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We study systematically the impact of the time-even tensor terms of the Skyrme energy density
functional, i.e. terms bilinear in the spin-current tensor density, on deformation properties of closed
shell nuclei corresponding to 20, 28, 40, 50, 82, and 126 neutron or proton shell closures. We
compare results obtained with three different families of Skyrme parameterizations whose tensor
terms have been adjusted on properties of spherical nuclei:(i)TIJ interactions proposed in the first
paper of this series [T. Lesinski et al., Phys. Rev. C 76, 014312 (2007)] which were constructed
through a complete readjustment of the rest of the functional (ii) parameterizations whose tensor
terms have been added perturbatively to existing Skyrme interactions, with or without readjusting
the spin-orbit coupling constant. We analyse in detail the mechanisms at play behind the impact of
tensor terms on deformation properties and how studying the latter can help screen out unrealistic
parameterizations. It is expected that findings of the present paperare to a large extent independent
of remaining deficiencies of the central and spin-orbit interactions, and will be of great value for the
construction of future, improved energy functionals.

PACS numbers: 21.30.Fe; 21.10.Dr; 21.10.Pc; 21.60.Jz

I. INTRODUCTION

Our experimental knowledge of the evolution of shell
structure in atomic nuclei as a function of proton and
neutron numbers has largely increased over the last few
years. The difficulty to describe these new results has
triggered the search for mechanisms that could alter nu-
clear shell structure when going toward unstable nuclides
and approaching nucleon drip lines. One such mechanism
that has an impact on the shell structure of stable and
unstable nuclei is provided by the tensor force between
nucleons [1].

The tensor force is a key ingredient of all vacuum
nucleon-nucleon interactions. It is also explicitly in-
cluded in the shell-model interaction for Hamiltonians
constructed from first principles. By contrast, it was ab-
sent from methods based on the introduction of a self-
consistent mean-field [2], until recent studies based on
the Skyrme or Gogny modeling of the in-medium strong
interaction [3–8].

The renewed interest in the residual tensor interac-
tion is due to its very specific effect on nuclear spec-
tra. It brings a correction to binding energies and to
spin-orbit splittings that fluctuates with the filling of
shells. Its introduction seems, therefore, necessary to im-
prove the predictive power of mean-field-based methods.
The Skyrme and Gogny parameterizations are viewed to-

day as nuclear energy density functionals (EDF). Their
derivation from first principles is still lacking, although
significant advances have been made recently for the pair-
ing part [9]. Instead, one still has to resort to the phe-
nomenological construction of an EDF and adjust its free
parameters, including those associated with tensor terms,
to data. How to perform this adjustment in an optimal
manner is still an unsettled question. The main problem
is to find experimental observables which can unambigu-
ously be related to a mean-field result and are primar-
ily sensitive to a specific part of the EDF, e.g., the ten-
sor part. Such a link between experiment and theory is
very often obscured by collective fluctuations around the
mean-field states [10, 11].

The tensor contribution to single-particle energies de-
pends on the filling of shells. It (nearly) vanishes in spin-
saturated nuclei, whereas it might be significant when
only one level out of two spin-orbit partners is filled. The
breaking of spherical shells in deformed nuclei leads to a
strong modification of the net spin saturation; hence, the
contribution of the tensor force to mean fields and the to-
tal energy evolves with deformation. To the best of our
knowledge, this was never studied in the published litera-
ture. The authors of Ref. [8] considered deformation, but
did not study the impact of tensor terms on deformation
properties as such.

In local energy density functionals of the Skyrme type,
the tensor force manifests itself through terms that are
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bilinear in the local pseudotensor spin-current density.
In Ref. [6], referred to as Article I in what follows, the
impact of these terms on the mean-field ground states
of spherical nuclei was studied. In the most general
case, three bilinear combinations of the pseudotensor
spin-current density can be constructed from a zero-
range tensor force, one of them being also generated by a
momentum-dependent central zero-range two-body force.
All of these terms extrapolate differently when going from
spherical to deformed shapes. For the sake of simplicity,
we will denote all of the three terms that are bilinear in
the spin-current tensor density as tensor terms through-
out this article, although one of them is already present
as soon as a zero-range central velocity-dependent inter-
action is used as a starting point to derive the EDF.

A word of caution: We cannot expect to significantly
improve the agreement with all experimental data, as we
learned in our study of spherical nuclei that most defi-
ciencies of the single-particle spectra predicted by stan-
dard Skyrme interactions without tensor terms persist in
our fits including these terms. Indeed, one of the major
results of Article I is that the current form of the central

Skyrme interaction is not flexible enough to allow for a
satisfactory description of single-particle spectra. Adding
tensor terms and adjusting them tightly to very specific
spectroscopic quantifies often amplifies the deficiencies of
the central and spin-orbit parts as currently used, which
seem to establish a compromise that averages over the
details of shell structure. This is consistent with the re-
cent study of Kortelainen et al. [12], who point out that it
seems impossible to satisfactorily describe single-particle
levels of doubly-magic nuclei with a standard Skyrme en-
ergy density functional including tensor terms, even when
relaxing all constraints from bulk properties.

The aim of the present study is to investigate the
generic influence of the tensor terms on deformation
properties. The questions to be addressed here are:

(i) How do the tensor terms influence the topography
of deformation energy curves of even-even nuclei,
given their spherical shell-structure, in particular
regarding the number of spin-unsaturated levels at
sphericity?

(ii) How much of these changes is caused by the tensor
terms themselves, how much is caused by the rear-
rangement of all other terms during the fit of the
parameterizations?

(iii) How do the three different tensor terms behave in
deformed nuclei depending on the symmetries cho-
sen for the nuclear shapes? For spherically sym-
metric systems, two of them reduce to the same
functional form, whereas the third one vanishes.

The answers to these questions will to a large extent re-
main independent of remaining deficiencies of the central
and spin-orbit interactions, and will be of great value for
the construction of future improved energy functionals.

We will address the question of how the surface and sur-
face symmetry energy coefficients change in dependence
of the coupling constants of the tensor terms, and how
this influences the deformation energy at large deforma-
tion in a future work.

II. THE SKYRME ENERGY FUNCTIONAL

WITH TIME-REVERSAL SYMMETRY

The total energy of a nucleus can be modeled by an
energy density functional [2, 13–15] which is the sum of
five terms: the uncorrelated kinetic energy, a Skyrme
potential energy functional that models the strong in-
teraction in the particle-hole channel, a pairing energy
functional, a Coulomb energy functional whose exchange
term is treated using the Slater approximation and cor-
rection terms that approximately remove the excitation
energy due to spurious motions caused by broken sym-
metries

E = Ekin + ESk + Epairing + ECoulomb + Ecorr . (1)

The Skyrme energy density functional is local and can
be decomposed into isoscalar t = 0 and isovector t = 1
contributions of central, spin-orbit and tensor terms

ESk =

∫

d3r
∑

t=0,1

HSk
t (r) (2a)

=

∫

d3r
∑

t=0,1

[

Hc
t(r) + Hls

t (r) + Ht
t(r)

]

. (2b)

The physics contained in the Skyrme functional has been
discussed in great detail in the literature [2, 6, 15–18]. We
will repeat here only those aspects that are relevant for
the present study.

A. Local densities and currents

Each of the terms in the Skyrme energy density func-
tional (2a) can be further decomposed into one part that
depends on time-even densities only and another part
that is bilinear in time-odd densities and currents [6, 15].
We follow the common practice to call them ”time-even”
and ”time-odd” parts of the energy density functional,
respectively, although the energy density functional E it-
self is time-even by construction. Throughout this arti-
cle, we will assume that time-reversal symmetry is not
broken; hence, the densities and currents entering the
time-odd part of the energy density functional vanish ex-
actly. This allows one to represent the Skyrme part of the
energy density functional through six independent local
densities:

ρq(r) = ρq(r, r
′)

∣

∣

r=r
′
, (3a)

τq(r) = ∇ · ∇′ ρq(r, r
′)

∣

∣

r=r
′
, (3b)
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Jq,µν(r) = − i
2 (∇µ −∇′

µ) sq,ν(r, r′)
∣

∣

r=r
′

(3c)

which are the scalar density ρq(r), the scalar kinetic
density τq(r), and the spin-current pseudotensor density
Jq,µν(r) for protons and neutrons q = p, n. They can be
constructed from neutron and proton density matrices
expressed in the position basis [15, 18]

ρq(rσ, r
′σ′) = 〈â†r′σ′qârσq〉

= 1
2 ρq(r, r

′)δσσ′ + 1
2 sq(r, r

′) · 〈σ′|σ̂|σ〉 ,

(4)

where

ρq(r, r
′) =

∑

σ

ρq(rσ, r
′σ) ,

sq(r, r
′) =

∑

σσ′

ρq(rσ, r
′σ′) 〈σ′|σ̂|σ〉 . (5)

Proton and neutron densities can be recoupled to
isoscalar t = 0 and isovector t = 1 densities, for example
ρ0(r) = ρn(r) + ρp(r) and ρ1(r) = ρn(r) − ρp(r), and
similarly for τt(r) and Jt,µν(r).

The cartesian spin-current pseudotensor density Jµν(r)
can be separated into its pseudoscalar, anti-symmetric
vector and symmetric and traceless symmetric pseu-
dotensor parts,

Jµν(r) = 1
3δµν J

(0)(r)+ 1
2

z
∑

κ=x

ǫµνκ J
(1)
κ (r)+J (2)

µν (r) , (6)

where δµν is the Kronecker symbol and ǫµνκ the Levi-
Civita tensor. The cartesian components of the pseu-
doscalar, vector and traceless pseudotensor parts, ex-
pressed in terms of the cartesian pseudotensor density,
are given by

J (0)(r) =

z
∑

µ=x

Jµµ(r) ,

J (1)
κ (r) =

z
∑

µ,ν=x

ǫκµν Jµν(r) ,

J (2)
µν (r) = 1

2 [Jµν(r) + Jνµ(r)] − 1
3δµν

z
∑

κ=x

Jκκ(r) . (7)

The radial component of J =
∑

κ J
(1)
κ eκ is the only non-

zero contribution when spherical symmetry is imposed.
The pseudoscalar J (0)(r) term still vanishes when rota-
tional symmetry is broken, but parity remains conserved.

B. Skyrme’s tensor force

The Skyrme energy functional representing the cen-
tral, tensor, and spin-orbit interactions can be written
in different ways. The most traditional one [16, 17] is to

consider the functional as generated by a zero-range two-
body effective interaction including a density-dependent
term. In his seminal articles [19, 20], Skyrme introduced
two tensor interactions that have not been considered
in standard parameterizations so far. An ”even” tensor
force with the coupling constant te mixes relative S and
D waves, whereas an ”odd” tensor force with the cou-
pling constant to mixes relative P and F waves

vt(r) = 1
2 te

{

[

3(σ1 · k
′)(σ2 · k

′) − (σ1 · σ2)k
′2

]

δ(r)

+ δ(r)
[

3(σ1 · k)(σ2 · k) − (σ1 · σ2)k
2
]}

+ to

[

3(σ1 · k
′)δ(r)(σ2 · k) − (σ1 · σ2)k

′ · δ(r)k
]

,

(8)

where we use the shorthand notation r = r1 − r2 for
the relative position vector between the two particles,
whereas k = − i

2 (∇1 − ∇2) is the operator for relative
momenta acting to the right and k

′ its complex conjugate
acting to the left. The vectors formed by the Pauli spin
matrices are denoted by σ1 and σ2.

With the symmetry restrictions that we have imposed,
only the time-even part of the energy density correspond-
ing to the tensor force (8) is different from zero and is
given by

Ht
t(v

t) = −BT
t

z
∑

µ,ν=x

Jt,µνJt,µν

−BF
t

[

1
2

(

z
∑

µ=x

Jt,µµ

)

2 + 1
2

z
∑

µ,ν=x

Jt,µνJt,νµ

]

.(9)

The labels of the coupling constants BT
t and BF

t refer
to the time-odd terms they multiply in the energy func-
tional when time-reversal invariance is broken, ensuring
Galilean invariance [6]. The notation Ht

t(v
t) stresses that

Eq. (9) provides the contribution to tensor terms coming
from the Skyrme zero-range tensor effective interaction

vt given by Eq. (8). When starting from the tensor force
(8), the four coefficients BT

t and BF
t in Eq. (9) are de-

termined by te and to. As discussed in the next section,
the central part of Skyrme’s interaction also gives rise
to terms proportional to Jt,µνJt,µν in the energy den-
sity [6, 15].

The three terms present in Eq. (9) couple the deriva-
tives of the single-particle wave functions and the spin
matrices in different ways. In the first term, the deriva-
tives contained in both Jt,µν are taken along the same
direction, as are the two Pauli spin matrices. The two
other terms have a structure more typical of what is ex-
pected for a tensor interaction which couples a vector
in space with a Pauli spin matrix. In the second term
they are coupled within a given Jt,µµ, whereas in the
third therm they are coupled between the Jt,µνs. It is
the simultaneous presence of these three terms that is
the signature of an actual tensor interaction.
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C. The Skyrme energy functional

The complete time-even part of the Skyrme energy
density functional is obtained by combining the central,
spin-orbit and tensor contributions

HSk
t = Cρ

t [ρ0] ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + C∇·J

t ρt∇ · Jt

−CT
t

z
∑

µ,ν=x

Jt,µνJt,µν

−CF
t

[

1
2

(

z
∑

µ=x

Jt,µµ

)2

+ 1
2

z
∑

µ,ν=x

Jt,µνJt,νµ

]

. (10)

When the energy functional (10) is generated from a
Skyrme interaction, the coupling constants Ct are the
sum of the coupling constants At coming from the cen-
tral and spin-orbit forces and those of the tensor force Bt

and are defined in the appendix A of Article I.1

One can alternatively consider HSk
t as a functional of

local densities in a more general sense and abandon the
link to effective interactions. The coefficients Ct are then
fixed independently, except for constraints that must be
imposed to fulfill Galilean invariance, cf. Article I. In
principle, the twelve constants Ct can furthermore de-
pend on densities, but in all standard Skyrme parame-
terizations extensively tested up to now, only Cρ

t does
depend on the isoscalar local density ρ0.

D. Choice of independent coupling constants in the

energy density functional

The tensor terms are given in Eq. (10) as a function
of the cartesian representation of the spin-current tensor
density. Using the pseudoscalar, vector, and pseudoten-
sor components J (0), J (1), and J (2) introduced in Eq. (7),
which is more appropriate when spherical symmetry is
imposed, one obtains an alternative form

Ht
t = −CT

t

z
∑

µ,ν=x

Jt,µνJt,µν

−CF
t

[

1
2

(

z
∑

µ=x

Jt,µµ

)2

+ 1
2

z
∑

µ,ν=x

Jt,µνJt,νµ

]

= CJ0
t

(

J
(0)
t

)2
+ CJ1

t J
2
t + CJ2

t

z
∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν .

(11)

In the last line of Eq. (11) we have introduced new cou-
pling constants for the terms bilinear in the pseudoscalar,

1 In the expressions of BT
0 , BF

1 , B∆s
1 and B∇s

1 , Eqns. (A3)-(A6) of
the published version of Article I a global sign is missing, whereas
the expressions given in the preprint are correct.

vector and pseudotensor parts of the spin-current pseu-
dotensor density. Their relation to the coupling constants
defined in Eq. (10) is given by

CJ0
t = − 1

3C
T
t + 2

3C
F
t , (12a)

CJ1
t = − 1

2C
T
t + 1

4C
F
t , (12b)

CJ2
t = −CT

t − 1
2C

F
t . (12c)

In general, the tensor part of the energy density (10)
depends on four independent parameters. This is most
obvious in a cartesian representation of the tensor func-
tional, where these four parameters are provided by the
CT

t and CF
t . In Article I, however, we have used two dif-

ferent coupling constants to characterize the tensor terms
that fulfill

CJ
0 = 2CJ1

0 , (13a)

CJ
1 = 2CJ1

1 . (13b)

These two coupling constants are sufficient to describe
the strength of the isoscalar and isovector tensor terms
in static2 calculations in spherical symmetry as the pseu-
doscalar and pseudotensor parts of the spin-current ten-
sor density are zero by construction.

When starting from a central and a tensor force, the
ratios between the isospin components of the different
terms will not be proportional, i.e. CJ1

0 /CJ1
1 CJ2

0 /CJ2
1 ,

CT
0 /C

T
1 and CF

0 /C
F
1 will not be equal. The same prop-

erty is lost also when one separates the tensor interac-
tion strength between particles of the same and different
isospins.

The tensor terms of existing Skyrme parameterizations
have been adjusted on spherical nuclei, for which one
has time-reversal invariance and J

2
t is the only non-zero

term in Eq. (11). Hence, the values of CJ0
t and CJ2

t

have not been fixed by these fits and one has to make
additional choices when going beyond sphericity. In the
present work, parity is still conserved as a good quantum
number such that the only problem is to fix the values of
the two constants CJ2

t . The solution to this problem is
not unique and a set of reasonable choices is given by:

(i) One can consider that the tensor terms of the en-
ergy functional are generated by the central and
tensor parts of a Skyrme force. There is then an
univocal relation between CJ2

t and te and to and
the balance between the various terms in Eq. (11)
is automatically fixed. Unless otherwise noted, we
will use this choice throughout the present article
for the parameter sets TIJ introduced in Article I.
This choice does not permit to set CJ1

t and CJ2
t

2 We recall that in QRPA and other dynamical methods all com-
ponents of Jµν might be non-zero in the response transition den-
sities also in spherical symmetry, as do the time-odd densities
not addressed here.
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simultaneously to zero without imposing unrealis-
tic constraints on the central Skyrme interaction.
In particular, the parameterization T22 has been
constructed in such a way that CJ1

t = 0 and that
the tensor terms vanish for spherical shapes. The
values of CJ2

t are then non-zero and the contribu-
tion of the pseudotensor terms does not vanish for
deformed shapes.

(ii) Many authors set to zero the pseudotensor part of
the tensor terms (11) for axially deformed Skyrme
EDF calculations [21, 22] although it is a priori

non-zero. They keep only the vector part J that
also appears in the spin-orbit part of the EDF. The
main motivation for this choice is that the spin-
current tensor density in cylindrical coordinates has
a complicated form [23]. This can either be viewed
as an approximation or as specific choice of the ten-
sor terms such that CJ2

t = 0.

(iii) Another possible choice is to set CF
t to zero. To-

gether with suitable choices for the time-odd part
of the EDF, this allows to keep the functional form
of the standard central Skyrme EDF, but with cou-
pling constants of the symmetric tensor terms that
are independent of those of a central Skyrme inter-
action. This choice has been made by the authors
of Ref. [8].

(iv) A choice similar to the previous one is to take CT
t

equal to zero, keeping only the antisymmetric com-
bination of the spin-current tensor density.

(v) Finally, one can take any ratio of CF
t /C

T
t leading

to a given CJ1
t value, which interpolates between

the two previous choices.

When choosing CJ1
t and CJ2

t to be independent, we have
the following interrelations between coupling constants

CJ0
t = −CJ1

t + 5
6C

J2
t , (14a)

CT
t = −CJ1

t − 1
2C

J2
t , (14b)

CF
t = 2CJ1

t − CJ2
t . (14c)

The multitude of possible choices for the tensor para-
metrization opens the risk of an inconsistent use of the
coupling constants of the tensor part of a given Skyrme
parameterization. In particular, each choice leads to very
different coupling constants in the ”time-odd” part of the
EDF, which can lead to significant differences.

Eventually, the bilinear part of the functional can be
recoupled into terms that contain only densities of the
same isospin on the one hand and terms that couple pro-
ton and neutron densities on the other hand. Such a rep-
resentation is often used to characterize the interaction
strength in the vector part of the tensor terms through
coupling constants α of the like-particle J

2
t terms and β

of the proton-neutron J
2
t term

α = CJ
0 + CJ

1 = 2(CJ1
0 + CJ1

1 ) , (15a)

β = CJ
0 − CJ

1 = 2(CJ1
0 − CJ1

1 ) . (15b)

The relation of α and β to the coupling constants of
Skyrme’s central and tensor forces can be found in Ar-
ticle I. All other coupling constants of the energy den-
sity (10) can be recoupled in the same manner, of course.

E. The single-particle Hamiltonian

The isospin representation of the EDF is very conve-
nient for a discussion of its physical content. The codes
that we have developed, however, use a different repre-
sentation [17] that is better suited to construct the mean-
fields with the symmetries chosen here. The central and
spin-orbit parts of the Skyrme EDF have been described
in Ref. [17]. The additional tensor terms that were not
addressed are given by

Ht = b14

z
∑

µ,ν=x

J0,µνJ0,µν

+b16

[(

z
∑

µ=x

J0,µµ

)2

+

z
∑

µ,ν=x

J0,µνJ0,νµ

]

+
∑

q=n,p

{

b15

z
∑

µ,ν=x

Jq,µνJq,µν

+b17

[(

z
∑

µ=x

Jq,µµ

)2

+

z
∑

µ,ν=x

Jq,µνJq,νµ

)}

.(16)

The coupling constants of (16) are related to those of (11)
through

b14 = −CT
0 + CT

1 = CJ1
0 − CJ1

1 + 1
2C

J2
0 − 1

2C
J2
1

b15 = −2CT
1 = 2CJ1

1 + CJ2
1

b16 = − 1
2 C

F
0 + 1

2 C
F
1 = −CJ1

0 + CJ1
1 + 1

2 C
J2
0 − 1

2 C
J2
1

b17 = −CF
1 = −2CJ1

1 + CJ2
1 . (17)

The mean-field equations for protons and neutrons, ob-
tained by functional derivative techniques [2, 15] from
the energy functional (16), read

ĥq(r)ψi(r) = ǫi ψi(r) , (18)

with the one-body Hamiltonian corresponding to the en-
ergy functional (10) given by3

ĥq(r) = Uq(r) − ∇ ·Bq(r)∇

3 For the standard Skyrme functional (11) with non-density-
dependent coupling constants of the spin-orbit and tensor terms,

the second line can be simplified into −i

∑

µν

Wq,µν(r)∇µσ̂ν for

the symmetries chosen here.
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− i
2

z
∑

µ,ν=x

[

Wq,µν(r)∇µ + ∇µ Wq,µν(r)
]

σ̂ν ,(19)

where the σ̂ν denote the Pauli matrices. The expres-
sions for the single-particle potential U(r) and the in-
verse effective mass B(r) are the same as those given in
Ref. [17]. When the energy functional depends on the
vector part of the spin-current tensor only, the second
line of Eq. (19) boils down to −iWq(r) · ∇ × σ with
Wq(r) =

∑

µνκ ǫµνκWq,µν(r) eκ, where eκ is the unit vec-
tor in κ direction. With the full spin-current tensor, one
has to consider

Wq,µν(r)

=
δE

δJq,µν(r)

= −b9

z
∑

κ=x

ǫκµν

(

∇κρ+ ∇κρq

)

+2 b14 Jµν + 2 b15 Jq,µν + 2 b16 Jνµ + 2 b17 Jq,νµ

+2 b16

[

z
∑

κ=x

Jκκ

]

δµν + 2 b17

[

z
∑

κ=x

Jq,κκ

]

δµν (20)

instead. The terms in the first line of Eq. (20) originate
from the spin-orbit part of the functional, the other two
lines from the tensor part. The terms in the last line of
Eq. (20) might be nonzero only when parity is broken.

We recall that for constrained calculations, as dis-
cussed below, the constraints do not contribute to the
observable total energy, which is still obtained from E ,
Eq. (1), whereas the eigenvalues ǫi of the mean-field
Hamiltonian used to construct the Nilsson diagrams con-
tain a contribution from the constraint [24].

III. PARAMETERIZATIONS

For an overview of earlier choices made for the cou-
pling constants of the tensor terms in standard parame-
terizations of the Skyrme energy functional, we refer to
Article I. We will limit ourselves here to recent param-
eterizations that explore the impact of tensor terms on
single-particle spectra.

A. TIJ parameterizations of Lesinski et al

The main aim of the present article is to test the de-
formation properties of magic and semi-magic nuclei ob-
tained with the parameterizations TIJ introduced in Ar-
ticle I. The fit of these parameterizations is based on
the same protocol as the one of the SLyx parameteri-
zations [13, 14], with a few minor changes explained in
Article I. We have found in Article I that to add a tensor
term to a standard Skyrme EDF does not globally cor-
rect its deficiencies for the prediction of masses, radii, or

FIG. 1: Coupling constants CJ
0 and CJ

1 of the tensor terms
for the parameterizations discussed in the paper.

single-particle properties of semi-magic nuclei. In fact,
very different values of the CJ

t constants are required for
each of these observables to be accurately reproduced,
and even these values should vary in different mass re-
gions. Instead of trying to construct a single ”best” EDF
in Article I, we have studied the impact of the tensor
terms on different observables by constructing a set of
36 parameterizations, each corresponding to given values
of CJ

0 and CJ
1 , and all other Skyrme parameters being

determined by the same fitting procedure. In this way,
a wide range of the effective coupling constants CJ

0 and
CJ

1 is systematically covered.

In the present study, we limit ourselves to a small sub-
set of these 36 parameterizations, i.e. T22, T26, T44,
and T62 in most cases. Figure 1 shows their location
in the parameter space of CJ

0 and CJ
1 . The parameter-

ization T22 has by construction vanishing tensor terms
at sphericity. It should have properties close to those of
SLy4 in which tensor terms have been neglected. The pa-
rameterizations T26, T44 and T62 share the same value
of the isoscalar tensor coupling constant CJ

0 = 120 MeV
fm5, and differ by the isovector one CJ

1 , which takes the
values 120, 0 and −120 MeV fm5 respectively.

Parameterizations having the same proton-neutron
coupling constant β are aligned along the first diagonal
in Fig. 1, those with the same value of α are aligned along
the anti-diagonal. For parameterizations TIJ , the coef-
ficient of the proton-neutron tensor term increases with
the first index I for the fixed like-particle tensor term,
whereas that of the like-particle tensor term increases
with the second index J for fixed proton-neutron tensor
coupling. Let us recall that the integers I and J are
related to the constants α and β by

α = 60(J − 2) MeV fm5, (21a)

β = 60(I − 2) MeV fm5 . (21b)
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TABLE I: Skyrme parameterizations discussed in this work. Procedure: Variational (V) corresponds to Skyrme parameteriza-
tions where, for given tensor coefficients, all other Skyrme parameters are fitted following the procedure of Ref. [14], slightly
modified in Article I for the TIJ interactions, while perturbative (P) labels parameterizations for which tensor terms are added
without refit. Type: the parameterization is treated as an interaction (I) or a functional (F). Central: the contribution to the
tensor terms coming from the central part of the interaction is included or not. Tensor: a tensor interaction is included or not

procedure type central tensor Ref. remarks

SLy4 V I N N [14] The tensor contributions from the central part of the inter-
action are neglected.

SLy5 V I Y N [14]

TIJ V I Y Y [6] Isovector tensor coefficients equal to zero if I = J

T22 V I Y Y [6] Central and tensor contributions to the tensor terms such
that they cancel each other at sphericity (close to SLy4)

SLy4T P F - - [8]

SLy4Tmin V F - - [8] Refit of SLy4T on masses keeping tensor and spin-orbit co-
efficients fixed

SLy5+T P I Y Y [5]

SLy4Tself V I Y Y this work Refit of SLy4T with the same protocol as TIJ keeping the
same spin-orbit and tensor coefficients for spherical shapes
as in Ref. [8]

TZA V I Y Y this work Refit of SLy4T with the same protocol as TIJ for the tensor
coefficients used in Ref. [8]

B. The parameterization of Colò et al.

The Skyrme parameterization SLy5 introduced in
Ref. [14] is one of the two SLyx functionals which include
the tensor terms generated from the central part of the
Skyrme force. Colò et al. [5] have added a tensor force
to it, keeping all the other coupling constants of the pa-
rameterization at their original values. We will call this
interaction SLy5+T (”SLy5 plus tensor”) in what fol-
lows. The parameters of the tensor force were adjusted
in spherical symmetry to single-particle energies along
the chains of N = 82 isotones and Z = 50 isotopes. The
empirical values for these energies were obtained as sep-
aration energies of the last particle in states of an odd-A
nucleus, assumed to be dominated by one single-particle
configuration. They were compared to the eigenvalues
of the one-body Hamiltonian, Eq. (19), in the neighbor-
ing even-even nucleus. The resulting coupling constants
in MeV fm5 are CJ

0 = −19.333 and CJ
1 = −70.466, or,

equivalently, α = −89.8 and β = 51.9. This parameter-
ization has been used in studies of spherical shell struc-
ture in Ref. [7] and of the Gamov-Teller strength dis-
tribution in 90Zr and 208Pb through RPA calculations in
Ref. [25, 26]. As can be seen in Fig. 1, SLy5+T explores a
different region of the parameter space than the TIJ pa-
rameterizations; α being negative and its modulus larger
than β.

C. The parameterization of Zalewski et al.

In Ref. [8], Zalewski et al. did refit the spin-orbit and
tensor coupling constants of some standard Skyrme in-
teractions. We will consider here two of their fits that
are based on the SLy4 functional [14]. In a first step,
Zalewski et al. readjusted C∇J

t and CJ
t to carefully se-

lected spin-orbit splittings in 40Ca, 48Ca and 56Ni, keep-
ing all other coupling constants of the energy functional
at their original values. The single-particle energies of
a spherical mean-field calculation of doubly-magic nuclei
have been identified with the separation energy of a nu-
cleon with the same quantum numbers to or from the odd
neighboring nuclei. They were compared to experimen-
tal separation energies corrected through a macroscopic
model taking into account the influence of the coupling
of the single-particle state to collective vibrations of the
surface. The values of the parameters resulting from this
procedure are CJ

0 = −45, CJ
1 = −60, C∇J

0 = −60 and
C∇J

1 = −20 (all in MeV fm5) and define an EDF called
SLy4T. The strength of the standard zero-range spin-
orbit force of SLy4T is equal to W0 = 80 MeV fm5 and is
much lower than in the original SLy4 parameterization,
for which W0 = 123 MeV fm5.

Such a modification of CJ
t and C∇J

t from their original
values without changing the other parameters of the EDF
degrades prohibitively the masses calculated with SLy4T
with respect to those obtained with SLy4. For this rea-
son, Zalewski et al. refitted all parameters of SLy4T ex-
cept CJ

t and C∇J
t in a second step to restore a reasonable

description of bulk properties, leading to the parameter-
ization SLy4Tmin.
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The parameterizations SLy4T and SLy4Tmin are ex-
plicitly constructed as energy density functionals without
making reference to any underlying central, spin-orbit, or
tensor force. In particular, the authors chose to set the
two coupling constants CF

t of the asymmetric cartesian
tensor term to zero and to vary only CT

t . This automati-
cally fixes the value of CJ2

t to be equal to two times that
of CJ1

t for t = 0 and t = 1. Although the coupling con-
stants C∇J

t of the spin-orbit term were readjusted, the
ratio between the isoscalar and isovector coupling con-
stants C∇J

0 /C∇J
1 was kept at the value of the original

fit.

To analyze the consequences of the choices made in the
fitting strategy of Zalewski et al. and those of Article I, we
performed two additional fits using the same protocol as
in Ref. [6], but exploring a different region around (−45,
−60) MeV fm5 corresponding to SLy4T in the CJ

0 , CJ
1

plane of Fig. 1. For the first one, called SLy4Tself here-
after, we fixed CJ

t and C∇J
t at their SLy4T values, but

readjusted all the other constants of the functional to ob-
tain the ”best” EDF corresponding to our protocol. This
parameterization differs from SLy4Tmin by the fit proto-
col, and by our choice to keep the interrelations between
the coupling constants of the tensor terms as obtained
from a two-body central and tensor forces. To study also
the impact of the readjustment of the spin-orbit inter-
action, we constructed a second parameterization, called
TZA hereafter, where we additionally vary W0, resulting
to a value W0 = 111.934 MeV fm5. This parameteriza-
tion is thus fitted exactly as the TIJ ones, except that it
is outside of the rectangular parameter space for CJ

0 and
CJ

1 considered in Article I. The coupling constants for
SLy4Tself and TZA can be found in the Physical Review

archive [27]. The properties of all the interactions that
we have used are summarized in Table I.

IV. RESULTS

A. Technical Details

The wave functions are constructed with the code
EV8 [28, 29] which has been modified to include the
tensor terms in the energy density functional and the
single-particle Hamiltonian. The energies have been re-
calculated after convergence with a code that uses a more
accurate algorithm for the derivatives.

Pairing correlations are treated with the Lipkin-
Nogami (LN) method to avoid the breakdown of BCS
pairing and the resulting discontinuities in the defor-
mation energy curves. We use an effective density-
dependent zero-range pairing interaction with two soft
cutoffs at 5 MeV above and below the Fermi energy as
described in Ref. [30]. For consistency with our recent
calculations [31, 32], we chose a strength of −1000 MeV
fm−3 for light and medium-heavy nuclei and −1250 MeV
fm−3 for 186Pb and 208Pb.

B. General comments

The magic numbers close to stability can be divided
into two categories: up to 20, they correspond to a
spin-saturated closure of major oscillator shells, whereas
above 20, they are created by the spin-orbit interaction
which pushes down the level with largest j-value into the
gap between the oscillator shells for 28, or even into the
oscillator shell below the gap for 50, 82 and 126. One
usually labels a spherical nucleus spin saturated when all
pairs of spin-orbit partners are either occupied or empty.
In realistic mean-field calculations this will not result in
an exact cancellation of the spin-current tensor density,
as it should be the case for an exact spin saturation.
This has two origins. First, the radial wave functions
of the spin-orbit partners are not identical, and, second,
pairing correlations will smear out the distribution of oc-
cupation numbers. The effect of these two factors will be
discussed in a forthcoming publication [33]. Tensor terms
in the time-even part of the energy functional fluctuate
with the spin-current tensor density Jµν , which is small
in spin-saturated systems, and large whenever only the
lower level of a pair of spin-orbit partners is filled, while
its partner level remains empty. For an illustration we
refer to Article I.

Deformation breaks this simple picture. As soon as it
sets in, the spin saturation or non-saturation disappears
and the energy due to tensor terms varies in a way related
to the sign of the coupling constants. Close to sphericity,
this can be determined by looking at the CJ

t coefficients.
For N = Z spin saturated nuclei and parameterizations
with CJ

0 positive, the contribution from the tensor inter-
action is zero at sphericity and becomes repulsive as soon
as deformation sets in. For N = Z spin-unsaturated nu-
clei, the tensor contribution will be largest at sphericity
and decrease with deformation.

C. 56Ni

Let us start our study by looking in detail into 56Ni,
the lightest doubly-magic nucleus with major proton and
neutron shell closures due to the spin-orbit interaction.
The values and systematics of static [34] and transition
moments [35] of low-lying states around 56Ni suggest that
it is not as good an inert magic core as other doubly-
magic nuclei. This feature is also observed in shell-model
calculations [36] and is at the origin of substantial cor-
rections found between ”empirical” and ”bare” single-
particle energies in Ref. [37]. Several well-deformed ro-
tational bands coexisting with the spherical shell-model-
type states have been observed, one of them down to a
2+ level at 5.351 MeV [38].



9

FIG. 2: (Color online) Nilsson diagram of the neutrons (top),
change of the total contribution from the tensor terms to the
total energy relative to the values at the spherical shape (mid-
dle) and deformation energy relative to the spherical shape
(bottom) for 56Ni obtained with the parameterizations T22,
T24 and T26. The energy scale is the same for the two lower
panels.

1. Key quantities

Figure 2 provides three key quantities for the analy-
sis of the deformation properties of 56Ni: the neutron
Nilsson diagram, the contribution of tensor terms to the
deformation energy and the total energy, all as a func-
tion of axial quadrupole deformation. Three parameter-
izations have been used, T22, T24 and T26, which differ
in the strength of the tensor terms. The proton Nilsson
diagram is very similar to the one for neutrons, except
for an overall shift due to the Coulomb interaction. The
dependence of these quantities on the axial quadrupole
deformation is shown as a function of the dimensionless
deformation β2 of the mass density distribution defined
as

β2 =

√

5

16π

4π

3R2A
〈2z2 − y2 − x2〉 , (22)

where R = 1.2A1/3 fm.
The presence of tensor terms in the energy functional

has an obvious impact on the single-particle levels. An
increase of the tensor interaction results in a reduction of
the spin-orbit fields and in a smaller spherical gap atN =

28. The net result is a sizable decrease of the splitting
of the 1f levels from T22 to T62. At the same time,
tensor terms also modify the slope of the Nilsson levels
at small deformations, whereas, at large deformation, the
levels predicted by the three parameterizations nearly lie
on top of each other.

At sphericity, the tensor contribution for T22 is zero
by construction. In practice, one can see that the ten-
sor energy remains close to zero for all deformations. As
soon as the nucleus is deformed, the decrease of spin non-
saturation strongly affects the tensor terms. Parameter-
izations like T24 and T26 have a positive like-particle
coupling constant α and give repulsive tensor energies at
sphericity. This repulsion is decreased by deformation,
which reduces the tensor terms by several MeV. For T26,
the total energy curve obtained as a function of defor-
mation is softer than without the tensor interaction. In
particular, the shoulder at prolate deformations becomes
lower in energy and more pronounced. This structure
is associated with the rotational band observed down to
spin 2+ [38]. The gain in total deformation energy, how-
ever, is much smaller than the gain in deformation energy
from the tensor terms.

In the following subsections, we will analyze the ori-
gin of these differences and their dependence on the fit
strategy.

2. Contributions to the total energy

Let us first recall that the interactions constructed in
Article I differ not only by their choice of the strengths
of the tensor interaction, but that all the other terms of
the energy functional are also different because each in-
teraction is refitted on the same set of data. It is, there-
fore, interesting to examine how the different terms of
the functional vary from one set to another and how the
changes induced by the tensor interaction are, in fact,
largely attenuated by a readjustment of the entire func-
tional.

Figure 3 presents the decomposition of the total bind-
ing energy into the contributions from the various terms
in the energy functional, Eq. (1), for parameterizations
T22, T24 and T26. Those panels showing contributions
to the Skyrme energy functional are labeled by their con-
tent in densities, Eq. (10), whereas the other panels pro-
vide the kinetic energy (plus the one-body center-of-mass
correction), the Coulomb energy and the pairing energy
(including the Lipkin-Nogami correction).

Unlike in Fig. 2, Fig. 3 shows here the absolute val-
ues for the total binding energy and the tensor contri-
butions. The binding energy of 56Ni is included in the
data the TIJ parameterizations are adjusted to and, in-
deed, the total energy (lower left panel) differs by only a
few 100 keV at sphericity. Also, as already pointed out,
the deformation energy curves obtained with the three
parameterizations differ by less than 2 MeV. These simi-
larities result from a complicated compensation between



10

FIG. 3: (Color online) Decomposition of the total energy of
56Ni obtained with the parameterizations T22, T24 and T26
into the various contributions to the EDF, Eqns. (1) and (10),
as a function of the quadrupole deformation β2 (see text).

the various components of the energy. All of them, with
the exception of the Coulomb energy, differ on a much
larger scale, both in absolute values and deformation de-
pendence.

It can be seen also that each term of the EDF has a
very different dependence on deformation and that the
total deformation energy also always results from subtle
compensations. Both the kinetic energy and the part of
the Skyrme functional that contributes to E/A in infi-
nite homogeneous nuclear matter, Cρ[ρ]ρ2 + Cτρτ , vary
by about 70 MeV as a function of deformation. The part
of the EDF that does not depend on gradient terms is

FIG. 4: (Color online) Same as Fig. 3, but for the parameter-
izations SLy4, SLy4Tmin, SLy5, and SLy5+T.

obtained by summing these two terms and the Coulomb
energy, and is represented in the panel in the fourth row
on the left. It varies with deformation by about 15 MeV.
For all parameterizations, the latter curves exhibit pro-
nounced prolate and oblate minima. The gradient term
C∆ρρ∆ρ even amplifies the preference for deformed min-
ima. The combined spin-orbit and tensor terms, shown
individually and summed up in the three lower right pan-
els, are the necessary ingredient to obtain a spherical
ground state in 56Ni. This underlines the fact that the
spin-orbit and tensor terms are not only important for
single-particle spectra, but also might play a crucial role
for the total binding energy, in particular for its deforma-
tion dependence. Interestingly, for this nucleus and the
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FIG. 5: (Color online) Decomposition of the isoscalar tensor
energy obtained in 56Ni for the parameterizations T22 and
T26 into the contributions from the central and tensor parts
of the forces.

parameterizations shown, the contributions of the spin-
orbit and tensor terms are of opposite sign and sum up
such that their sum is much less dependent on the pa-
rameterization than the individual terms.

Figure 4 providess the same decomposition for various
variants of SLy4 adjusted with different strategies, i.e.
SLy4, SLy5, SLy4Tmin and SLy5+T.

The results obtained with the two functionals SLy4 and
SLy5 adjusted in Ref. [14] are quite close for all terms,
except of course for the tensor contribution, excluded
in the case of SLy4 and restricted to the contribution
from the central interaction for SLy5. All components
of the energy differ slightly since the coupling constants
are completely refitted in both cases. The total energies
obtained with these two parameterizations, however, are
quite close.

In particular, although SLy4 and SLy5 correspond to
slightly different coupling constants, they lead to results
which differ on a much smaller scale than SLy5 and
SLy5+T, which differ only by the tensor terms. This
underlines the role of self-consistency: the difference in
the tensor terms is responsible for changes in the single-
particle properties, which ultimately induce changes in
each individual contribution to the energy functional.

The similarity between the curves obtained with SLy4
and T22 (Fig. 3 and Fig. 4), shows that the slight differ-
ences between the interactions have no significant effect.

3. Decomposition of the tensor terms

The energy contribution from the tensor terms can be
decomposed in several ways. We first compare the con-
tributions from the central and tensor parts of the pa-
rameterizations T22 and T26 in Fig. 5. As explained in
Sect. II D, such a decomposition has a meaning only when
assuming an underlying force, but not for genuine func-
tionals. The central contribution is very similar for both
parameterizations (and all others from the TIJ family),
which is a consequence of its correlation with effective

FIG. 6: (Color online) Decomposition of the isoscalar tensor
energy obtained in 56Ni for the parameterizations T22, T24
and T26 into the contributions from symmetric and asymmet-
ric terms in the cartesian representation (left), or the contri-
butions from vector and pseudotensor contributions (right).
The same energy scale is used for all panels except the one
for the pseudotensor contribution J(2)J(2).

masses and surface tensions through t1 and t2 terms of
the two-body Skyrme force, see the discussion of Fig. 3 in
Article I. The contribution from central and tensor parts
cancel nearly exactly for T22 for all deformations. As ex-
emplified by T26, the contributions from the central and
tensor forces to the tensor terms have the same sign for
56Ni for all other TIJ parameterizations that have zero
or positive values for CJ

0 and CJ
1 .

In Fig. 6, we decompose the tensor energy in the carte-
sian and in the angular-momentum coupled representa-
tions. Isovector contributions for this N = Z nucleus
are smaller than 20 keV for all deformations. In the left
panels, the contributions corresponding to the symmet-
ric and asymmetric terms in the cartesian representation
are plotted. Both are of the order of a few MeV for T22
and of opposite sign to ensure a total contribution close
to zero. They are also of similar magnitude for T26, but
repulsive in both cases. Results from T24 are interme-
diate between those of T22 and T26. The right panels
show the contributions to the total tensor energy from the
vector and pseudotensor terms in the angular-momentum
coupled representation. The contribution from the pseu-
doscalar term is zero with the symmetries assumed here.
Except for T22, where the vector contribution is zero by
construction, the pseudotensor contribution is two orders
of magnitude smaller than the vector one. We found sim-
ilar results for all other parameterizations with nonzero
CJ1

0 and for all nuclei studied here. This justifies the
common practice of neglecting the pseudotensor terms
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TABLE II: Eigenvalues corresponding to the neutron pf and the g9/2+ orbitals obtained for the single-particle Hamiltonian at

spherical shape in 56Ni (see text).

parameterization ǫf7/2
ǫf5/2

∆ǫf ǫcent
f ǫp3/2

ǫp1/2
∆ǫp ǫcent

p ∆ǫf/∆ǫp ǫcent
f − ǫcent

p ǫg9/2

experiment (±S1n) -16.64 -9.48 1.02 -13.57 -10.25 -9.14 0.37 -9.88 2.75 3.69 –

empirical [37] -16.93 -9.53 1.06 -13.76 -10.36 -8.48 0.63 -9.73 1.68 4.03 –

T22 -16.18 -7.70 1.21 -12.54 -11.21 -9.19 0.67 -10.54 1.80 2.00 -4.26

T26 -15.47 -8.97 0.93 -12.68 -10.98 -9.19 0.60 -10.38 1.56 2.30 -3.56

T44 -15.56 -8.69 0.98 -12.61 -11.09 -9.20 0.63 -10.46 1.56 2.15 -3.75

T62 -15.61 -8.52 1.01 -12.57 -11.22 -9.25 0.66 -10.56 1.54 2.00 -3.89

SLy5 -16.01 -8.03 1.14 -12.59 -11.11 -9.17 0.65 -10.47 1.76 2.12 -4.05

SLy5+T -16.66 -7.09 1.37 -12.56 -11.15 -9.01 0.72 -10.44 1.91 2.12 -4.67

SLy4 -16.17 -7.80 1.20 -12.58 -11.13 -9.14 0.66 -10.47 1.81 2.11 -4.20

SLy4T -15.49 -8.71 0.97 -12.58 -11.20 -9.47 0.57 -10.62 1.69 1.96 -3.54

SLy4Tmin -15.63 -8.72 0.99 -12.67 -11.26 -9.50 0.59 -10.67 1.68 1.98 -3.57

SLy4Tself -15.73 -8.59 1.02 -12.67 -11.29 -9.50 0.60 -10.70 1.70 1.97 -3.71

TZA -16.57 -7.08 1.36 -12.50 -11.33 -9.18 0.72 -10.61 1.90 1.89 -4.65

for the purpose of calculating binding energies in situa-
tions where Galilean invariance is not an issue.

All decompositions of the tensor energy exhibit the
same trend: this energy decreases with deformation,
without exhibiting much structure. This behavior can
be understood rather easily in this N = Z nucleus where
the f7/2− orbitals are filled at sphericity while the f5/2−

ones are empty. This situation makes the tensor interac-
tion maximal. As soon as deformation sets in, this simple
picture is destroyed: the single-particle levels loose their
purity and cross, cf. the upper panel of Fig. 2.

4. Single-particle spectra at sphericity

We give in Table II the eigenvalues of the single-particle

Hamiltonian ĥq, Eq. (18) for neutron orbitals in the pf
shell obtained in calculations of 56Ni imposing spherical
shape. The position of the 1g9/2+ level is also given,
although it is far above the Fermi energy at spherical
shape, as it determines the size of the deformed gap at 28
in the Nilsson diagram through its downsloping jz = 1/2
levels, cf. Fig. 2.

We also give the renormalized spin-orbit splittings

∆ǫℓ =
1

2ℓ+ 1

(

ǫj=ℓ−1/2 − ǫj=ℓ+1/2

)

, (23)

which for a standard modified oscillator potential would
be independent on the quantum numbers of the single-
particle states, the centroids

ǫcent
ℓ =

ℓ+ 1

2ℓ+ 1
ǫj=ℓ+1/2 +

ℓ

2ℓ+ 1
ǫj=ℓ−1/2 , (24)

of spin-orbit partners for the 2p and 1f levels, the ratio

∆ǫf/∆ǫp of the spin-orbit splittings of the 1f and 2p
levels, and the distance of their centroids ǫcent

f − ǫcent
p .

Experimental separation energies from or into low-
lying levels in the odd-A neighbors of 56Ni that have
the characteristics of a single-particle configuration are
given in the first line of Table II. Empirical values for
the single-particle energies are given in the second line.
These quantities are usually compared to the eigenvalues
ǫi of the mean-field hamiltonian, although many factors
make this comparison questionable, see for instance [8]
and Sect. IV. B of Article I. One source of ambiguity
is the coupling of the particle or hole outside the closed
shell to the vibrations of the core. Using the schematic
extended unified model, the authors of [37] attempted
to remove this effect to determine ”bare” values of the
single-particle energies by reverse engineering from the
low-lying excitation spectra of 56Ni and its odd-A neigh-
bors. Although model-dependent, we include these val-
ues here in the second line of Table II to have a rough
estimate of the order of magnitude of the corresponding
corrections. In any event, for an N = Z nucleus such as
56Ni, there is also a contribution from the Wigner energy
to the separation energies [39], which is not considered
in Ref. [37]. Its main effect for a magic nucleus is to
render the gap in the separation energies much larger
than the gap in the spectrum of eigenvalues of the mean
field. Using a schematic model, Chasman [39] estimates
the correction from the Wigner energy to the size of the
N = 28 gap in the empirical spectrum from separation
energies to be larger than 2 MeV.

The results for the parameterizations T22, T26, T44
and T62 are given in the next four lines. By construction,
there is no tensor contribution at sphericity for T22. The
other three interactions share the same isoscalar coupling
constant CJ

0 = 120 MeV fm5, but differ in their isovector



13

one CJ
1 . The presence of a tensor term has a small effect

on the absolute position of the 2p levels, which move
at most by 200 keV, much less than the 1f levels for
which the changes go up to 1.2 MeV. The tensor term
is mainly responsible for a reduction of the spin-orbit
splittings, whereas the centroids of the 2p and 1f levels
are affected to a much smaller extent. A change in the
centroid position cannot be directly related to the tensor
terms since they do not contribute directly to the part
of the mean field which governs it. The modification of
the centroids is a non-linear effect induced by the tensor.
Although small, the net effect is visible, in particular for
the distance between the 1f and 2p centroids that are
pulled into opposite directions.

The shift of the centroids is correlated to the isoscalar
tensor coupling constants (cf. T22 and T44), but unex-
pectedly for a N = Z nucleus, also slightly to the isovec-
tor ones (cf. T26, T44 and T62). The isovector densities
and currents induced by the isospin breaking Coulomb
interaction are small and do not significantly contribute
to mean fields and energies. The differences between the
centroids obtained with T26, T44 and T62 are predom-
inantly a consequence of the readjustment of the entire
energy functional for each strength of the tensor terms.

The larger impact of the tensor terms on the 1f levels
than on the 2p ones is still more apparent when a triv-
ial angular-momentum factor in the spin-orbit splitting
∆ǫℓ is taken out. This result has a geometrical origin
discussed in Fig. 16 of Article I for a different exam-
ple: a zero-range tensor interaction has the largest im-
pact on spin-orbit splittings for those levels that have
the same nodal structure as the ones that dominate the
spin-current J.

As discussed in Article I and exemplified in Fig. 4,
the isoscalar tensor term has the tendency to reduce
the spin-orbit splitting in spin-unsaturated nuclei for the
TIJ parameterizations studied here. To maintain a given
splitting, the spin-orbit coupling constant has to be in-
creased. Thus, the reduction of the spin-orbit splittings
obtained with T44, as compared to those from T22, re-
sults from the partial compensation of the change in ten-
sor and spin-orbit contributions. By contrast, the spin-
orbit splittings obtained with T26, T44 and T62 are fairly
independent on the value of the isovector tensor coupling
constant CJ

1 . The reason is twofold: on the one hand, the
isovector spin-current tensor density is negligibly small
in an N = Z nucleus and all direct isovector contribu-
tions to the spin-orbit field are suppressed. On the other
hand, changing CJ

1 in the fit does not induce a signifi-
cant change of the strength of the spin-orbit interaction
within the protocol of the TIJ interactions.

The values obtained with SLy5 and SLy5+T are listed
in the next two lines of Table II. The negative value cho-
sen for CJ

0 in SLy5+T, is not compensated by a readjust-
ment of the spin-orbit strength and leads to a substan-
tial increase of all spin-orbit splittings. The negligible
changes in the position of the centroids gives an indica-
tion of the order of magnitude of rearrangement effects

FIG. 7: (Color online) Neutron Nilsson single-particle dia-
grams for 56Ni obtained using various families of parameteri-
zations (see text).

from self-consistency.

The results obtained with SLy4, SLy4T, SLy4Tmin,
SLy4Tself and TZA can be found in the last five lines
of Table II. Although the tensor coupling constants of
SLy4T and SLy5+T are similar, cf. Fig. 1, their behav-
ior with respect to the parameterizations from which they
have been constructed is quite different. The spin-orbit
splitting of the 1f levels obtained with SLy5+T is much
larger than with SLy5, while that of SLy4T is smaller
than that of SLy4. The good agreement with experi-
ment obtained with SLy4T is not surprising since 56Ni
is one of the data that has been used to adjust the spin-
orbit and tensor strengths. The origin of the differences
between these interactions is the additional reduction of
the spin-orbit force in SLy4T, to about 2/3 of its origi-
nal value. For 56Ni, the reduced spin-orbit interaction of
SLy4T overcompensates the effect of the tensor interac-
tion. The single-particle spectra obtained with SLy4T,
SLy4Tmin, and SLy4Tself differ slightly, which results
from self-consistency in the calculations and the readjust-
ment of the other coupling constants of the functional.
Since TZA has the same tensor coupling constants as
SLy4T, but an increased spin-orbit interaction, it pre-
dicts too large spin-orbit splittings.

The single-particle spectra from SLy4 and T22, ob-
tained from almost the same fit protocol, are very close
as should be expected. Also, the single-particle spectrum
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obtained with SLy4 lies in between those from SLy5 and
SLy5+T, as could be expected from their tensor coupling
constants, Fig. 1, and the similarities of the respective
fits.

Comparing calculated single-particle energies to em-
pirical ones from [37] and to experimental separation en-
ergies, the fine tuning of the spin-orbit splittings that
constitutes the main difference between the interactions
studied here does not significantly improve the overall
agreement with data. The main deficiency shared by all
parameterizations is that the relative distance between
the centroids of the 1f and 2p levels is nearly 2 MeV
too small, leading to different sequences of the 1f5/2−

and 2p1/2− levels in calculations and data. This result
is consistent with the suspicion raised in Ref. [40] that a
substantial increase of the distance between the centroids
given by SLy4 might be needed to reproduce the shape
coexistence phenomena around 74Kr. However, a more
careful analysis of the physics that connects the single-
particle spectra and the observable separation energies is
needed before a final conclusion can be drawn.

5. Nilsson diagrams

At sphericity, the single-particle spectra obtained with
interactions adjusted using the same protocol exhibit mi-
nor differences, with a splitting of the 1f levels varying
by about 250 keV. Variations are slightly larger when the
tensor term is added perturbatively. The effects of these
differences on the dependence of the single-particle levels
on deformation can be found in Fig. 7. Two TIJ param-
eterizations only are plotted, as the results do not depend
on the isovector coupling constant CJ

1 . Nilsson diagrams
for protons differ mainly by a constant shift due to the
Coulomb interaction.

The most striking insight from Fig. 7 is that chang-
ing the strength of the isoscalar tensor coupling modifies
the slope of the level dependence on deformation, espe-
cially close to sphericity. The impact on deformed shell
gaps depends, however, on how a tensor term has been
introduced.

For refitted parameterizations such as as T22 and T26,
the difference between the position of the 1f7/2− levels
at sphericity is compensated by the change of the slope
of the single-particle levels in such a way that the gap
at β2 = 0.5 has about the same size. A similar result is
obtained for all TIJ and SLyx parameterizations.

In contrast, for interactions with perturbatively added
or rescaled terms, the size of the deformed gap is strongly
modified: it becomes smaller for SLy5+T, and larger
for SLy4Tmin. The origin of the latter difference is the
reduced spin-orbit interaction for SLy4Tmin. With the
same tensor coupling constants as SLy4Tmin, TZA leads
to results similar to those of the TIJ parameterizations.

Similar results and similar observations can be made
are obtained for all other nuclei discussed hereafter.

FIG. 8: (Color online) The single-particle spectra at spher-
ical shape are shown in the upper panel for neutrons (left)
and protons (right) The deformation energy (left) and the
variation of the total tensor energy (right) are plotted on the
lower panels for 56Ni and different Skyrme parameterizations,
as indicated.

6. Deformation energy and its tensor term contribution

Deformation energy curves are plotted in Fig. 8. To
facilitate their correlation with shell structure, the cor-
responding neutron and proton single-particle spectra at
sphericity are given in the upper panels. The total defor-
mation energy is given on the left-hand-side in the lower
panels, whereas the difference between the tensor energy
contribution at a given deformation and at sphericity is
provided on the right-hand-side. This tensor energy con-
tribution decreases with deformation for TIJ parame-
terizations and for SLy5, for which CJ

0 is positive. It
increases for the other parameterizations that have a neg-
ative CJ

0 .

The differences between the energy curves are not di-
rectly linked to the evolution of the tensor energy. They
can, in fact, be related to the shell effects that are seen
in Fig. 7 and, in particular, to the relative size of the
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spherical and prolate deformed N = Z = 28 gaps. A
well-defined spherical minimum and a pronounced shoul-
der at a deformation around β2 = 0.5 are obtained for
SLy4, SLy5 and the TIJ parameterizations. This struc-
ture in the energy curve is at a position qualitatively in
agreement with the properties of a superdeformed rota-
tional band observed in 56Ni [38].

The combined effect of the reduced spherical N = Z =
28 gap and the large deformed gap obtained with SLy4T
has the unphysical consequence that the ground state
corresponds to a superdeformed minimum. This result is
related to a deficiency of SLy4 on which the tensor in-
teraction has no effect. This interaction, indeed, predicts
too small a distance between the centroids of the 1f , 2p
orbitals (see Table II). In such a case, reproducing the
empirical data for the splitting of the 1f levels does not
guarantee a realistic shell structure. In practice, the gap
between the 1f7/2− and 2p3/2− levels becomes too small,
whereas the distance between the 1f7/2− and 1g9/2+ lev-
els is now too large.

The parameterization SLy5+T has the inverse draw-
back: the gap at 28 is too large at sphericity, preventing
the formation of a secondary gap at large deformation.

The deformation energy and the relative change of the
tensor terms obtained with SLy4T (shown) and with
SLy4Tmin (not shown) cannot be distinguished within
the resolution of Fig. 8. This is less obvious than
one might think. The refit that leads from SLy4T to
SLy4Tmin changes the absolute binding energy of 56Ni
by nearly 6 MeV from −469.522 (SLy4T) to −475.480
MeV (SLy4Tmin).

The results obtained with SLy4Tself and TZA confirm
the crucial role of the spin-orbit strength. Both interac-
tions have been adjusted with the same protocol and the
SLy4T values for the tensor coefficients, but SLy4Tself

shares the same spin-orbit strength as SLy4T while it
has been freely varied for TZA. This variation of the spin-
orbit leads to results quite close to those of the TIJ pa-
rameterizations for TZA, in contrast to what is obtained
with SLy4Tself.

7. The freedom of using an energy density functional

As discussed in Sect. III, the fits of tensor couplings
have all been performed assuming spherical symmetry.
Two coupling constants have been fixed in this way, ei-
ther te and to or CJ1

t , t = 0, 1. There remains the free-
dom to choose the CJ2

t coefficients. It has been assumed,
for the interactions TIJ , that there are underlying two-
body central, spin-orbit and tensor forces, cf. Sect. II D.
In this case, there is a one-to-one correspondence be-
tween the CJ1

t coefficients and parameters t1, x1, t2, x2

of the central Skyrme force and parameters te and to of
the tensor force. With this choice, all coupling constants
of the energy functional, CJ2

t , t = 0, 1, or, alternatively,
the CT

t and CF
t coupling are also fixed. As explained in

Sect. II D, other choices can be made. To explore the

TABLE III: Tensor coupling constants of T44 and three ex-
tensions of T44 beyond the spherical symmetry constructed
using the freedom of choice given by an energy functional
(see text). All values are in MeV fm5. Coupling constants
are given for all three representations of the tensor part of
the energy functional, Eqns. (11) and (16). All coupling con-
stants not shown are identical.

T44 T44 II T44 III T44 IV

CJ0
0 -20.994 -60 40 -160

CJ0
1 50.027 0 0 0

CJ1
0 60 60 60 60

CJ1
1 0 0 0 0

CJ2
0 46.806 0 120 -120

CJ2
1 62.433 0 0 0

CT
0 -83.403 -60 -120 0

CT
1 -31.216 0 0 0

CF
0 73.194 120 0 240

CF
1 -62.433 0 0 0

b14 52.187 60 120 0

b15 62.433 0 0 0

b16 -67.813 -60 0 -120

b17 62.433 0 0 0

impact of doing so, we have constructed three variants
of the parameterization T44, listed in Table III. These
consist of setting either CJ2

0 (case II), or CF
0 (case III),

or CT
0 to zero (case IV). Each choice leads to different

values for the coupling constants of the pseudoscalar and
pseudotensor part of the tensor terms. We concentrate
here on the isoscalar part of the functional, since for the
purpose of our study isovector effects are negligible in a
N = Z nucleus.

The total deformation energy and the variation of ten-
sor contributions with respect to their value at spheric-
ity are plotted in Fig. 9 as a function of deformation.
The total tensor energies (bottom left), and the decom-
position into vector and pseudotensor contributions on
the one hand (top), and into symmetric and asymmet-
ric cartesian components on the other hand (middle) are
presented.

As expected from the smallness of the pseudotensor
contribution in Fig. 6, the choice II where the coefficient
CJ2

0 is set to zero does not lead to any sizable difference
with T44. The results for the two other choices are less
obvious. As can be seen on the middle panels of Fig. 9,
the cartesian components of the tensor energy are both
sizable and one could expect that setting one of the two
coefficients of these terms to zero will have a large effect.
One can see in the middle panels of Fig. 9 that both terms
show significant variation with respect to deformation.
The decomposition is even significantly different for T44
and choice II, although leading in both cases to the same
total energy. Self-consistency effects are such that for
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FIG. 9: (Color online) Deformation energy curve (lower
right), tensor energy (lower left), and its decomposition into
symmetric, asymmetric, vector and pseudotensor parts for
56Ni as obtained with the variants of T44 defined in Table III.

the choices III (where Jq,µνJq,νµ has a coefficient equal
to zero) and IV (where Jq,µνJq,µν has a coefficient equal
to zero), the remaining contribution has a variation very
similar to the variation of the total tensor energy of T44.

The way a parameterization is extended beyond
sphericity has a small, but visible, effect on the varia-
tion of the total energy with deformation. Setting the
coefficient of Jq,µνJq,µν equal to zero, (option IV) signif-
icantly softens the energy curve with an oblate shoulder
nearly degenerate with the spherical configuration. The
extension of a parameterization beyond sphericity is not
a trivial choice and the procedure followed for such ex-
tension should always be made transparent. The small
differences seen in a simple nucleus such as 56Ni could
become more dramatic in other nuclei.

D. Doubly-magic nuclei

1. 40Ca

The N = Z = 20 nucleus 40Ca is the heaviest known
doubly-magic nucleus which exhibits oscillator shell clo-
sures. The variation of the total energy, the change of
the contribution to the energy of the tensor terms, and
the single-particle spectra at spherical shape are plotted
in Fig. 10. The configuration of 40Ca is spin-saturated at
sphericity, and the corresponding tensor energy is only
due to small effects as pairing and non-identity of the
single-particle wave functions of spin-orbit partners. Spin
saturation disappears as soon as the nucleus is deformed,
but the filling of single-particle states remains identical

FIG. 10: (Color online) Same caption as Fig. 8, but for 40Ca.
Note that the scale of the total deformation energy differs
from the one of the tensor terms by a factor two.

for protons and neutrons. Thus, the contribution of the
tensor terms to the total binding energy induced by de-
formation is almost purely isoscalar and has the same
sign as the isoscalar coupling constant CJ

0 . The tensor
term is close to zero at sphericity, and increases with de-
formation. As the coupling constant CJ1

0 of the isoscalar
vector part of the tensor terms is the same for T26, T44
and T62, CJ

0 = 120 MeV fm5, these interactions give
nearly identical tensor contributions to the total energy.

Despite this feature, the energy curves corresponding
to T26, T44 and T62, are not identical. One can see
that the softness of the energy curves increases with the
strength of the isovector part of the tensor interaction.
Once again, these changes result from the readjustment
of the coupling constants of all terms of the energy func-
tional when varying CJ

0 and CJ
1 to a sample of data that

includes both N = Z and N 6= Z nuclei. In fact, as for
56Ni discussed in Figs. 3 and 4, most components of the
energy show larger variations between the parameteriza-
tions than the tensor energy. This example illustrates
particularly well the fact that the impact of the tensor
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FIG. 11: (Color online) Same as Fig. 7, but for 40Ca

terms on deformation energies cannot be foreseen from
the sole knowledge of the tensor coupling constants and of
the variation of the degree of spin saturation with defor-
mation. The energy of the shoulder that can be seen at a
β2 value around 0.5 is significantly lowered for the tensor
interactions T44 and T62. This shoulder can be related
to the existence of a superdeformed band in 40Ca [41, 42].

The isoscalar tensor coupling is attractive for SLy5+T
and SLy4T. The energy curve obtained with SLy5+T is
only slightly different from the one calculated with SLy5
around sphericity, but presents a significant lowering of
the energy of the shoulder. The situation is quite dif-
ferent for SLy4T. The energy curve varies in opposite
direction from the tensor energy and is stiffer than that
obtained with SLy4. In particular, the shoulder is ob-
tained at a much larger excitation energy. This clearly
is a consequence of the reduced spin-orbit interaction, as
this feature of SLy4T is shared by SLy4Tself, but not
TZA. The energy of the tensor term is larger for the pa-
rameterization TZA than for SLy4T, although the tensor
coefficients have the same values in both cases. The in-
crease (in absolute value) of the tensor energy is compen-
sated by changes in other terms of the energy functional,
in particular a slight reduction of the spin-orbit term, in
such a way that the energy curves obtained with SLy4
and TZA are nearly undistinguishable.

The qualitatively different deformation dependence of
the tensor energy found for 56Ni and 40Ca is accompa-
nied by systematic differences in the single-particle levels

given in Fig. 11. As 40Ca is spin-saturated, the spec-
trum at sphericity is nearly the same for all parameter-
izations, except SLy4T. The contributions of the tensor
terms are indeed small, although not exactly zero. The
largest differences between the results obtained with the
TIJ parameterizations are those for T22 and T26. They
are related to the slight difference between their coupling
constants and, in particular, to the larger strength of the
spin-orbit of T26 compared to T22, cf. Article I. This
effect of the spin-orbit interaction on the single-particle
levels is more drastic when its strength is explicitly ad-
justed to spin-orbit splittings in this mass region, as il-
lustrated by the comparison between SLy4T and SLy4.

As for 56Ni, Fig. 7, the tensor interaction affects the
slope of the single-particle levels shown in Fig. 11 as a
function of deformation. However, the changes in slopes
for a given parameterization are opposite for both nuclei.
This is related to the difference in the tensor contribu-
tion to the spin-orbit field: it increases with deforma-
tion for 40Ca, while it decreases in 56Ni. The change in
slope at least partly compensates the differences found at
spherical shape when going to deformed ones. As a con-
sequence, the spectra around the Fermi energy at large
deformation are close for refitted parameterizations such
as T22, T26 and TZA. On the contrary, the differences
between the spectra for a perturbative interaction such
as SLy5+T and the original one increases with deforma-
tion. Differences are larger at all deformations for SLy4T
compared to SLy4 and TZA, as a consequence of a per-
turbative modification of the tensor and the spin-orbit
parameterizations.

2. 48Ca

The Z = 20, N = 28 nucleus 48Ca is spin saturated in
protons and unsaturated in neutrons at sphericity. The
variations of the tensor energy and of the total energy
with deformation are given in Fig. 12. The upper panels
show that the four TIJ parameterizations behave very
differently in contrast to the case of 40Ca. The ten-
sor energy is nearly independent of deformation for T44,
whereas it decreases with deformation for T26 and in-
creases for T62. As confirmed by the behaviors of the
T = 0 and T = 1 components of the tensor energy that
are plotted in Fig. 13, the isoscalar contribution to the
tensor energy does not vary much for all TIJ parame-
terizations, whereas the isovector contribution presents
an extremum at sphericity and goes rapidly to zero with
deformation. One can relate the behavior of the ten-
sor energy to the fact that the spin-current density is
the largest for neutrons at sphericity, but nearly zero for
protons. With increasing deformation the proton spin-
current density grows, whereas the neutron one is re-
duced, as can be deduced from the decomposition of the
tensor terms into their nn, pp and np contributions pro-
vided in Fig. 13. Note for T62 that the nn and pp contri-
butions are close to zero at all deformations by construc-
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FIG. 12: (Color online) Same caption as Fig. 8, for 48Ca.
Note that the scale of the total deformation energy differs
from the one of the tensor terms by a factor two.

tion, but this does not result in the proportionality of
T = 0 and T = 1 components with respect to each other
and to the np contribution. In general, the nn and pp
contributions to both T = 0 and T = 1 part are nonzero
and deformation dependent. Similarly, from the (by con-
struction) nearly vanishing np contribution found at all
deformations for T26 it also cannot be concluded that
the T = 0 and T = 1 components are proportional to
each other and the sum of the nn and pp contributions.

For 48Ca, the differences between the deformation en-
ergy curves in Fig. 12 are clearly correlated with the vari-
ations in the isovector tensor energy. The curve is softer
for a repulsive isovector contribution to the tensor energy,
as it is for T26, and stiffer for an attractive isovector con-
tribution, as it is for T62. This counterintuitive outcome
is the consequence of the rapid decrease of the isovec-
tor tensor energy from large values at sphericity to very
small values with deformation, cf. Fig. 13. The results
obtained with the interactions SLy4T and SLy5+T are
plotted in the lower panels of Fig. 12. The isovector ten-
sor term has the same sign for these two interactions as

FIG. 13: (Color online) Decomposition of the total contribu-
tion of the tensor terms to the total energy (lower left) into
its isoscalar (T = 0) and isovector (T = 1) parts (upper and
middle left), and into its nn, pp and np contributions (right
panels) for 48Ca and for the parameterizations T26, T44 and
T62.

for T62 leading also to stiffer energy curves. However, the
magnitude of the effect is smaller, the isovector coupling
constants being smaller.

Compared to all other interactions, but T62, the
SLy4T, SLy4Tmin and SLy4Tself functionals give a larger
Z = 20 gap at the expense of a reduced Z = 28 one.
This is the consequence of the tightly adjusted spin-orbit
splittings of the 1f levels in 40Ca, 48Ca, and 56Ni through
an attractive tensor interaction in conjunction with a re-
duced spin-orbit force. The reduced spin-orbit interac-
tion also switches the ordering of the 1d3/2+ and 2s1/2+

levels below the Z = 20 gap, at variance with empirical
data. Keeping the negative tensor coupling constants of
SLy4T, but allowing for the readjustment of the spin-
orbit strength in TZA brings the level spacings back to
values close to the ones of the original SLy4 interaction.

3. 68Ni

It is usually assumed from its spectrum that 68Ni is
doubly-magic [43–45]. The excitation energy of its first
2+ state is, indeed, large and the B(E2; 0+

gs → 2+
1 ) value

small [46]. However, while the Z = 28 proton shell clo-
sure is clearly visible in the mass systematics along the
N = 40 isotonic chain [47], there is no pronounced dis-
continuity in the masses of Ni isotopes when crossing
N = 40 [47, 48], which hints at a more complex situation.
An alternative explanation of the properties of the first
2+
1 state in 68Ni is based on the impossibility to construct
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FIG. 14: (Color online) Same caption as Fig. 8, but for 68Ni.

the first 2+ state as a simple neutron 1p-1h excitation.
Indeed, the odd-parity pf shell is completely filled and
the 1g9/2+ orbital empty [49, 50] and at least a 2p-2h
excitation is needed to construct a positive-parity state.
The interpretation of 68Ni as a doubly-magic nucleus has
also been questioned by shell model and QRPA calcula-
tions [51]. Let us mention, finally, that the first excited
state of 68Ni is a 0+ level with a small B(E0) value to
the ground state [52], pointing to a possible shape coex-
istence with weak mixing.

The deformation energy curves and the variation of the
tensor energy with deformation are plotted in Fig. 14 for
68Ni. With N = 40 and Z = 28, this nucleus is spin-
saturated for neutrons and spin-unsaturated for protons.

It is instructive to compare 68Ni and 48Ca (Fig. 12).
Both nuclei have, indeed, similar single-particle config-
urations. The 1f7/2− subshell is completely filled for

protons in 68Ni and for neutrons in 48Ca, and both nu-
clei are spin-saturated for the other type of nucleons.
However, the comparison of both nuclei in fact indicates
large differences. The variance can be related to two
factors. First, the degeneracy of the shells that makes
the N = 40 gap for neutrons is much larger than those

FIG. 15: (Color online) Same caption as Fig. 13, but for 68Ni.

that make the Z = 20 gap for protons. Second, the
Z = 20 and N = 40 gaps have different sizes. The lat-
ter is not large enough to suppress pairing correlations,
such that the spin-saturation is broken and the neutron
spin-current density is non-negligible at spherical shape,
in particular for the T26 parameterization predicting the
smallest N = 40 gap. The main consequence is that for
68Ni all contributions to the tensor energy at spherical
shape are nonzero, unless suppressed by their coupling
constant, see Fig. 15. Also, the np component is not
just increasing with deformation but fluctuating, most
obviously for T62, where it is the only sizable non-zero
contribution. By contrast, the rapidly varying nn and
pp contributions for T26 fortuitously add up such that
this parameterization presents the smallest variation of
the tensor energy among the parameterizations with the
same isoscalar coupling constant. The behavior of the
tensor energy is reflected in the total energy curves in
Fig. 14: it creates an inflexion of the energy curve at
β2 ≈ 0.4, which is sufficiently large for T62 to create a
secondary minimum.

The tensor energy varies less with deformation for both
the SLy5 and SLy5+T interactions; therefore, the energy
curves obtained with both of these parameterizations and
with SLy4 are very similar. The gap at N = 40 obtained
with SLy4T is larger, having the size of a major shell
closure. It results in a very stiff energy curve. Such a be-
havior is not directly related to the variation of the ten-
sor energy with deformation, but to the small spin-orbit
strength, as shown by comparing the results of SLy4Tself

and TZA, just like for 40Ca.
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4. 78Ni

Although it has been observed for the first time more
than a decade ago [53], not much is yet known about the
neutron-rich 78Ni besides its existence and its β-decay
half-life [54]. The relatively long half-life and the sys-
tematics of the separation energies to and from N = 50
isotones down to Z = 30 suggests that the N = 50 shell
closure persists for 78Ni [55]. In such a case, 78Ni is spin
non-saturated both in protons at Z = 28 and neutrons at
N = 50. The spin-currents from the unsaturated proton
1g9/2+ and neutron 1f7/2− levels point into the same di-
rection. Their degeneracies differ by only two, and their
nodeless radial wave functions are sufficiently similar that
their contributions to the isovector spin-current density
nearly cancel. This suggests that the isovector tensor
terms cannot play a decisive role in 78Ni, in spite of this
nucleus’ large isospin asymmetry. The isovector decom-
position of the tensor terms for T26, T44 and T62 shown
in Fig. 16 indeed confirms that the T = 1 contribution is
small for all deformations. The T = 0 contribution dom-
inates and is nearly the same for all three parameteriza-
tions, such that the different relative weight of the nn,
np and pp contributions does not play a significant role.
One can, therefore, expect that its energy curves depend
on the tensor parameterization in a way similar to 56Ni.
Figure 17 indicates that this is, indeed, the case for all the
interactions that we have studied. In particular, all inter-
actions predict the behavior of a doubly-magic nucleus.
The TIJ parameterizations with non-zero CJ

0 values lead
to softer energy curves than T22, SLy4 and SLy5, with
an inflexion point around β2 = 0.3, whereas SLy5+T
gives a much stiffer deformation energy curve. The dif-
ference between the total deformation energy curves from
T26, T44 and T62 is even smaller for 78Ni than what was
found for 56Ni. This suggests that the readjustment and
self-consistency effects at its origin for 56Ni are compen-
sated by the asymmetry in 78Ni just in such a way that
the net isospin dependence vanishes for this nucleus.

The parameterizations SLy4T and SLy4Tself give again
results that are qualitatively different from those of the
others: they lead to a very pronounced deformed mini-
mum at an excitation energy around 1 MeV, although the
spherical gaps atN = 50 and Z = 28 are not smaller than
those from T26, for example. This is again a consequence
of the reduced contribution of the spin-orbit interaction
to the deformation energy for these interactions.

5. 100Sn

The proton-rich and probably heaviest bound N = Z
doubly-magic nucleus 100Sn has been observed more than
a decade ago [56, 57]. Up to now, the only spectroscopic
information in the direct vicinity of the nucleus is a 172
keV γ ray observed in 101Sn [58]. It has been tentatively
interpreted as corresponding to the transition between an
excited 7/2+ level to the 5/2+ ground state although the

FIG. 16: (Color online) Same caption as Fig. 13, but for 78Ni.

order of these two levels is not firmly established. In any
case, the distance between these two levels is much lower
than the energy difference between the spherical 1g7/2+

and 2d5/2+ orbitals predicted by all Skyrme parameter-
izations plotted in Fig. 18. The tensor interaction has
some effect on this spacing: it decreases from more than
1 MeV for T22 down to 600 keV for T26. Of course,
the comparison between the energy levels in 101Sn and
the single-particle energies supposes that both are pure
single-particle configurations which is far from being es-
tablished. Similar discrepancies with other parameteri-
zations of the self-consistent mean field were reported in
Ref. [58]. From this, however, one cannot safely draw the
conclusion that T26 is the most realistic among the pa-
rameterizations studied here. The distance between the
1g7/2+ and 2d5/2+ levels depends on the balance between
the distance of the centroids of the 1g and 2d levels as
well as on their respective spin-orbit splittings, none of
which can be expected to be described well throughout
the chart of nuclei for any of the current parameteriza-
tions of the Skyrme EDF, see Article I and [12].

The variation of the deformation energy and of the
energy contribution of the tensor terms with quadrupole
deformation for 100Sn are presented in Fig. 18. For all
parameterizations, the results are very similar to those
obtained for 56Ni, Fig. 8, and 78Ni, Fig. 17. The main
difference is that the structure appearing at moderate
deformation in the total deformation energy surface is
less pronounced and located at higher excitation energies.
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FIG. 17: (Color online) Same caption as Fig. 8, for 78Ni.

6. 132Sn and 208Pb

The results obtained for the two heavy doubly-magic
nuclei 132Sn and 208Pb are presented in Figs. 19 and 20.
All neutron single-particle spectra exhibit the usual prob-
lem of all mean-field interactions that the 1h11/2 level in
132Sn is not intruding the gds shell [2], as suggested by
empirical data. The overall behavior of the energy curves
below 8 MeV is very similar for most interactions. The
stiffness of the deformation energy is marginally mod-
ified by the tensor interaction and much less than one
might have expected from the variation of the single-
particle spectra. The TIJ interactions with CJ

0 coeffi-
cients different from zero give slightly softer deformation
energy curves than T22 or SLy4. However, the depen-
dence of the relative tensor energy on the value of the
isovector coupling constant CJ1

1 is very small for all de-
formations for the same reason as for 78Ni, in spite of
the large asymmetry of both nuclei. The reduction of
the spin-orbit strength for SLy4T and SLy4Tself leads to
a prolate shoulder at about 10 MeV excitation energy.
As already found for lighter nuclei, the variation of the

FIG. 18: (Color online) Same caption as Fig. 8, but for 100Sn.

tensor energy as a function of deformation can be large,
up to 8 MeV in 132Sn and 4 MeV in 208Pb for the rather
small range of deformations covered in Figs. 19 and 20.
This significant variation is, to a large extent, absorbed
by the rearrangement of the other terms of the Skyrme
functional, and it does not affect significantly the total
energy curves. The same mechanism that suppresses the
isovector tensor terms for 78Ni is also at play in 132Sn and
208Pb; hence, the variation of the tensor and total energy
with deformation of both nuclei is mainly correlated with
the isoscalar tensor coupling constant CJ

0 .

E. Selected Zr isotopes

The Zr, Z = 40, isotopic chain exhibits a rich spec-
troscopy, the neutron-deficient and neutron-rich isotopes
being very deformed and the stable ones being spheri-
cal [59]. Self-consistent mean-field methods experience
large difficulties to reproduce these very rapid variations
of shapes in detail [21, 60, 61].
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FIG. 19: (Color online) Same caption as Fig. 8, but for 132Sn.

1. 90Zr

The deformation energy and variation of the tensor
contribution with quadrupole deformation for 90Zr are
given in Fig. 21. There is a very close similarity be-
tween the results obtained for 90Zr and those for 48Ca,
see Fig. 12. In both cases, protons are spin-saturated
at sphericity whereas neutrons are non-saturated as they
fully occupy the lowest shell of a pair of spin-orbit part-
ners.

2. 80Zr

The situation is different for the N = Z = 40 isotope
80Zr. In spite of its double subshell closure, the sparse
available spectroscopic data suggest that 80Zr has a large
quadrupole deformation with a β2 value around 0.4. A
rotational band built on the ground state has been ob-
served up to a spin of 10~ [62–64], although it appears to
be slightly distorted at low spin. The large deformation
of states in 80Zr is also supported by the observation of

FIG. 20: (Color online) Same caption as Fig. 8, but for 208Pb.

strongly-coupled rotational bands built on several Nilsson
states in adjacent 79Y [65] and 81Zr [66]. In the absence
of information on the transition matrix elements at the
bottom of the band in 80Zr, however, it is not ruled out
that spherical and deformed configurations might coex-
ist in this nucleus and are strongly mixed in the ground
state.

The deformation energy curves can be seen in Fig. 22.
Protons and neutrons are spin-saturated at sphericity.
As a consequence, the predicted properties of this nu-
cleus present similarities with those of 40Ca: the energy
of the tensor terms obtained using the T26, T44 and T62
interactions is very similar as only the isoscalar part of
the tensor terms gives a sizable contribution. The total
deformation energy, however, does exhibit a weak depen-
dence on the value of CJ1

1 . Also, comparing T22 and the
other TIJ interactions, the variation of the tensor terms
with deformation is in opposite direction to that of the
total energy. Both results illustrate the importance of
the changes induced in all terms of the functional by the
fitting procedure.

The situation is different for interactions obtained by
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FIG. 21: (Color online) Same caption as Fig. 8, but for 90Zr.

a perturbative procedure. In this case, the addition of
a tensor term to an existing parameterization leads to
more drastic changes. This is illustrated by the compar-
ison between the energy curves obtained with SLy5 and
SLy5+T. For the latter, the deformed minimum is pulled
down and becomes degenerate with the spherical config-
uration. The situation is opposite for SLy4 and SLy4T.
The large gap obtained with SLy4T for Z = N = 40
has a dramatic effect on the energy curve, which shows
a sharp spherical minimum. The large reduction of the
spin-orbit strength is making this nucleus doubly-magic
and pushes the deformed minimum to a very high en-
ergy, although the tensor interaction for SLy4T is more
attractive for deformed configurations. This effect is cor-
rected for by TZA. However, none of the parameteriza-
tions gives a deformed ground state, a deficiency shared
by many modern Skyrme interactions [21].

The decomposition of the energy into its central and
spin-orbit+tensor components is given in Fig. 23 for the
interactions T22, T24 and T26, and Fig. 24 for SLy4,
SLy4Tmin, SLy5 and SLy5+T. They confirm the result
found for 56Ni, the topography of the energy curves re-

FIG. 22: (Color online) Same caption as Fig. 8, but for 80Zr.

sult from subtle cancellations between the bulk contri-
butions and the terms containing gradients. Again, the
comparison of different parameterizations indicates that
the readjustment of the parameters counteracts the self-
consistency effects. The results obtained using varia-
tional interactions are qualitatively very similar. On the
contrary, all components of the energy calculated with
perturbative interactions are significantly different from
those of the original interaction. A major qualitative dif-
ference with 56Ni is that the bulk terms give coexisting
near-degenerate spherical and deformed minima in 80Zr,
and that the compensation between the gradient, spin-
orbit and tensor terms can tip the balance in one or the
other direction. A weak spin-orbit strength, such as for
the SLy4T interaction, now has the effect of favoring the
spherical minimum much too strongly, pushing the de-
formed minimum very high in energy.
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FIG. 23: (Color online) Same caption as Fig. 3, for 80Zr.

3. 96Zr

The 96Zr isotope combines spherical sub-shell closures
at N = 56 and Z = 40. Its low-energy spectrum exhibits
several unusual features. The systematics of masses in its
immediate vicinity, a first 2+ level with a large excitation
energy and one of the smallest B(E2) values known in
heavy nuclei are all consistent with the expectation that
96Zr is a rigid spherical nucleus. Other observables indi-
cate the fragility of both shells. The B(E3) value of the
3−1 → 0+

1 transition is among the strongest known for a
vibrational nucleus [67, 68], the charge radius is enhanced
compared to the droplet-model trend [69], thereby point-
ing to substantial ground-state correlations, and the g

FIG. 24: (Color online) Same caption as Fig. 4, for 80Zr,
Z = N = 40.

factors of the 2+
1 and 3−1 hint at a complex superposition

of several neutron and proton excitations across sub-shell
closures [70]. It also shares with 90Zr and 98Zr the rare
feature to have a low-lying 0+ state as a first excited
state [71]. As for many of the light doubly-magic nuclei
studied above, this 0+ state is interpreted as a deformed
state resulting from the simultaneous 2p-2h excitation of
protons and neutrons across the respective gaps [72].

The single-particle spectra at spherical shape and the
energy curves of 96Zr are presented in Fig 25. As in 90Zr,
the neutrons are spin-unsaturated and the protons spin-
saturated. However, in this case, two levels contribute
to the neutron spin-current density at sphericity, 1g9/2+

and 2d5/2+ ; hence, this density is larger than in 90Zr.
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FIG. 25: (Color online) Same caption as Fig. 8, for 96Zr.

Thanks to that, the differences between the interactions
are amplified. In particular, the contribution from the
isovector tensor terms might become very large as can be
seen in Fig. 26, and drastically change the distance and
even ordering of the single-particle levels; see Fig. 25.
Compared to T22, T26 and T44, the parameterization
T62 gives much larger N = 56 and Z = 40 gaps, and
also pushes up the 2d3/2+ and 1g7/2+ neutron levels, both
located above the Fermi energy. The SLy5+T interaction
has the same tendency, but in a less pronounced way. At
least one of the tensor coupling constants is negative for
both interactions.

The deformed minima obtained with the T26 and SLy5
interactions are at variance with data, as is the very stiff
energy surface obtained with T62.

4. 100Zr

A large set of experimental data (charge radii [69],
rotational bands [73] and B(E2) values [74]) demon-
strate that 100Zr is located in a region of deformed nu-

FIG. 26: (Color online) Same caption as Fig. 13, but for 96Zr.

clei. An excited band built on a 0+ state coexisting with
the ground-state band [73], and the large E0 transition
strength between the 0+ states [75] indicate the coex-
istence of shapes with different deformations, the state
with the largest deformation being the ground state.

The single-particle spectra at spherical shape, the de-
formation energy curve and the variation of the tensor
energy are plotted against quadrupole deformation in
Fig. 27. The overall behavior of the tensor energy shows
many similarities with 96Zr. The results obtained with
the T44 and T62 parameterizations indicate, however, a
larger contribution from the isovector tensor terms. The
four additional neutrons shift the neutron Fermi energy
into a region of large level density above the N = 56 sub-
shell closure. The positions of the 2d3/2+ and 2g7/2+ are
very much dependent on the sign and size of the isovec-
tor coupling constant CJ

1 . For a positive value as in T26,
the 2d3/2+ level is close to the Fermi level and is occupied
in such a way that it partially cancels the contribution
from the 2d5/2+ orbital. The isovector tensor terms are
in this case strongly reduced. In contrast, for a nega-
tive CJ

1 coefficient as in T62, the 2d3/2+ level is pushed
up and crosses the 1h11/2− level, increasing the neutron
spin-current density. Results obtained with the SLy5+T
interaction, for which CJ

1 is also negative, are similar, al-
though less pronounced. For even larger negative values
of the tensor coupling constants, this feedback mecha-
nism will ultimately generate an abnormal level ordering
for certain mid-shell nuclei, cf. the appendix B of Ar-
ticle I. For SLy4T and SLy4Tself, this feedback mecha-
nism is suppressed by the reduced spin-orbit interaction,
whereas for TZA, it is present.

Most total deformation energy curves in Fig. 27 ex-
hibit spherical, prolate and oblate minima. The inclusion
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FIG. 27: (Color online) Same caption as Fig. 8, but for 100Zr,
Z = 40, N = 60.

of beyond mean-field correlations should favor the pro-
late minima and create a 0+ excitation exhibiting some
amount of configuration mixing. Such results are con-
sistent with experiment. The spherical minimum is too
much below the deformed one to expect that additional
correlations from the projection of J = 0 states will make
100Zr deformed in its ground state. For T62, the defor-
mation energy curve looks like that of a doubly-magic
nucleus. For SLy4T and SLy4Tself, it is the reduced
spin-orbit interaction that reinforces the proton Z = 40
shell closure . The prolate minimum becomes a shoulder
around 5 MeV, leading to the coexistence of spherical
and oblate minima.

5. 110Zr

The only experimental information available about
the very neutron-rich 110Zr is that it is a bound nu-
cleus [76]. It presents the particularity to combine two
spin-saturated oscillator shells, Z = 40 and N = 70.

FIG. 28: (Color online) Same caption as Fig. 8, for 110Zr,
Z = 40, N = 70.

The corresponding gaps are still large for parameteriza-
tions like SLy4T and SLy4Tself with a reduced spin-orbit
strength and 110Zr behaves like a doubly-magic nucleus.
For all other parameterizations, but T62, weak sub-shell
closures remain at both these nucleon numbers. The gaps
are too small to enforce a rigid spherical shape, but suf-
ficient to prevent the existence of a clear-cut unique de-
formed minimum to describe the ground-state. Instead,
all interactions, but SLy4T, SLy4Tself and T62, predict
a complicated pattern of three coexisting spherical, pro-
late and oblate structures. For T62, there is no prolate
minimum, and the spherical configuration is favored be-
cause of the semi-magic character of this nucleus with a
large Z = 40 shell closure. For SLy4T and SLy4Tself,
there is a single, very sharp spherical minimum typical
of a doubly-magic character.
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FIG. 29: (Color online) Same caption as Fig. 8, for 120Sn,
Z = 50, N = 70. All panels share the same energy scale.

F. Heavy semi-magic nuclei

Let us conclude our survey with two selected heavy
semi-magic nuclei.

1. 120Sn

The stable semi-magic 120Sn is the lightest of heavy
tin isotopes for which no coexisting deformed rotational
band at low excitation energy has been observed [77].
The neutron number N = 70 of 120Sn corresponds to a
magic number for neutrons in a pure harmonic oscillator
picture. This simple picture is destroyed by the spin-orbit
interaction which pushes the 1h11/2− across the N = 70
gap, creating a shell closure at N = 82. In fact, data
suggest that this oscillator shell does not survive even
as a subshell closure, as the empirical 11/2− intruder
level is below the 3/2+ level and degenerate with the
1/2+ state in 132Sn. As already mentioned above, it is
a well-known problem of virtually all energy functionals

FIG. 30: (Color online) Proton and neutron Nilsson diagrams
for 120Sn obtained with the parameterizations as indicated.
Solid lines denote levels of positive parity, dotted lines levels
of negative parity, and the red dashed lines denote the Fermi
energy.

that the 1h11/2− intruder level is predicted to lie slightly
above the gds shell [2]. This deficiency was related in
Fig. 17 of Article I to a too high position of the centroid
of the 1h levels.

The energy surfaces obtained with the TIJ interac-
tions are presented on the left-hand side of Fig. 29, the
Nilsson diagrams for four selected parameterizations in
Fig. 30. The neutron contribution to the tensor energy
is small at sphericity, as the neutrons are predicted to
be spin saturated, see Fig. 30, at variance with experi-
ment. As soon as deformation sets in, the tensor energy
increases for the four TIJ parameterizations. However,
the total energy curves are much closer than one would
expect from the difference between the tensor energies.
The most significant difference is obtained for deforma-
tions between the spherical minimum and the prolate
shoulder.

The energy curves calculated with the SLy4, SLy5 and
SLy5+T interactions are nearly identical, except for a
small lowering of the prolate shoulder for the latter.

The situation is quite different for SLy4T. As a conse-
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FIG. 31: (Color online) Same caption as Fig. 10, but for
186Pb, Z = 82, N = 104.

quence of its weak spin-orbit strength, the neutron in-
truder level is halfway in the gap between the major
shells. The energy gap at N = 70 remains very large
and significantly reduces the neutron level density around
the Fermi energy for deformations up to β2 values around
0.1. The tensor energy decreases with deformation, but
not sufficiently to compensate the effect of the decrease
of the spin-orbit strength. The net effect on the energy
curve is that it is much stiffer than with the original SLy4
parameters, artificially making 120Sn a doubly-magic nu-
cleus similar to 132Sn.

2. 186Pb

The heavy, neutron-deficient N = 104, Z = 82 Pb iso-
tope, 186Pb, exhibits a triple shape coexistence of spher-
ical, prolate and oblate shapes, with the unique feature
that its two lowest excited levels are 0+ states [78, 79].
The deformation energy curves obtained with all interac-
tions tested here are plotted in Fig. 31. They are compat-

ible with the experimental data and present a spherical
minimum, and excited oblate, prolate, and often also su-
perdeformed minima, in most cases all separated by small
barriers.

The tensor energy and the impact of the tensor terms
on the total energy are similar to those found for
120Sn. The differences between the TIJ interactions are
the largest between the minima or shoulders; SLy5+T
slightly moves the excitation energies of excited minima
compared to SLy5, and the deformation energy curves
from SLy4T and SLy4Tself are stiffer than the others,
at least for prolate deformations. The reduced spin-
orbit strength for SLy4T and SLy4Tself pulls the neutron
1i13/2+ intruder back towards the N = 126 gap. This is
inconsistent with the existence of a very low-lying iso-
meric 13/2+ states located at a few tens of keV excita-
tion energy in surrounding odd-A Pb isotopes. α-decay
hindrance factors suggest indeed that this state is well
described by a neutron in the 1i13/2+ level coupled to a
spherical core [80].

Nuclei in this mass region are less affected by the tensor
terms, as hinted already in Article I by the analysis of the
spin-current density at spherical shape in the Pb isotopic
chain. Still, the tensor terms modify the balance between
the excitation energy of the coexisting minima. As the
relative position of the minima is sensitive to all terms of
the EDF, this quantity cannot be used to safely validate
the tensor coupling constants.

V. SUMMARY AND CONCLUSIONS

We have studied the impact of tensor terms in the
Skyrme energy density functional on deformation prop-
erties of magic and semi-magic nuclei. This work is
a continuation of a previous study limited to spherical
symmetry, as published in Article I [6]. The study has
been focussed on a representative sample of parameteri-
zations introduced in Article I, which covers a wide range
of values for the isoscalar and isovector tensor coupling
constants and allow to disentangle their respective role.
These parameterizations are adjusted with a fit protocol
very similar to that of the successful SLyx parameteriza-
tions [13, 14]. We also considered two other recent fam-
ilies of energy functionals also based on the SLyx ones,
but constructed following very different strategies. For
the parameterization SLy5+T [5] a tensor force was per-
turbatively added to SLy5 without any readjustment of
the other parameters. For SLy4T [8], the tensor and spin-
orbit coupling constants were fixed without any read-
justment of the other parameters of SLy4. The related
parameterizations SLy4Tmin [8] and SLy4Tself and TZA
introduced here allow to disentangle the origin of the dif-
ferent results obtained with SLy4T and the TIJs as being
due to the perturbative fit, the change in the spin-orbit
strength, or the choice of tensor coupling constants.

A first result that we have obtained concerns the order
of magnitude of the different components of the tensor
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term. In spherical coordinates, it can be decomposed
in vector and pseudotensor contributions. For all stud-
ied parameterizations for which the coefficients of both
terms have the same order of magnitude, the pseudoten-
sor contribution is at least one order of magnitude lower
than the vector one. This justifies the common practice
of neglecting the pseudovector contribution to the energy.

The shell effects induced by the tensor interaction fluc-
tuate as a function of the filling of single-particle orbits.
This effect has motivated the introduction of the tensor
force to explain the evolution of the shell structure of
spherical nuclei along isotopic lines. Inevitably, it leads
also to a pattern for the size and deformation dependence
of the contribution of the tensor terms to the total energy
which depends on the fillings of orbitals:

(i) For doubly spin-saturated nuclei at sphericity, such
as 40Ca and 80Zr, the tensor energy is close to zero
at spherical shape, and increases in absolute value
with deformation.

(ii) For doubly spin-unsaturated doubly-magic nuclei
such as 56Ni, 78Ni, 100Sn, 132Sn and 208Pb, the ab-
solute value of the tensor energy is the largest at
sphericity, and decreases with deformation.

(iii) For doubly spin-unsaturated doubly-magic N = Z
nuclei like 56Ni and 100Sn, the tensor energy is ob-
viously dominated by the isoscalar part of the ten-
sor interaction. The same conclusion holds, how-
ever, also for the N 6= Z nuclei 78Ni, 132Sn and
208Pb, in spite of their large asymmetry N − Z.
The reason for that is that the proton and neu-
tron spin-currents densities are very similar in size,
sign and spatial distribution in these nuclei; hence,
they nearly cancel each others’ contribution to the
isovector spin-current at all deformations.

(iv) The isovector tensor contribution to the energy
plays a significant role only for doubly-magic nuclei
that combine a spin-saturated configuration for one
nucleon species with a spin-unsaturated configura-
tion for the other, such as in 48Ca, 68Ni, and 90Zr.

(v) The behavior of nuclei without large shell or sub-
shell closures for at least one nucleon species does
not follow simple rules. These nuclei are most sen-
sitive to the values of the tensor coupling constants,
at least within the sample of nuclei studied here. In
nuclei with a large density of single-particle levels
around the Fermi surface, there are highly nonlin-
ear feedback effects at play. For large absolute val-
ues of their coupling constants, the tensor terms re-
duce or amplify themselves through the reordering
of levels around the Fermi energy, as exemplified
by 96Zr and 100Zr.

Self-consistency is implemented at two different levels in
the method that we have used: in the fitting procedure
of the interaction and in the solution of the mean-field
equations.

(i) The perturbative addition of only a tensor term,
like for SLy5+T, to an existing parameterization
will modify all contributions to the mean fields and
the energy.

(ii) The self-consistency of the mean-field induces a re-
arrangement of the single-particle wave functions,
and consequently of all densities affecting at the
end all observables. This effect is exemplified by
the comparison between the results obtained with
SLy5 and SLy5+T, which share all coupling con-
stants except those of the tensor terms.

(iii) Using a protocol mainly based on infinite nuclear
matter properties, binding energies and charge
radii, as the Saclay-Lyon protocol [13, 14], the
changes in the coupling constants due to the self-
consistency of fits tend to counteract the self-
consistency in the mean field. This is exemplified
by the comparison between the results obtained
with SLy4, SLy5 and SLy5+T. For most nuclei
studied here and for most quantities not directly
affected by the tensor terms, the differences be-
tween the predictions of the first two are on a much
smaller scale than the differences between the latter
two. A perturbative modification of a well-adjusted
parameterization might spoil its predictive power in
unexpected ways. Our results confirm the suspicion
of the authors of the perturbatively constructed
SLy5+T [5], who indeed intended their interaction
as a tool for explorative studies only, and state that
”an ambitious refitting program [. . . ] should be
[. . . ] undertaken” for more detailed studies.

(iv) Self-consistency of the fits and/or the calculations
has the consequence that the total deformation en-
ergy obtained with different interactions varies in
most cases on a much smaller scale than the ten-
sor contributions. In some cases such as 80Zr, they
even might go into opposite directions.

(v) The tensor and spin-orbit contributions to the total
energy and to the spin-orbit fields are tightly inter-
woven. Constraining both too tightly in a small
region of the nuclear chart might be misleading
when aiming at a universal functional. This is ex-
emplified by SLy4T with its spin-orbit and tensor
coupling constants fitted very carefully to suitably
chosen spin-orbit splittings in 40Ca, 48Ca and 56Ni.
The failure of SLy4T to extrapolate well clearly
points to missing physics, either in the form of miss-
ing terms in the functional or missing correlations.

(vi) The strong reduction of the spin-orbit strength for
SLy4T improves the description of spin-orbit split-
tings in light nuclei, but amplifies the problems
from the wrong positioning of centroids. Also,
the spin-orbit splittings in heavy nuclei are much
too small. The strong reduction of the spin-orbit
strength to about 2/3 its original value is specific to
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the SLy4-based interaction constructed in [8]. For
their SkP and SkO based fits, the reduction is much
more moderate.

The size and deformation dependence of the tensor en-
ergy is correlated with the impact of the tensor terms on
single-particle spectra. In Article I, we analyzed how the
tensor terms affect the position and relative distance of
single-particle energies for spherical shapes. Concerning
the dependence of Nilsson diagrams on the tensor force,
the following can be stated:

(i) Tensor terms modify the slope of the levels in the
Nilsson diagram. For the magic nuclei studied here
this happens in particular around sphericity, where
the tensor contribution to the spin-orbit field Wq,µν

often changes rapidly with deformation.

(ii) When comparing interactions with different values
of the tensor coupling constants that are otherwise
completely refitted, the change in slope compen-
sates at large deformations to a large extent the
differences between single-particle spectra found at
spherical shape. For those interactions, the de-
formed single-particle spectra around the Fermi en-
ergy are often nearly identical in spite of the differ-
ent tensor interactions. In such fit protocol, the
coupling constants of the tensor terms control the
balance between spherical and deformed shell gaps.

(iii) In perturbative fits, in particular those where more

than one term is rescaled, deformed shell structure
is affected as well.

It can be expected that these finding are to a large ex-
tent independent of remaining deficiencies of the central
and spin-orbit interactions, and will be of great value
for the construction of future, improved energy function-
als. We will address the question of how the surface and
surface symmetry energy coefficients of the interactions
change as a function of the coupling constants of the ten-
sor terms, and how this correlates with energy at large
deformation in future work. A study of the so-called
”time-odd terms” in the energy functional that originate
from a tensor force is underway as well. A point of spe-
cial interest will be the analysis of potential finite-size
instabilities using the technique of Ref. [81, 82].
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and F. R. Xu, Phys. Lett. B 28, 675 (2009).

[26] C. L. Bai, H. Q. Zhang, X. Z. Zhang, F. R. Xu, H.
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T. Faestermann, R. Gernhäuser, H. Gilg, F. Heine,
J. Homolka, P. Kienle, H. J. Körner, H. Geissel, G.
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