

Therefore, the non linearity of the Rosenbluth fit in the scattering channel d the presence of odd
cos θ terms in the annihilation channel can be considered as a model independent signatures of TPE
(more exactly, of the real part of the interference between one and two photon exchange). Evidence of
TPE, based on these signatures has not been found in the experimental data on electron elastic scattering
on particles with spin zero [21], one half [4], and one [14]. An analysis of the BABAR data [16] also
does not show the evidence of two photon contribution [9]. On the basis of simulation studies, it can be
shown that the future PANDA experiment will be sensitive to a TPE contribution ≥ 5% of the main (one
photon) contribution [22].

Let us stress that the main advantage of the search of TPE in TL region is that the information is
fully contained in the angular distribution. TPE effects cancel (are singled out) in the sum (difference)
of the cross section at complementary angles, allowing to extract the moduli of the true FFs [6, 7]. TPE
effects also cancel if one does not measure the charge of the outgoing lepton.

4 Conclusion

In the next future the knowledge of electromagnetic proton FFs will be extended in a wide kinematical
region, allowing a unified description in both SL and TL regions. It will be possible to clarify both
issues, the reaction mechanism and the proton electromagnetic structure at short distances. In particular,
the individual determination of FFs will be possible in TL region, for moderate q2 values. These data
are expected to constrain nucleon models. For q2 ≥ 20 GeV2, where the electric contribution should
become negligible, the validity of asymptotic properties predicted by QCD will be tested. Note that there
is no principal reason for which the electric and the magnetic FFs should reach the same asymptotics, at
the same q2.

Due to crossing symmetry properties, the reaction mechanism should be the same in SL and TL
regions, at similar values of the transferred momentum. If TPE is the reason of the discrepancy between
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the polarized and unpolarized FFs measurements in SL region, a contribution of 5% is necessary to bring
the data in agreement in the |q2| range between 1 and 6 (GeV/c)2. Such level of contribution will be
detectable in the PANDA experiment. In Ref. [23] the discrepancy has been attributed to the method of
calculating radiative corrections. Radiative corrections are specific to each of these reactions, therefore
a comparison of the data issued from the three channels, ep scattering, e+e− and p̄p annihilation, will
shed light on the reaction mechanism.

This work has been initiated within a long term collaboration with Prof. M. P. Rekalo and it is
largely based on common work with Dr. G.I. Gakh. The members of the PANDA Group at IPN Orsay
are acknowledged for interesting discussions and remarks.
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