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a b s t r a c t

In this paper, we characterize the morphology of the disk-integrated phase functions of satellites and
rings around the giant planets of our solar system. We find that the shape of the phase function is
accurately represented by a logarithmic model [Bobrov, M.S., 1970. Physical properties of Saturn’s rings.
In: Dollfus, A. (Ed.), Surfaces and Interiors of Planets and Satellites. Academic, New York, pp. 376–461].
For practical purposes, we also parametrize the phase curves by a linear-exponential model
[Kaasalainen, S., Muinonen, K., Piironen, J., 2001. Comparative study on opposition effect of icy solar
system objects. Journal of Quantitative Spectroscopy and Radiative Transfer 70, 529–543] and a simple
linear-by-parts model [Lumme, K., Irvine, W.M., 1976. Photometry of Saturn’s rings. Astronomical
Journal 81, 865–893], which provides three morphological parameters: the amplitude A and the half-
width at half-maximum (HWHM) of the opposition surge, and the slope S of the linear part of the phase
function at larger phase angles.

Our analysis demonstrates that all of these morphological parameters are correlated with the single-
scattering albedos of the surfaces.

By taking more accurately into consideration the finite angular size of the Sun, we find that the
Galilean, Saturnian, Uranian and Neptunian satellites have similar HWHMs (t0:5!), whereas they have
a wide range of amplitudes A. The Moon has the largest HWHM ("2!). We interpret that as a
consequence of the ‘‘solar size bias’’, via the finite angular size of the Sunwhich varies dramatically from
the Earth to Neptune. By applying a new method that attempts to morphologically deconvolve the
phase function to the solar angular size, we find that icy and young surfaces, with active resurfacing,
have the smallest values of A and HWHM, whereas dark objects (and perhaps older surfaces) such as the
Moon, Nereid and Saturn’s C ring have the largest A and HWHM.

Comparison between multiple objects also shows that solar system objects belonging to the same
planet have comparable opposition surges. This can be interpreted as a ‘‘planetary environmental
effect’’ that acts to locally modify the regolith and the surface properties of objects which are in the
same environment.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The opposition effect is a nonlinear increase of brightness
when the phase angle a (the angle between the source of light and
the observer as seen from the body) decreases to zero. This effect
was seen for the first time in Saturn’s rings by Seeliger (1884) and
Müller (1885). Now, this photometric effect has been observed on
many surfaces in the solar system: first on satellites of the giant
planets (Helfenstein et al., 1997; Kulyk, 2008); second on
asteroids, (Harris et al., 1989a, b; Belskaya and Shevchenko,
2000) and Kuiper belt objects (Belskaya et al., 2008; Rosenbush

et al., 2002; Schaefer et al., 2009); and finally on various surfaces
on Earth (Verbiscer and Veverka, 1990; Hapke et al., 1996) and for
minerals in the laboratory (Shkuratov et al., 1999; Kaasalainen,
2003). The opposition effect on bodies in the solar system has
supplied interesting constraints about the regolith and state of the
surfaces (Helfenstein et al., 1997; Mishchenko et al., 2006).
Indeed, the opposition effect is now thought to be the combined
effect of coherent backscatter (at very small phase angles), which
is a constructive interference between photons (in a medium of
grains with sizes near the wavelength of light), and shadow hiding
(at larger phase angles), which involves shadows cast by the
particles themselves (Helfenstein et al., 1997).

By parametrizing the morphology of the phase functions for
a"0–20!, some numerical models have derived physical proper-
ties of the medium in terms of regoliths (Mishchenko and
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Dlugach, 1992a; Shkuratov et al., 1999) and the state of the
macroscopic surface (Hapke, 1986, 2002; Shkuratov et al., 1999).
However, such characterization of the phase function morphology
is restricted by the angular resolution and the phase angle range
of the observed phase function. Moreover, some effects (such as
the finite size of the Sun and the nature of the soil), which are not
yet taken rigorously into account by the most recent models, can
play important roles in a comparative study.

For these reasons, it seemed important to test the behavior of
the morphology of the phase function before using any physical
model.

The use of a simple morphological model is generally not
adapted to derive the physical properties of the studied medium.
But for the data set presented here, only the disk-integrated
brightness I=F and the phase angle a are available; the
corresponding angles of incidence (i) and angles of emission (!)
are not given, so we cannot use sophisticated analytical models
for further investigations (Hapke, 1986, 2002; Shkuratov et al.,
1999), which need the brightness I=F and the three viewing
geometry parameters a, m and m0 (m and m0 are the cosines of !
and i, respectively).

However, the theories developed for the coherent-backscatter-
ing and the shadow-hiding effects deduce their properties by
parameterizing the opposition phase curve (Mishchenko and
Dlugach, 1992a, b; Mishchenko, 1992; Shkuratov et al., 1999;
Hapke, 1986, 2002). Thus it is possible to connect the morpho-
logical parameters A, HWHM and S with some physical character-
istics of the medium derived from these models.

The amplitude A of the opposition peak is generally known to
express the effects of coherent backscattering. According to
Shkuratov et al. (1999) and Nelson et al. (2000), A is a function
of grain size in such way that A decreases with increasing grain
size (we refer to grains as the smallest scale of the surface
compared to the wavelength and the virtual entities implied in
the coherent-backscatter effect, as microscopic roughness). This
anti-correlation finds a natural explanation in the fact that for a
macroscopic surface, large irregularities with respect to the
wavelength create less coherent effects than irregularities with
sizes comparable to the wavelength.

Mishchenko and Dlugach (1992b) and Mishchenko (1992)
emphasize that A is linked to the intensity of the background Ib
(defined as a morphological parameter of the linear-exponential
function of Kaasalainen et al., 2001), which is a decreasing
function of increasing absorption (Lumme et al., 1990); thus A
must increase with increasing absorption or decreasing albedo
$0. This was confirmed by the laboratory measurements of
Kaasalainen (2003). Indeed, Kaasalainen (2003) remarked that the
opposition surge becomes stronger and narrower when irregula-
rities are small and that the opposition surge decreases with
increasing sample albedo (although some previous studies had
reached the opposite conclusion, see Psarev et al., 2007).

The half-width at half-maximum, HWHM, is also associated
with the coherent-backscatter effect. It has been related to the
grain size, index of refraction, and packing density of regolith by
previous studies (Mishchenko, 1992; Mishchenko and Dlugach,
1992a; Hapke, 2002). The variation of HWHM with these three
physical parameters is complex; see Fig. 9 of Mishchenko (1993):
HWHM reached its maximum for an effective grain size near l=2
and increases when the regolith grains’ filling factor f increases.
For large values of f, the maximum of HWHM occurs for a larger
grain size.

However, several studies (Helfenstein et al., 1997; Nelson et al.,
2000; Hapke, 2002) defined two HWHM parameters: for the
Hapke (2002) model, the coherent-backscatter HWHM (hc), which
is defined like that in the model of Mishchenko (1992), and the
shadow-hiding parameter hs. Applying this model to Saturn’s

rings, French et al. (2007) found that the coherent-backscatter
peak is about 10 times narrower than the shadow-hiding peak,
but neither hc nor hs equals the morphological width of the peak
HWHM. This reinforces the idea that a coupling of the two
opposition effect mechanisms at small phase angles could be
responsible for the observed surge width.

Since the efficient regime of the shadow hiding is 0–401
(Buratti and Veverka, 1985; Helfenstein et al., 1997; Stankevich
et al., 1999) and that of the coherent backscattering does not
exceed several degrees (Helfenstein et al., 1997), the slope of the
linear part S can be regarded as the only parameter that solely
mirrors the shadow hiding. The slope is intrinsically negative
since the phase function decreases with increasing phase angle in
the backscattering direction, but we will discuss here the absolute
values of S. The slope depends on the particle filling factor D,
which relates to the porosity of the regolith of a satellite and the
ratio between the particle size and the physical thickness of the
ring for a planetary ring (Irvine, 1966; Stankevich et al., 1999;
Kawata and Irvine, 1974). For a satellite, by ‘‘particles’’ we mean
the macroscopic scales of the surface, which are implied in the
shadow-hiding effect.

In the shadowing model of Irvine (1966) and Kawata and Irvine
(1974) (which computes the effects of shadows for a single size of
particles), the smaller the volume density D, the shallower the
absolute slope S of the phase function between 31 and 61 (see
Fig. 4 of Kawata and Irvine, 1974). By contrast, when the absolute
slope is steep, the particle filling factor is higher and will
contribute to a broad and large peak, which will be regarded as
a steep linear part.

In a shadow-hiding model that considers shadowing by
particles with a power-law size distribution, the wider the size
distribution, the steeper the absolute slope S of the phase function
between 11 and 61 (see Fig. 5 of French et al., 2007). However, at
larger phase angles, the behavior of the absolute slope with the
optical depth and size distribution could change according to a
less efficient regime of the shadow hiding and the beginning of
the multiple scattering domain (50–901, Stankevich, 2008, private
communication).

For a compact medium such as a satellite’s surface, the slope at
very large angles (a490!) is a consequence of topographic
roughness modeled by the so-called roughness parameter y in
the Hapke (1984, 1986) model. Then a steeper slope is due to a
surface tilt which varies from millimeter to centimeter scales
(Hapke, 1984). However, the roughness can influence the phase
curve at smaller phase angles as underlined by Buratti and
Veverka (1985). According to the laboratory measurements of
Kaasalainen (2003), the slope of the phase function (ao40!) also
increases with increasing roughness.

From the theoretical assertions made above, the HWHM and
the amplitude A are governed by both coherent-backscatter and
shadow-hiding effects, whereas the slope of the linear part of the
phase curve only involves the shadow-hiding effect.

The goal of this paper is to understand the role played by the
two known opposition effects (coherent backscatter and shadow
hiding) on the morphology of the surge for different surface
materials, which have different values of grain size, regolith grain
filling factor, absorption factor (or inverse albedo), particle filling
factor and vertical extension, by making some comparisons with
their three morphological output parameters A, HWHM and S.

This paper describes the results of a full morphological
parameterization and comparison of phase functions of the main
satellites and rings of the solar system in order to compare the
influence of parameters not yet implemented in actual models
and simulations. Section 2 describes the data set that we use here
and the specific treatment we added to these previously published
data in order to compare them more easily. We also present the
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morphological models and discuss their link with the physical
properties of the surfaces. In Section 3, we focus on the behaviors
of the derived morphological parameters, as a function of the
single-scattering albedo, the distance from the Sun and the
distance from the center of the parent planet and the general
behaviors obtained after deconvolving. Section 4 is dedicated to a
discussion in which we physically interpret the variations of the
parameters A and S. Conclusions and future work that would be of
interest are drawn in Section 5.

2. Data set description and reduction

2.1. The opposition effect around a selection of rings and satellites of
the giant planets

We have applied a fitting procedure to a set of phase curves of
satellites and rings obtained by previous ground-based and in situ
optical observations (see Table 1 for references). In most cases, the
spectral resolution of the filters used for these observations is not
specified by their authors, and because we mix for some objects
phase curves at similar wavelengths, we give an approximate
value of the wavelength of observation (the uncertainty of the
approximated values is roughly 100–200nm).

For a comprehensive study of the morphology of the opposi-
tion phase curves, the solar phase curves of the Galilean satellites
(Io, Europa, Ganymede and Callisto) and the jovian main ring were
chosen, as well as the phase curves of the Saturnian rings (the
classical A, B, and C rings and the tenuous E ring) and some
Saturnian satellites (Enceladus, Rhea, Iapetus and Phoebe); the
rings and satellites of Uranus [we will refer to the seven innermost
satellites of Uranus—Bianca, Cressida, Desdemona, Juliet, Portia,
Rosalind and Belinda—as the Portia group, to follow the designa-
tion of Karkoschka (2001). The phase function of the Portia group
is then the averaged phase function for these seven satellites],
including the Portia group and three other Uranian satellites,
Titania, Oberon and Miranda; and finally two Neptunian ring arcs
(Egalité and Fraternité) and two satellites of Neptune (Nereid and
Triton). For all the satellites of this study, except for Iapetus which
has a brighter trailing side, the phase function is representative of
the leading side because they have, in general, better coverage at
small phase angles. The references for the phase curves that we
use in this study are given in Table 1.

This study aims to give an extensive comparison between rings
around the giant planets (Jupiter, Saturn, Uranus and Neptune), as
well as a comparison between rings and satellites for each giant
planet of our solar system. For practical purposes, the well-known
phase curve of the Moon is added as a reference.

2.2. Data set reduction

In order to properly compare the morphological parameters of
the objects whose phase curves are given as magnitudes, we have
converted the magnitude M to the disk-integrated brightness I=F
by using

I=F / 10#0:4M (1)

(Domingue et al., 1995). This modification allows us to directly
compare the slopes of the linear parts of all the curves with the
same units.

2.3. Data set fits: the morphological models

The purpose of the present paper is to provide an accurate
description of the morphological behavior of the observed phase

curves. This is the very first step prior to any attempt to perform
either analytical or numerical modeling. As a consequence, special
care has been given here to parameterizing the observations
efficiently and conveniently. In addition, morphological parame-
terization is necessary to compare numerous phase curves and
derive statistical behavior, as will be done in Section 3.

Several morphological models have been used in the past to
quantitatively describe the shape of the phase functions: the
logarithmic model of Bobrov (1970), the linear-by-parts model of
Lumme and Irvine (1976) and the linear-exponential model of
Kaasalainen et al. (2001). The specific properties of these three
models make them adapted for different and complementary
purposes. The logarithmic model is an appropriate and simple
representation of the data; the linear-by-parts model is convenient to
describe the shape in an intuitive way; and finally, the linear-
exponential model is commonly used for the phase curves of solar
system bodies (see the comparative study ofKaasalainen et al., 2001).

2.3.1. The linear-by-parts model
For an intuitive description of the main features of the phase

curves, the linear-by-parts model is the most convenient. It is
constituted of two linear functions fitting both the surge at small
phase angles (for aoa1) and the linear regime at larger phase
angles (for a4a2), where, generally, a1aa2. Besides a1 and a2, this
function depends on four parameters, A0, B0, A1, and B1, such that

I=Fðaoa1Þ ¼ #A0 ' aþ B0 (2)

I=Fða4a2Þ ¼ #A1 ' aþ B1 (3)

Lumme and Irvine (1976) and Esposito et al. (1979) use a1 ¼ 0:27!

and a2 ¼ 1:5!. By testing several values of a1, it appears that for
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Table 1
References for opposition phase curves of the selection of solar system rings and
satellites.

Object l (nm) References

Moon "570 Whitaker (1969) and Rougier (1933)
Jupiter

Main ring "460 Throop et al. (2004)
Io "570 McEwen et al. (1988)
Europa "500 Thompson and Lockwood (1992)
Ganymede "600 Morrison et al. (1974), Millis and Thompson

(1975) and Blanco and Catalano (1974)
Callisto "500 Thompson and Lockwood (1992)

Saturn
C ring (HST) 672 French et al. (2007)
B ring "650 Franklin and Cook (1965)
B ring (HST) 672 French et al. (2007)
A ring (HST) 672 French et al. (2007)
E ring "650 Pang et al. (1983), Larson (1984) and

Showalter et al. (1991)
Enceladus 439 Verbiscer et al. (2005)
Rhea "500 Domingue et al. (1995) and Verbiscer and

Veverka (1989)
Iapetus "600 Franklin and Cook (1974)
Phoebe "650 Bauer et al. (2006)

Uranus
Rings "500 Karkoschka (2001)
Portia group "500 Karkoschka (2001)
Ariel "600 Buratti et al. (1992) and Karkoschka (2001)
Titania "600 Buratti et al. (1992) and Karkoschka (2001)
Oberon "600 Buratti et al. (1992) and Karkoschka (2001)

Neptune
Fraternité "500 de Pater et al. (2005) and Ferrari and Brahic

(1994)
Egalité "500 de Pater et al. (2005) and Ferrari and Brahic

(1994)
Nereid "570 Schaefer and Tourtellotte (2001)
Triton "400 Buratti et al. (1991)

E. Déau et al. / Planetary and Space Science 57 (2009) 1282–13011284
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our data set, values of a1 ¼ 0:5! and a2 ¼ 2! provide the best fits,
so these values are adopted in the rest of the paper except for the
Moon and tenuous rings for which we take a1 ¼ 1!.

Using the four parameters A0, B0, A1 and B1, the shape of the
curve is characterized by introducing three morphological para-
meters: A, HWHM and S designating the amplitude of the surge,

ARTICLE IN PRESS

Fig. 1. Phase curves of a selection of rings and satellites in the solar system on a linear scale for phase angle (see Table 1 for references). The solid curves correspond to the
best fit obtained with the linear-by-parts model and the dotted curves to the best linear-exponential fit.
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the half-width at half-maximum of the surge, and the absolute
slope at ‘‘large’’ phase angles (i.e., a few degrees up to tens of
degrees), respectively. As a matter of fact, the slope of the linear
part is intrinsically negative because of the decrease of the phase
function with increasing phase angles. However, we define here S
in an absolute way to better compare the values that will be
found. The three morphological parameters are defined by

A ¼
B0

B1
; HWHM ¼

ðB0 # B1Þ
2ðA0 # A1Þ

and S ¼ A1 (4)

Even if the entire phase curve near opposition cannot be fitted by
two linear functions, this model offers a convenient description of
the main trends of the phase variation (Fig. 1).

2.3.2. The linear-exponential model
The linear-exponential model describes the shape of the phase

function as a combination of an exponential peak and a linear
part. Its main interest is that it has been used in previous work for
the study of the backscattering part of the phase curves of the
solar system’s icy satellites and rings (Kaasalainen et al., 2001;
Poulet et al., 2002).

However, as noted by French et al. (2007), we find that this
model does not fit the phase curves perfectly; in particular, A,
HWHM and S are often under- or overestimated. In addition, the
converging solutions found by a downhill simplex technique have
large error bars, which means that a large set of solutions is
possible and thus produce some difficulties for the comparison
with the other objects.

For completeness, we calculate the four parameters of
this model: the intensity of the peak Ip, the intensity of
the background Ib, the slope of the linear part Is and the
angular width of the peak w such that the phase function is
represented by

I=F ¼ Ib þ Is ' aþ Ip ' e#a=2w (5)

As a ! 0, expð#a=2wÞ ! 1# a=2wþO(a2), so that the slope
approaches Is þ Ip=ð2wÞ. The degeneracy of these parameters may
explain some of the difficulty in obtaining good fits described
above. For consistency with previous work, we can express the
amplitude and HWHM of the opposition surge in this model as

A ¼
Ip þ Ib
Ib

; HWHM ¼ 2 ' ln 2w and S ¼ #Is (6)

In Table 2 we report the morphological parameters of the linear-
by-parts and the linear-exponential models (see also Fig. 1).

2.3.3. The logarithmic model
As noted by Bobrov (1970), Lumme and Irvine (1976) and

Esposito et al. (1979), we remark that a logarithmic model
describes the phase curves very well. It depends on two
parameters (a0 and a1). This model has the following form:

I=F ¼ a0 þ a1 ' lnðaÞ (7)

In general, this model is the best morphological fit to the data.
However, a0 and a1 are not easily expressed in terms of A, HWHM
and S, since the model’s dependence on a is scale-free. We report
the values of these two parameters in Table 3 to allow an easier
reproduction of the observational data.

2.3.4. A method that takes into account the angular size of the Sun
For all the phase curves presented here, a comparison of their

surges could be compromised because they have different values
of their observed minimum phase angle values. For example, data
for the Galilean satellites never reach phase angles lower than
0.11 whereas data for Saturn’s rings almost reach 0.011.

Although the behavior within the angular radius of the Sun
represents a small part of the phase function, these smallest phase
angles are crucial to constrain the fit, especially for the linear-
exponential model. Indeed, when a ! 0, the linear-exponential
function tends toward Ib þ Ip. As a consequence, this function
flattens at very small phase angles.

However, in some cases this flattening does not correspond to
the expected flattening due to the angular size of the Sun because
the phase angle at which the linear-exponential model levels off
depends upon the phase angle coverage. The less points there are
at small phase angles, the sooner the flattening of the phase
function occurs.

Déau et al. (2009) showed for Saturn’s rings that the behavior
of the surge observed by the Cassini spacecraft was accurately
represented by a logarithmic model between 151 and 0.0291,
where 0.0291 corresponds to the angular size of the Sun at the
time of the Cassini observations. Below 0.0291, the resulting phase
function flattens, whereas the logarithmic function continues
increasing. Considering the flattening specifically observed for
Saturn’s rings and generalizing for the solar system objects of this
study, we were able to improve the treatment of the observed
phase curves by creating extrapolated data points at very small
phase angles. Indeed, it is more convenient to use extrapolated
data points than to convolve the linear-exponential or the
logarithmic functions with the solar limb darkening. This is the
case because first, for inadequate phase angle coverage near exact
opposition, the flattening of the linear-exponential function is
almost uncontrollable and second, because for the logarithmic
model, even if a convolution is possible, linking the morphological
parameters A, HWHM and S to the outputs a0 and a1 is not trivial.
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Table 2
Morphological parameters of original opposition phase curves of solar system
objects.

Object Linear-by-parts fit Linear-exponential fit

A HWHM S A HWHM S

Moon 1.27 1.21 0.0261 1.53 1.98 0.0017
Jupiter

Main ring 1.23 2.68 0.0170 1.34 2.03 4:82) 10#8

Io 1.25 0.65 0.0204 1.14 0.83 0.01500
Europa 1.11 0.41 0.0095 1.13 0.31 0.0054
Ganymede 1.31 0.46 0.0125 1.28 0.69 0.0040
Callisto 1.25 0.78 0.0291 1.50 2.07 0.0024

Saturn
C ring (HST) 1.61 0.15 0.0342 1.55 0.09 0.0030
B ring 1.30 0.23 0.0312 1.28 0.30 0.0155
B ring (HST) 1.38 0.14 0.0278 1.37 0.09 0.0238
A ring (HST) 1.44 0.13 0.0297 1.44 0.08 0.0159
E ring 1.22 0.40 0.0903 1.51 0.86 1:19) 10#7

Enceladus 1.15 0.42 0.0127 1.20 0.29 0.0113
Rhea 1.17 0.41 0.0142 1.14 0.52 0.0080
Iapetus 1.22 0.25 0.0348 1.36 0.22 0.0030
Phoebe 1.17 0.41 0.0485 1.20 0.38 0.0003

Uranus
Rings 1.07 0.21 0.0274 1.08 0.45 0.0012
Portia group 1.80 0.20 0.0015 1.48 0.13 0.0015
Ariel 1.63 0.38 0.0178 1.60 0.18 0.0074
Titania 1.67 0.45 0.0126 1.82 0.27 0.0032
Oberon 1.77 0.37 0.0174 1.81 0.31 0.0037

Neptune
Fraternité 2.16 2.57 0.0136 1.86 1.50 1:10) 10#5

Egalité 1.72 1.01 0.0160 1.77 0.67 8:34) 10#6

Nereid 1.56 0.50 0.0042 1.45 0.34 0.0099
Triton 1.17 0.10 0.0124 1.25 0.27 0.0049

The unit of HWHM is the degree and the unit of the slope S is I=F deg#1.
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Author's personal copy

The method to create extrapolated data points consists of first
fitting the logarithmic model to the data and then taking the value
of the logarithmic function at the phase angle which corresponds
to the solar angular size (a*, see Appendix). We then give to six
points the same y-value: I=Fða ¼ a*) and x-values ranging from
0.0011 to a* of phase angle. These extrapolated data points are

represented in Fig. 2 (the full method is detailed in the Appendix).
The extrapolated data and the original data are then fitted by the
linear-exponential model in the last step.

For the Moon, Ariel and Oberon, for which the phase curve has
a few points below the solar angular radius, we can see that the
extrapolated points match the observational points quite well.

ARTICLE IN PRESS

Fig. 2. Phase curves of a selection of rings and satellites in the solar system on a logarithmic scale for phase angle. The solid curves correspond to the best fit obtained with
the linear-exponential model convolved with the size of the Sun (using extrapolated data below the angular size of the Sun, empty symbols) and the dashed curves
correspond to the best linear-exponential fit (using only original data, filled symbols). The vertical dotted lines represent the angular size of the Sun at the observation time
(see Table 6 of the Appendix).
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This proves that the solar angular size effect flattens the phase
functions below a*. In the case of the HST (Huble Space Telescope)
data for Saturn’s rings, for which we have also a few points below
the solar angular radius, the extrapolated points have a bit smaller
value than the observed points. This may be due to the fact that
the data of French et al. (2007) already have been deconvolved to
correct for scattered light.

We also performed a convolution of the linear-exponential
function to a limb darkening function (see Appendix), but this
refinement did not significantly change the values of A, HWHM
and S, because the linear-exponential model already flattens as
a ! 0. Thus, by adding extrapolated data below a*, we are sure
that the resulting fitting function will have a constant behavior
below a* and that the resulting fitting function will take into
account the angular size of the Sun. Note that using this
treatment, we assume that all bodies have a logarithmic increase
up to the solar angular radius, which is only confirmed for Saturn’s
rings. Output parameters of our best fit for the ‘‘extrapolated
linear-exponential’’ function are given in Table 3.

2.3.5. A method of solar size deconvolution
Although the behavior at phase angles smaller than the solar

angular radius represents a small part of the opposition surge, a
comparison of the surges of rings and satellites could be
compromised because they have different values for the mean
solar angular radius (amin ¼ 0:051!, 0.0281, 0.0141, 0.0091, respec-
tively, for Jupiter, Saturn, Uranus and Neptune at their mean
distances from the Sun). Indeed, according to the results
presented here, the amplitude and HWHM seem linked to the
finite angular size of the Sun. However, our morphological study
does not clearly show that the Sun’s angular size effect is
preponderant for the amplitude A; the surges of Neptune’s

satellites have smaller amplitudes than those of Uranus
(Fig. 8b). This contradicts the theoretical assumption that the
solar angular size would give the largest amplitude to the most
distant objects, for which the Sun has the smallest angular size.
Because we previously noted that the finite size of the Sun would
flatten the phase function when the phase angle was less than or
equal to the solar angular radius (Déau et al., 2009), a naive
deconvolution method would allow the phase curve to rise below
a*. This is also suggested by a previous deconvolution of HST data
on Saturn’s rings, for which the brightness still increases below
the phase angle a* (French et al., 2007). However, the linear-
exponential function is not appropriate for this purpose because it
intrinsically flattens as a! 0. Thus the only morphological
function that allows an increase, even at very small phase angles,
is the logarithmic function. In particular, this function allows an
increase of the brightness both above and below the solar angular
radius (without a break in the brightness); thus using this
function simulates a point source of light. However, we assume
that the smallest phase angles are about a ¼ 0:001!. In this way, if
a physical flattening should be performed by the coherent-
backscattering or the shadow-hiding effects, it will be possible
at these phase angles.

The logarithmic function fits the phase function of Saturn’s
rings quite well at small and large phase angles (0.1–151, Déau
et al., 2009); however, none of the morphological parameters A,
HWHM and S are well-defined in this model. Because the
logarithmic model is a good representation of the data and
performs a kind of deconvolution at phase angles less than a*, we
fit these data by the linear-by-parts function. As shown in Fig. 3,
the fitting results of this crude deconvolution method are
reasonably acceptable when the phase function is plotted on a
linear scale of phase angle.
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Table 3
Direct output parameters of morphological models using original opposition phase curves and ‘‘ideal’’ opposition phase curves of solar system objects.

Object Logarithmic fit Linear-exponential fit Extrapolated linear-exponential fit

a0 a1 Ip Ib w Is Ip Ib w Is

Moon 0.114 #0.015 0.048 0.090 1.433 0.0017 0.049 0.088 1.548 0.0016
Jupiter

Main ring 3:9) 10#6 #5:6) 10#7 1:1) 10#6 3:2) 10#6 1.470 4:8) 10#8 2:4) 10#6 3:2) 10#6 0.905 4:6) 10#8

Io 0.726 #0.077 0.100 0.699 0.600 0.0150 0.313 0.652 0.375 0.0107
Europa 0.580 #0.025 0.076 0.572 0.230 0.0054 0.086 0.573 0.193 0.0055
Ganymede 0.379 #0.028 0.100 0.349 0.500 0.0040 0.114 0.355 0.325 0.0041
Callisto 0.182 #0.025 0.070 0.140 1.500 0.0024 0.091 0.171 0.248 0.0051

Saturn
C ring (HST) 0.056 #0.007 0.033 0.059 0.070 0.0030 0.031 0.056 0.104 0.0021
B ring 0.506 #0.050 0.142 0.502 0.223 0.0155 0.179 0.511 0.143 0.0174
B ring (HST) 0.628 #0.058 0.249 0.656 0.066 0.0238 0.213 0.647 0.094 0.0216
A ring (HST) 0.390 #0.046 0.182 0.409 0.060 0.0159 0.150 0.401 0.093 0.0143
E ring 2:1) 10#6 #5:2) 10#7 9:3) 10#7 1:8) 10#6 0.623 1:2) 10#7 4:8) 10#7 1:2) 10#6 1.085 3:8) 10#7

Enceladus 0.912 #0.063 0.180 0.895 0.215 0.0113 0.251 0.899 0.150 0.0116
Rhea 0.602 #0.055 0.085 0.573 0.379 0.0080 0.236 0.576 0.139 0.0082
Iapetus 0.112 #0.010 0.039 0.110 0.160 0.0030 0.035 0.116 0.111 0.0039
Phoebe 0.007 #0.0001 0.001 0.008 0.276 0.0003 0.002 0.008 0.067 0.0004

Uranus
Rings 0.038 #0.004 0.003 0.044 0.326 0.0012 0.014 0.045 0.017 0.0012
Portia group 0.058 #0.006 0.026 0.055 0.100 0.0015 0.038 0.054 0.273 0.0010
Ariel 0.366 #0.044 0.213 0.355 0.129 0.0074 0.217 0.359 0.112 0.0077
Titania 0.252 #0.034 0.181 0.221 0.198 0.0032 0.181 0.221 0.198 0.0032
Oberon 0.236 #0.034 0.168 0.208 0.229 0.0037 0.181 0.211 0.186 0.0040

Neptune
Fraternité 0.0005 #0.0001 0.00037 0.00043 1.082 1.1)10#5 0.00086 0.00022 1:1) 10#5 5:6) 10#6

Egalité 0.0001 #0.001 0.00040 0.00052 0.489 8.3)10#6 0.00090 0.00021 1.106 1:5) 10#5

Nereid 0.144 #0.021 0.064 0.140 0.250 0.0099 0.065 0.175 0.057 0.0301
Triton 0.584 #0.035 0.140 0.560 0.200 0.0049 0.146 0.609 0.049 0.0075

The unit of w is the degree and the unit of the slope Is is I=F deg#1.
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However, on a logarithmic scale of a, the linear-by-parts fit is
obviously not acceptable because intrinsically, a linear function
cannot fit a logarithmic increase. As a consequence, we have

slightly changed the linear-by-parts parameters in order to take
into account the slight flattening of this function. Because the
y-intercept B0 of the linear-by-parts model is less than the values

ARTICLE IN PRESS

Fig. 3. Phase curves of a selection of rings and satellites in the solar system. The solid lines correspond to the best fit obtained with the linear-by-parts fit to the logarithmic
model (in solid curves). Note that all panels cover the phase angle range 0–20! , unlike Figs. 1 and 2.
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of the logarithmic function when ao0:01!, we replace B0 by the
value of the logarithmic function when a ¼ 0:001!:

B0
0 ¼ a0 þ a1 ' lnð10

#3Þ (8)

where a1p0, in such a way that the amplitude and the angular
width are now given by

A ¼
B0
0

B1
and HWHM ¼

ðB0
0 # B1Þ

2ðja1j# A1Þ
(9)

where ja1j is the absolute slope of the logarithmic function (see
Section2.3.3). Replacing ja1j by A0 in the formula for HWHM was
motivated by the fact that the original values of the linear-by-
parts parameters were the same for all objects if we use the A0

parameter (HWHM"0:22! for a1 ¼ 0:3!). This is due to the fact
that the logarithmic function is a fractal function, so it is not
possible to obtain the half-width at half-maximum. Values of the
linear-by-parts parameters A, HWHM and S are given in Table 4.
Our best result is for the B ring, for which we previously found
different values of A from the Franklin and Cook (1965) data and
the French et al. (2007) data (A ¼ 1:30 and 1:38, respectively, see
Table 2 with the convolved models). The discrepancy was still
present with the extrapolated linear-exponential model (A ¼ 1:35
for Franklin and Cook, 1965, and A ¼ 1:32 for French et al., 2007),
due to the fact that the solar angular size was different at the two
observation times (see Table 6 in the Appendix). Now, with the
deconvolved model, the discrepancy of the two values is
somewhat reduced compared to values from the fit to the
original data: A ¼ 1:82 for Franklin and Cook (1965) and A ¼
1:77 for French et al. (2007), Table 4, which implies that the
angular size effect is now reduced.

3. Results

Our procedure is to carefully interpret the morphological
results coming from a large number of phase curves. We start by
studying the behaviors of the morphological parameters with the
single-scattering albedo in the raw data and the improved data
that take the angular size of the Sun into account (Sections 3.1 and
3.2). Then, by studying the behavior of the morphological
parameters of the surge with the distance from the Sun and from
the parent planet, we emphasize two additional effects that occur
in the solar system: the ‘‘solar size bias’’ and the ‘‘planetary
environmental effect’’ (Section 3.3). In the last step, we tried to
eliminate the ‘‘solar size bias’’ by looking at the opposition effect
in the outer solar system for an assumed point-source Sun
(Section 3.4).

3.1. Behaviors of the morphological parameters

In this section we compare the morphological parameters as a
function of the single-scattering albedo $0. What we call ‘‘single-
scattering albedo’’ is technically the Bond albedo of a satellite or
ring particle (Dones et al., 1993). Since the single-scattering
albedo $0 represents the ratio of scattering efficiency to total
light extinction over the entire phase angle range (Chandrasekhar,
1960), its value must be computed with the largest coverage of
phase angle possible (0–1801). This is why we did not compute the
single-scattering albedo with the phase curves presented in this
paper, but use previously published values of single-scattering
albedo computed from phase curves with a larger phase angle
coverage and a wavelength close to our data. Thus, our references
for phase curves (Table 1) and references for $0 (Table 5) are not
always the same.

We did not find single-scattering albedo values for the jovian
main ring and Saturn’s E ring, so these two objects will be
excluded from the study of the morphological parameters with
the single-scattering albedo.
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Table 4
Morphological parameters of ‘‘ideal’’ opposition phase curves of solar system
objects.

Object Linear-by-parts and log fits Extrapolated linear-exponential fit

A HWHM S A HWHM S

Moon 2.18 0.54 0.0224 1.55 2.14 0.0016
Jupiter

Main ring 2.21 0.55 0.0230 1.76 1.25 4:55) 10#8

Io 1.89 0.41 0.0169 1.47 0.52 0.0107
Europa 1.34 0.16 0.0064 1.15 0.26 0.0055
Ganymede 1.62 0.29 0.0117 1.32 0.45 0.0041
Callisto 2.21 0.55 0.0229 1.53 0.34 0.0051

Saturn
C ring (HST) 2.17 0.53 0.0221 1.54 0.14 0.0021
B ring 1.82 0.38 0.0155 1.35 0.19 0.0174
B ring (HST) 1.77 0.36 0.0146 1.32 0.13 0.0216
A ring (HST) 1.87 0.40 0.0165 1.37 0.12 0.0143
E ring 3.38 0.99 0.0450 2.80 1.50 3:76) 10#7

Enceladus 1.56 0.27 0.0107 1.27 0.20 0.0116
Rhea 1.76 0.35 0.0144 1.41 0.19 0.0082
Iapetus 1.76 0.36 0.0145 1.30 0.15 0.0039
Phoebe 1.99 0.45 0.0187 1.33 0.09 0.0004

Uranus
Rings 1.98 0.45 0.0186 1.31 0.02 0.0012
Portia group 1.80 0.20 0.0015 1.71 0.37 0.0010
Ariel 2.13 0.52 0.0215 1.60 0.15 0.0077
Titania 2.21 0.55 0.0230 1.81 0.27 0.0032
Oberon 2.41 0.63 0.0267 1.86 0.25 0.0040

Neptune
Fraternité 2.72 0.75 0.0314 4.99 1.53 5:61) 10#6

Egalité 2.39 0.62 0.0253 5.34 1.53 1:53) 10#5

Nereid 2.27 0.57 0.0241 1.37 0.08 0.0301
Triton 1.49 0.23 0.0092 1.23 0.06 0.0075

The unit of HWHM is the degree and the unit of the slope S is I=F deg#1.

Table 5
References for the single-scattering albedos of solar system objects.

Object $0 l (nm) References

Moon 0.21 "500 Helfenstein et al. (1997)
Jupiter

Io 0.75 590 McEwen et al. (1988)
Europa 0.96 550 Domingue and Verbiscer (1997)
Ganymede 0.87 470 Domingue and Verbiscer (1997)
Callisto 0.53 470 Domingue and Verbiscer (1997)

Saturn
C ring (HST) 0.16 672 French et al. (2007)
B ring 0.83 672 Poulet et al. (2002)
B ring (HST) 0.85 672 French et al. (2007)
A ring (HST) 0.79 672 French et al. (2007)
Enceladus 0.99 480 Verbiscer and Veverka (1991)
Rhea 0.86 480 Verbiscer and Veverka (1989)
Iapetus 0.16 480 Buratti (1984)
Phoebe 0.06 480 Simonelli et al. (1999)

Uranus
Rings 0.06 "500 Karkoschka (2001)
Portia group 0,09 "500 Karkoschka (2001)
Ariel 0.64 "500 Karkoschka (2001)
Titania 0.48 "475 Veverka et al. (1987)
Oberon 0.43 "500 Karkoschka (2001)

Neptune
Fraternité 0.02 480 Ferrari and Brahic (1994)
Egalité 0.02 480 Ferrari and Brahic (1994)
Nereid 0.21 "500 Thomas et al. (1991)
Triton 0.97 500 Lee et al. (1992)
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3.1.1. Variation of the angular width of the surge with albedo
First, we discuss the variation of HWHM ¼ f ð$0Þ derived from

the linear-by-parts model (Fig. 4a) and HWHM ¼ f ð$0Þ derived
from the extrapolated linear-exponential model (Fig. 4b).
Interestingly, the variation differs according to the
morphological model: the first case leads to a decrease of
HWHM when $0 increases, while the latter case leads to an
increase of HWHM when $0 increases.

The main differences for HWHM ¼ f ð$0Þ between the linear-
by-parts results (well fitted by HWHM (degrees) "0:9) 0:3$0 ,
Fig. 4a) and the extrapolated linear-exponential results
(represented by HWHM (degrees) "0:15þ 0:19$0, Fig. 4b) is
mainly due to the points which correspond to the morphological
parameters of the Moon, Callisto and Nereid. Indeed, in general,
HWHM values from the extrapolated linear-exponential model
significantly decrease from Figs. 4(a) to (b) for the outer solar
system objects, whereas the value for the Moon increases by
almost 11 between the two panels. This is due to the fact that
when we take into account the Sun’s angular size, this effect
lowers the values of HWHM for the incomplete phase functions.

Independently from all these considerations, Fig. 4 shows a
large dispersion of HWHM with albedo.

3.1.2. Variation of the amplitude of the surge with albedo
Fig. 5 shows a weak dependence of the amplitude of the surge

on the albedo for the satellites, already noted by Helfenstein et al.
(1997) and Rosenbush et al. (2002).

In both cases (linear-by-parts model, Fig. 5a, and extrapolated
linear-exponential model, Fig. 5b) we note a dependence of Awith
$0, which follow a function leading to a decrease of A when $0

increases (A"1:65) 0:72$0 in Fig. 5a and A"1:75) 0:72$0 in
Fig. 5b). The consistent trends in both cases imply that the finite
size of the Sun was correctly accounted for with the help of the
linear-by-parts model.

The decrease of A with increasing $0 could be understood
through a relation between the amplitude and the single-
scattering albedo via the intensity of the background phase
function Ib (one of the parameter of the linear-exponential model).
The intensity of the background phase function is believed to be
inversely proportional to the albedo (Lumme et al., 1990;
Mishchenko and Dlugach, 1992a). So the amplitude A of the surge
should increase with increasing absorption, or decrease with

increasing albedo. Thus, the predicted trend of Lumme et al.
(1990) and Mishchenko and Dlugach (1992a) is confirmed by our
present results.

In addition, Fig. 5b labels satellites by color to indicate their
parent planet. This figure indicates that distant objects (such as
the Uranian satellites) have a significantly larger amplitude than
less distant objects (such as the Galilean or Saturnian satellites)
while the Neptunian satellites have intermediate values. Then it
must be considered that the finite size of the Sun has a role in the
amplitude’s value (Shkuratov, 1991). As a consequence, even if the
trend of A ¼ f ð$0Þ is well explained by theoretical considerations,
one can remark that the large dispersion in this correlation could
be due to other effects (such as the finite size of the Sun) that
weakens the albedo dependence of A. Thus, as for HWHM, we
cannot physically interpret their variation with albedo as long as
they are biased by the effect of the solar angular size.

3.1.3. Variation of the slope of the linear part with albedo
The last morphological parameter is the slope S, which we

represent as a function of the single-scattering albedo $0 for the
rings (Fig. 6a) and satellites (Fig. 6b) of the solar system.

In this figure, rings and satellites have different values of slope
as function of their albedo, and a slight increase for S with
increasing $0 is noticed. For the rings (Fig. 6a), it seems that a
good correlation appears between S and the albedo, which may be
roughly fitted by a function like S"0:001þ 0:02 '$2

0. A similar fit
works well for the satellites (the Moon, Saturnian and Uranian
satellites are close to the dashed line in Fig. 6b). This fit to the
points could be represented by the following function: S"0:001þ
0:01 '$2

0 (Fig. 6b). This correlation suggests that multiple
scattering may be a strong element at play in the regime of self-
shadowing (beyond "1! of phase angle), in qualitative agreement
with Kawata and Irvine (1974). However, we note that three
objects fall far from our fitted curve: Europa, Ganymede and Io.

The positive correlation of the absolute slope S with the single-
scattering albedo is given here in I=F deg#1 units. We investigate
now the variation of a normalized slope (S0 in deg#1 units) by
defining it as the ratio of the absolute slope S over the parameter
B1, which is the y-intercept of the linear part at large phase angles
(a4a2). In this way, we obtain an absolute and normalized slope,
as previously discussed by French et al. (2007) and Déau et al.
(2009) for the study of Saturn’s rings. The trends previously found
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Fig. 4. HWHM of the surge for satellites of Jupiter, Saturn, Uranus and Neptune derived with: (a) the linear-by-parts model and (b) the linear-exponential model convolved
with the size of the Sun. In (a) dashed line corresponds to a power-law fit to the data which is HWHM"0:9) 0:3$0 . In (b) dashed line corresponds to a linear fit
HWHM"0:15þ 0:19$0. Dotted lines are empirical functions to the boundaries of the data.
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are still the same, we found also an increase of S0 with increasing
single-scattering albedo for the rings (S0"0:001þ 0:045 '$2

0) and
the satellites (S0"0:004þ 0:022 '$2

0).

3.2. Cross comparisons between the morphological parameters
of the surge

We see in Fig. 4 that the angular width of the surge can
change significantly by taking into account the solar angular
radius. However, this is not the case for the amplitude (Fig. 5). Fig. 7
shows a cross comparison between the morphological parameters
A and HWHM obtained with the linear-exponential model
convolved (Fig. 7b) or not (Fig. 7a) with the limb darkening
function.

In the first graph (Fig. 7a), two different groups may be
qualitatively distinguished.

On the one hand, there is a group of bodies with similar values
of the HWHM, in the range 0.1–0.41, but with significantly
different values of the amplitude, from 1.4 to 1.8. It is interesting
to note that these bodies, which include the Saturnian rings and
Uranian satellites, are not in the outermost part of the solar
system (such as the Neptunian satellites). Within this group, we
also note that similar bodies are clustered in the (A, HWHM)
space: the Uranian satellites have, on average, the largest values of
the amplitude, "1:7. Saturn’s rings have an amplitude between
1.3 and 1.6, closer to the Uranian satellites. We also note that
whereas all satellites have quite a constant HWHM (between
0.21 and 0.41), Saturn’s rings have systematically lower values,
between 0.081 and 0.091, which may suggest a different state for
their surface.

The second group includes Saturn’s satellites, along with Io,
Europa and Triton, which have the smallest values of amplitude.
A very striking feature is the peculiar behavior of bodies such as
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Fig. 5. Amplitude of the surge for satellites of Jupiter, Saturn, Uranus and Neptune: (a) the linear-by-parts model and (b) the linear-exponential model convolved with the
size of the Sun. In (a) dashed line corresponds to a power fit to the data A"1:65) 0:72$0 . In (b) dashed line corresponds to the fit A"1:75) 0:72$0 . Dotted lines are
empirical functions to the data boundaries.

Fig. 6. Morphological parameter S derived with the linear-by-parts model for: rings (a) and satellites (b) of Jupiter, Saturn, Uranus and Neptune. In (a) dashed line
corresponds to a power-law fit to the data which is S"0:001þ 0:02$2

0. In (b) dashed line corresponds to a fit to the data which is S"0:001þ 0:01$2
0. Dotted lines are

empirical functions to the data boundaries.
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Callisto and the Moon: they have similar amplitudes (about 1.5)
and also similar HWHMs (about 21). In the second graph (Fig. 7b),
it first seems that the bodies belonging to the same primary
planet have similar values of A and HWHM. For the Galilean
satellites, we found the largest HWHM for the outer solar system
satellites (between 0.21 and 0.51) and amplitude between 1.1 and
1.5. The Uranian satellites still have the largest amplitudes
(A ranges between 1.6 and 1.9), but the values of HWHM are
similar to those of those of Saturn’s rings and satellites. The
Neptunian satellites have the sharpest opposition peaks
(HWHMt0:1!) but moderate amplitudes (between 1.2 and 1.4),
similar to the range of the Saturnian satellites.

Does this imply some deep structural difference of the surface
regolith of bodies, or is it due to the Sun’s angular size effect? For
the moment we note that the opposition effect is poorly under-
stood, especially at phase angles smaller than 11 in the coherent-
backscattering regime.

Whereas physical implications are still hard to draw from these
graphs, it is interesting to note that the solar angular size
refinement that we use naturally clusters different kind of
surfaces in different locations of the (A, HWHM) space, and that
‘‘endogenically linked objects’’ are quite well gathered in small
regions of this space. This could suggest that common environ-
mental processes (meteoroid bombardment, surface collisions,
space weathering, etc.) may homogenize different surface states
by processing mechanisms that may determine the microstruc-
ture of the surface. These mechanisms, in turn, may affect the
behavior of the opposition surge at very low phase angles, as it
may be linked with the spatial organization of micrometer-scale
surface regolith (Mishchenko, 1992; Mishchenko and Dlugach,
1992a; Shkuratov et al., 1999).

3.3. Additional effects

With the help of the cross comparison of the surge morpho-
logical parameters, we noticed that two supplementary effects
can significantly modify the values of A and HWHM: one purely of
observational origin, the ‘‘solar size bias’’, and one other purely
physical, the ‘‘planetary environmental effect’’ (the fact that
objects seem to be endogenically linked).

3.3.1. The ‘‘solar size bias’’
We tested the influence of the solar angular size by represent-

ing in Fig. 8 the morphological parameters of the surge A
and HWHM as a function of the distance from the Sun d
(in Astronomical Units).

We represent HWHM (Fig. 8a) and A (Fig. 8b) from the linear-
by-parts model with filled symbols and that of the extrapolated
linear-exponential model with outlined symbols.

We remark that the linear-by-parts angular width follows the
power-law function HWHM (degrees) "0:33þ 1:1d#1:5 (the solid
line in Fig. 8a). The fit is quite good from the Moon to Uranus,
but is far from the HWHM values of Neptune’s satellites
(especially that of Nereid). It is easier to see with this representa-
tion that the HWHM of Nereid is larger than that expected from
the power-law function. The extrapolated linear-exponential
HWHM reduces this difference because the Neptunian satellites
have in this case smaller values of HWHM that are better fitted
by the power-law function. Indeed, the extrapolated linear-
exponential HWHM follows a similar function (HWHM (degrees)
"0:12þ 2:3d#1:4), but values in the extreme parts of the
solar system (innermost with the Earth’s satellite and outermost
with Neptune’s satellites) are significantly different: for the Moon,
the extrapolated linear-exponential HWHM is larger than its
linear-by-parts counterpart and for Nereid, the extrapolated
linear-exponential HWHM is smaller than the linear-by-parts
HWHM.

However, such a strong trend is not observed in the case of the
amplitude of the surge. As shown in Fig. 8b, a fit to the linear-by-
parts amplitudes is good for the Galilean, Saturnian and Uranian
satellites (which we fitted by a linear function A"1:1þ 0:08d), but
not at all for the Moon and the Neptunian satellites. The predicted
behavior (i.e., the dashed line in Fig. 8b) shows that the value for
the Moon is overestimated and that the values of the Neptunian
satellites are strongly underestimated. Previous work by Bauer et
al. (2006) also underlined the fact that the amplitude of the
Neptunian satellites did not follow the behavior of the Uranian
ones. Indeed, by adding the surge amplitudes of other small
bodies throughout the Solar system to their study of Saturnian
irregular satellites, Bauer et al. (2006) showed that the Uranian
satellites seem to have a slightly steeper surge than Neptune’s
moon Triton, which, in turn, has a similar value to main-belt,
F-type asteroids. If the Uranian satellites, which have a wide range
of values of amplitudes, are not taken into account, the work of
Bauer et al. (2006) is compatible with a surge amplitude that
increases slightly with heliocentric distance. We now use the
values of the extrapolated linear-exponential amplitude A, but this
did not improve the fit of A with distance from the Sun. Indeed,
the extrapolated linear-exponential amplitude is larger than the
linear-by-parts amplitude for the Moon, whereas the extrapolated
linear-exponential values of the Neptunian satellites are smaller
than their linear-by-parts counterparts. The exact opposition
trends were expected to obtain a good linear fit from the Moon
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Fig. 7. Cross comparison between the morphological parameters of the surge derived with (a) the linear-exponential model and (b) the linear-exponential model convolved
with the size of the Sun (see Tables 6 and 7 in the Appendix). Dashed and dotted curves in panel (a) are arbitrary delimitations of the data points (see text).
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to Neptune. Perhaps the solar size effect is negligible at Neptune’s
distance and the values of A and HWHM are physical, in the sense
that they depend only on the opposition effect mechanisms
(coherent backscattering and shadow hiding).

These results seems to suggest that A is less affected by the
‘‘solar size bias’’ than HWHM, which is entirely controlled by this
effect (which seems trivial because this bias is an angular effect).
It is possible that the values of A result from a coupling of the
physical opposition effects (coherent backscatter and shadow
hiding) with the environmental opposition effects (solar and
planetary). As a consequence, the deconvolution of the phase
function (at least for the ‘‘solar size bias’’) should allow the
physical opposition effects to express themselves fully in the
values of A and HWHM.

3.3.2. The ‘‘planetary environmental effect’’
A previous study by Verbiscer et al. (2007) has confirmed, at

the scale of the Saturnian system, a kind of ‘‘endogenic’’ or
‘‘ecosystemic’’ classification of the opposition surge. Indeed, this
work demonstrated that the opposition surge parameters of the
innermost classical Saturnian satellites are a function of the
distance from Saturn. Verbiscer et al. (2007) interpreted this trend
as being due to ‘‘sandblasting’’ of the satellites by grains from the
E ring, which encompasses the region between the orbits of
Mimas and Rhea.

For the planetary environments of Jupiter, Uranus and
Neptune, there are no significant variations in the surge
parameters with distance from the parent planet. The first
possible reason is statistical, because there are not enough data
(for these systems, we have less than four moons). The second is
that the dust environment can be influenced by other effects (e.g.,
the planet’s magnetospheric activity, the satellite’s activity, the
proximity to the Kuiper belt and transneptunian objects) that
might produce larger effects than any related to the distance from
the parent planet.

For the Saturnian system, for which local interactions between
satellites and rings exist, we observe trends similar to those found
by Verbiscer et al. (2007) (see Fig. 9).

Variations of the morphological parameters on large distance
scales (for the Saturn system) show trends that suggest a common
ground for environmental processes. These processes may imply
different surfaces, but will be handled by the opposition effect in
the same way as the mechanisms that determine the micro-
structure of the surface. According to theoretical models of
coherent backscattering, the amplitude is related to the grain size
and HWHM depends on the composition, distribution of grain
sizes and the regolith filling factor. Thus the behavior of the
opposition surge is connected to the spatial organization of the
regolith (Mishchenko and Dlugach, 1992a; Shkuratov et al., 1999).

Therefore, the study of the morphology of the opposition peak
can highlight dynamical interactions between the rings, satellites
and the surrounding environment through the photometry. These
ring/satellite interactions noted here go beyond the general
dynamical interactions between rings and satellites (such as
resonances, for example). Here these interactions involve common
erosion histories on the surfaces of the rings and satellites. Similar
values of HWHM, according to the theory of Mishchenko and
Dlugach (1992a), can be explained by similar values of refractive
index (with various values of grain size and filling factor), or by
different values of refractive indices, but similar values of grain
sizes and filling factor of the regolith.

There are two known mechanisms that can act together in
order to explain the similarities in the values of HWHM for objects
that are endogenically linked.

The impacts of debris in planetary environments can
change the chemical composition of the rings and satellites: new
elements can be directly added to the system; the more volatile
elements can be preferentially removed and the more fragile
compounds can be preferentially processed. The work of Cuzzi
and Estrada (1998), in particular, details the changes in the
chemical composition of Saturn’s rings induced by meteoroid
bombardment and ballistic transport.

The second mechanism that is likely to act concerns every
kind of collisional mechanism capable of modifying, at micro-
scopic scales, the surface of the satellite’s regolith (meteoroid
bombardment, external collisions, disintegration in space, etc.);
see Lissauer et al. (1988) and Colwell and Esposito (1992, 1993).
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Fig. 8. Variation of the morphological parameters HWHM and A derived with the linear-by-parts model (filled symbols and solid line) and the extrapolated linear-
exponential model (empty symbols and dotted line) with respect to the distance from the Sun (distances are taken from Murray and Dermott, 2000).

E. Déau et al. / Planetary and Space Science 57 (2009) 1282–13011294



Author's personal copy

In the case of ring particles, the erosion model by ballistic
transport of Ip (1983) has been developed and predicted
important effects on the radial structure and long-term evolution
of the main rings (see also Durisen et al., 1996).

3.4. Study of the deconvolved opposition parameters

With the deconvolved morphological parameters obtained
with the method presented in Section 2.3.5, we are now sure that
the morphological surge parameters are independent of the
distance from the Sun, and thus independent of the ‘‘solar size
bias’’. Indeed, in Fig. 10, we represent A and HWHM derived from
the linear-by-parts model which fits the logarithmic model as a
function of the distance from the Sun and we observe that there is
no relation with the heliocentric distance, unlike in Fig. 8 and the
results of Bauer et al. (2006). As a consequence, the deconvolution
process has successfully removed the solar size bias.

Moreover, we can see that three groups can be distinguished:

(1) A group with the Moon, Callisto, the C ring, Phoebe, the
classical Uranian satellites (Ariel, Titania and Oberon) and
Nereid. They have large angular widths and amplitudes
(HWHM \ 0.551, Fig. 10a and A\2:2, Fig. 10b). We can see
that these objects are dark, with low and moderate albedos

(Table 5). These satellites are also known to be heavily
cratered (Neukum et al., 2001; Zahnle et al., 2003); thus, they
do not have intrinsic resurfacing mechanisms. For the case of
the resurfacing of Saturn’s C ring, it is known that the
collisional activity of a ring is controlled by the optical depth t
(Cuzzi and Estrada, 1998). The number of collisions per orbit
and per particle is proportional to t (in the regime of low
optical depth, see Wisdom and Tremaine, 1988), and the
random velocity in a ring of thickness H is about H )O (with
O standing for the local orbital frequency). Since H is a
decreasing function of t, impact velocities are larger in regions
of low optical depth. As a result, particles in low optical depth
ring regions (such as the C ring) are expected to suffer
resurfacing characterized by rare, but somewhat higher-
speed, collisions.

(2) A group with Io, Iapetus, Rhea and the bright Saturnian rings
characterized by smaller amplitude and angular width:
1:8tAt1:9 and HWHM"0:4! (Figs. 10a, b).

(3) A group with Ganymede, Europa, Enceladus and Triton with
the smallest amplitude and angular width (At1:6, Fig. 10a
and HWHMt0:3!, Fig. 10b). Interestingly for the amplitude,
we can see that this group contains some of the brightest
surfaces of the satellites of the solar system, with a single-
scattering albedo close to $0"0:9 (however, the Bond albedo
of Ganymede is much smaller; see Squyres and Veverka,
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Fig. 9. Variation of the morphological parameters: the amplitude A of the surge (a) and the half-width at half-maximum HWHM (b) derived with the linear-by-parts model
with the distance from Saturn. (Distances are taken from Murray and Dermott, 2000.)

Fig. 10. Variation of the deconvolved morphological parameters: the half-width at half-maximum HWHM (a) and the amplitude A of the surge (b) derived with the
logarithmic model fitted by the linear-by-parts model with distance from Saturn. (Distances are taken from Murray and Dermott, 2000.) Solid ellipses in (a) and (b) are
arbitrary delimitations of the data points (see text).
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1981). These objects are also known to have active resurfa-
cing. Indeed, this was confirmed for Europa, which has a very
young surface and perhaps recent geyser-like or volcanic
activity (Sullivan et al., 1998; Pappalardo et al., 1998b), and
Ganymede, on which the grooved terrains could have formed
through tectonism, probably combined with icy volcanism
(Pappalardo et al., 1998a; McCord et al., 2001). Present-day
resurfacing is also taking place on Enceladus, whose geysers
produce the E ring (Porco et al., 2006), and for Triton, which
also has geysers (Croft et al., 1995).

This classification seems to suggest that the darkest and oldest
surfaces have the largest amplitudes for the surge and that the
brightest and youngest surfaces have the smallest amplitudes.
However, one might be surprised that the third group does not
include Io, which has an intense resurfacing via tidally induced
volcanism. Also, the Portia group does not belong to only one
group in Fig. 10: it belongs to group 3 for HWHM and to group 2
for the amplitude A. For these two isolated cases, it is possible that
the average of photometric phase curves from different satellite
regions is responsible for the fact that Io and the Portia group are
hard to classify.

4. Discussion

4.1. Implications of the surge parameters of the deconvolved data

By removing the ‘‘solar size bias’’, we can try to physically
interpret the amplitude variations versus the single-scattering
albedo and link them to the mechanisms proposed to explain the
opposition effect. Our study shows a link between the single-
scattering albedo and the deconvolved morphological parameters.
A linear fit to the deconvolved amplitude is A ¼ 2:2# 0:5$0 (with
a correlation coefficient of #61%) and the linear fit to the
deconvolved angular width is HWHM ¼ 0:52# 0:19$0 (with a
correlation coefficient of #38%). By excluding the Portia group, we
find a better correlation coefficient for HWHM: #66%. These
correlations are stronger than those previously found with the
convolved data. This shows that the ‘‘solar size bias’’ acts to
scatter the morphological parameters. As a consequence, the fact
that old and dark surfaces with a low resurfacing activity have
high deconvolved amplitude whereas the bright and young
surfaces with an intense resurfacing activity have low decon-
volved amplitude is linked to the single-scattering albedo
variations of A. Indeed, the single-scattering albedo is a measure
of the brightness of a surface. According to Shkuratov et al. (1999),
the amplitude of the coherent-backscattering opposition surge is
a decreasing function of increasing regolith grain size. If the
morphological amplitude is due to the coherent-backscattering
effect (Mishchenko and Dlugach, 1992b; Mishchenko et al., 2006),
the dependence of A on $0 could be understood as a positive
correlation between the grain size and the single-scattering
albedo. However, in general, the single-scattering albedo would
be expected to correlate negatively with grain size (because bigger
grains have a longer path length for absorption), so the link
between the variation of the morphological amplitude and the
grain size is not clear. Moreover, it is possible that the
morphological amplitude is not only that of the coherent-back-
scattering effect but is dominated by both effects: coherent
backscatter and shadow hiding, as underlined by Hapke (2002).
But it is not possible here to separate the two effects and say
which effect is dominant because to definitively separate the
coherent-backscatter and shadow-hiding mechanisms, informa-
tion about the polarization is required (Mishchenko, 1993;
Muinonen et al., 2007).

4.2. Implications for the slope of the linear part

The strong correlation of the slope S (in absolute I=F deg#1

units) with single-scattering albedo (Fig. 6) implies that the values
of the absolute slope S are higher for high-albedo surfaces. A
similar trend was previously found for the slope of asteroids
(Belskaya and Shevchenko, 2000). It was first interpreted by these
authors as a decrease of the absolute slope with albedo, consistent
with the analytical model of Helfenstein et al. (1997), which
predicted that the amplitude of the shadow hiding must decrease
with increasing albedo. However, it must be emphasized that the
slope unit in Belskaya and Shevchenko (2000) is the magnitude
(note that the scale of the magnitude is not reversed for their
graph with the slope—Fig. 4—whereas the other graphs that show
the phase curves—Figs. 1 and 2—have a reversed scale for the
magnitude, compatible with an I=F scale). So, a decreasing slope
in magdeg#1 corresponds to an increasing slope in absolute
I=F deg#1 units. Or, a decreasing slope in magdeg#1 corresponds to
a decreasing slope in nonabsolute I=F deg#1 units. As a conse-
quence, the rings, satellites and asteroids of the solar system have
consistent behavior of the absolute slope as a function of the
albedo and all lead to the same idea that shadow hiding induces a
reinforcement of the absolute values of the slope with increasing
albedo. We notice also that a normalized slope (named S0 in
Section 3.1) gives similar trends with respect to the single-
scattering albedo. Then, the slope (jdðI=FÞ=daj) is still larger for
high-albedo objects and increases with increasing albedo, even
though the normalized change jdðI=FÞ=daj=ðI=FÞ. As a result, the
positive correlation between the absolute slope and the single-
scattering albedo seems to be the strongest trend of the
opposition effect in satellites and rings of the solar system and
the use of more sophisticated models is needed to understand this
trend in terms of filling factor and size distribution.

The results from Fig. 6 are in agreement with the simulations
of ray-tracing (Stankevich et al., 1999), which model shadow
hiding in a layer of particles. These simulations show that shadow
hiding creates a linear part in the phase function from 101 to
401 and that the absolute slope of the linear part becomes steeper
when optical depth increases and the filling factor of the layer of
particles increases.

How does albedo relate to the optical depth and the filling
factor? Previous studies have shown that the albedo and optical
depth are highly positively correlated for the rings (see Doyle
et al., 1989; Cooke, 1991; Dones et al., 1993). For satellites, optical
depth is effectively infinite; since this removes one variable,
relating the slope parameter to the nature of the surface is easier
for satellites than for rings. Thus we must consider two kinds
of objects:

+ For rings, where the optical depth is finite, variation of the
slope S will be a subtle effect involving both optical depth and
filling factor.

+ For satellites, which have ‘‘solid’’ surfaces, variations in
slope are linked to the filling factor. If the optical depth is
invariant for satellites, according to the model of Stankevich et
al. (1999), only variations of the filling factor can explain
differences of the slope S. However, the notion of filling factor
is not well suited for satellites; indeed, a description involving
a large-scale roughness, as topography, should be more
appropriate.

We noticed that when the optical depth is finite, as for the rings,
the effects of slope are stronger with a high albedo than for high-
albedo satellites. Consequently the shadow-hiding effect for the
ring is more pronounced than for satellites and reflects a

ARTICLE IN PRESS
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difference between the three-dimensional aspect of a layer of
particles in the rings and a planetary regolith.

5. Conclusions

The goal of this paper was to understand the role of the
viewing conditions on the morphological parameters of the
opposition surge and the role played by the single-scattering
albedo on the morphological parameters. We have used three
methods to fit the data: first, with a simple morphological model;
second, by taking the size of the Sun into account more accurately
in the morphological model; and third, by effectively eliminating
the size of the Sun in the morphological model.

The results of this study allow us to highlight several facts
related to the observations and the mechanisms of the opposition
effect in the solar system.

(1) The absolute slope of the linear part (in I=F deg#1 absolute
units) is an increasing function of single-scattering albedo.
Because the slope is negative due to the decrease of the phase
function, we can also say that the slope of the linear part of
the phase function decreases with increasing single-scattering
albedo. Our results are consistent with those of Belskaya and
Shevchenko (2000), who find that the phase coefficient b of
the phase function of asteroids (in magdeg#1 units) decreases
when albedo increases. These results confirm the predictions
from simulations of shadow-hiding of Stankevich et al. (1999),
if we assume that the single-scattering albedo is positively
correlated with the optical depth.

(2) We note that the morphological parameters of the surge
(A and HWHM) are sensitive to the phase angle coverage,
specifically to the smallest phase angles. We have extrapo-
lated observational data points in order to correct the lack of
data near the solar angular radius. However, this method
needs to be improved, for example by taking the solar angular
radius directly into account in the linear-exponential function.
We hope that future data at the smallest phase angles will
confirm the extrapolated data that we use to perform the
‘‘extrapolated linear-exponential’’ model.

(3) The amplitude and the angular width of the opposition surge
are linked to the single-scattering albedo of the surfaces, as
already noted in laboratory measurements (Kaasalainen,
2003). Like Belskaya and Shevchenko (2000), we believe that
the single-scattering albedo is one of the key physical
parameters that constrain the morphological parameters.
However, before physically interpreting these results, A and
HWHM need to be deconvolved for the ‘‘solar size bias’’ since
we have a large dispersion in the relations of A ¼ f ð$0Þ and
HWHM ¼ f ð$0Þ.

(4) By deconvolving the phase functions for the Sun’s angular size
effect, we showed that A and HWHM are still correlated with
the albedo (with better correlation coefficients). A and HWHM
now appear to be independent of the distance from the Sun,
unlike their convolved counterparts. Indeed, values of A and
HWHM from deconvolved phase functions can be classified
into three groups that include a mix of bodies from the inner
and the outer solar system. This shows that icy and young
surfaces (such as Europa, Io, Enceladus and Triton) have the
smallest amplitudes, whereas dark and older surfaces (such as
the Moon, Phoebe and the C ring) have the largest amplitudes.

(5) It seems that two effects (the ‘‘solar size bias’’ and the
‘‘planetary environmental effect’’) act together to disperse
data taken from different places in the solar system. Moreover,
with our technique of deconvolution of phase curves, we see
that the ‘‘solar size bias’’ can be removed from A and HWHM,

because the deconvolved data have A and HWHM that do
not show any trend with distance from the Sun. These
arguments strengthen the conclusions that the notion of
‘‘ecosystem’’ for a planetary environment can be the key
element determining the opposition effect surge morphology
in the solar system.

After our work was complete, we learned of the paper by
Schaefer et al. (2009), who quantify the opposition surges of 52
bodies in the outer solar system, primarily by fitting phase curves
they measured themselves. Their sample includes bodies orbiting
the Sun (dwarf planets, Kuiper belt/scattered disk objects, and
centaurs) and 17 satellites. They find that almost all of the bodies
have opposition surges dominated by coherent backscattering.
They find that ‘‘young’’ surfaces generally have high albedos,
gray colors, and shallow surges, while ‘‘old’’ surfaces have low
albedos, red colors, and steep surges. They also find that the
moons typically have much narrower surges than the bodies
orbiting the Sun. Their results appear to be generally compatible
with ours.

Our method cannot directly derive the physical properties
obtained from the models. First, there is a large set of models, and
it seemed more convenient to separate the morphological models
from the more physical and sophisticated ones. Second, because
the crude spectral resolution of our data set is not appropriate for
a majority of physical models which need a fine spectral
resolution (for example, in the coherent-backscatter theory,
HWHM is linked to the ratio of the wavelength to the free mean
path of photons). In addition, coherent backscatter can signifi-
cantly polarize the observed brightness of a surface, so the
polarization phase curves can add crucial and complementary
information to that of the unpolarized phase curves. The
polarization opposition effect has already been discovered for
most of the objects that exhibit a photometric opposition surge
(Rosenbush et al., 2002, 2006; Rosenbush and Kiselev, 2005;
Belskaya et al., 2008). These discoveries provided almost unequi-
vocal evidence of the interference origin of both opposition
phenomena for these objects. More work will need to be done
with a large set of satellites of the solar system (see also
Mishchenko et al., 2006). Consequently, more investigations need
to be provided for this purpose by using color and polarization
phase curves.

For future work, which will critically depend on the quality of
the observations, first it would be interesting to study the phase
functions of the leading and trailing faces of synchronously
rotating satellites in order to test the role of the environmental
effect more precisely. Indeed, satellites are subject to energy
fluxes from electrons, photons and magnetospheric plasma, and
ion bombardment, which differ markedly between the leading
and trailing sides (Buratti et al., 1988). Consequently, morpholo-
gical parameters might vary significantly from the leading side to
the trailing side for the same satellites. However, the large
dispersion in trailing side data (see, for example, Kaasalainen et
al., 2001) did not allow us to pursue this comparison. For a future
study, we hope to have more accurate data for all of the satellites
of the solar system.

Second, to better understand the role of the ‘‘planetary
environmental effect,’’ a more relevant study would be the
comparison of rings with ‘‘ringmoons,’’ i.e., small satellites which
are in the vicinity of the rings. Several examples of such a ring/
ringmoon system are present in the environment of each giant
planet:

+ for Jupiter: Metis and Adrastea with the main ring (Showalter
et al., 1987); Amalthea and Thebe with the Gossamer ring
(Burns et al., 1999);
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+ for Saturn: Pan, Daphnis and Atlas with the outer A ring (Smith
et al., 1981; Spitale et al., 2006), Prometheus and Pandora with
the F ring (Smith et al., 1981), and Enceladus with the E ring
(although Enceladus is the primary source of the E ring, it is
not usually called a ‘‘ringmoon’’ Verbiscer et al., 2007);

+ for Uranus: Cordelia and Ophelia with the ! ring (French and
Nicholson, 1995);

+ for Neptune: Galatea with the Adams ring (Porco, 1991).

Unfortunately, opposition phase curves of the small satellites are
not generally available because they require multiple observations
of faint targets, generally with a high level of background light
from the planet and/or rings. However, ringmoons can be
observed more easily using groundbased and Earth-orbiting
telescopes near the times of ring-plane crossings—e.g. Bosh and
Rivkin (1996) and Nicholson et al. (1996) for Saturn and Showalter
et al. (2007) and de Pater (2008) for Uranus. In addition, the
Cassini extended mission and future missions to the outer solar
system may provide phase curves for some of the small satellites.
We anticipate that these new data sets and improved photometric
models will provide a better understanding of the relation
between planetary rings and ring moons in the decades to
come.
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Appendix A. Refinements to the Sun’s angular size effect

To compute the distance from a solar system object to the Sun
at any given date, it is not appropriate to use the semi-major axis.
We use a series of equations which take into consideration the
distance between the Sun and the planet at the approximate date.
The heliocentric radius rp, the distance from the focus of the
ellipse (i.e., the Sun) to the planet, is given by

rp ¼ að1# e cos EÞ (10)

where E is the eccentric anomaly, a and e are two of the seven
orbital elements which define an ellipse in space: a is the mean
distance, or the value of the semi-major axis of the orbit (average
Sun to planet distance); e is the eccentricity of the ellipse which
describes the orbit (dimensionless); i is the inclination (in
degrees), or angle between the plane of the ecliptic (the plane of
the Earth’s orbit about the Sun) and the plane of the planets orbit;
O is the longitude of ascending node (in degrees), or the position
in the orbit where the elliptical path of the planet passes through
the plane of the ecliptic, from below the plane to above the plane;
õ is the longitude of perihelion (in degrees), or the position in the
orbit where the planet is closest to the Sun; l is the mean
longitude (in degrees), the position of the planet in the orbit; and
M is mean anomaly (in degrees). The mean anomaly gives
the planet’s angular position for a circular orbit with radius
equal to the semi-major axis. It is computed directly from the
elements using

M ¼ l# õ (11)
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Table 6
References for the observational parameters needed to compute the angular size of the Sun a* .

Object Solar angular size Observation time References
a* (1) (UT)

Moon 0.263 1968 December 24 Whitaker (1969)
Jupiter

Main ring 0.0506 2000 December 13 Throop et al. (2004)
Io 0.0498 1977 December 15 Lockwood et al. (1980)
Europa 0.0515 1976 January 1 Thompson and Lockwood (1992)
Ganymede 0.0499 1971 May 1 Blanco and Catalano (1974)
Callisto 0.0515 1976 January 1 Thompson and Lockwood (1992)

Saturn
C ring (HST) 0.0295 2005 January 13 French et al. (2007)
B ring 0.0266 1959 June 26 Franklin and Cook (1965)
B ring (HST) 0.0295 2005 January 13 French et al. (2007)
A ring (HST) 0.0295 2005 January 13 French et al. (2007)
E ring 0.0271 1980 January 1 Larson (1984)
Enceladus 0.0287 1997 October 10 Verbiscer et al. (2005)
Rhea 0.0268 1976 January 13 Lockwood et al. (1980)
Iapetus 0.0266 1972 December Franklin and Cook (1974)
Phoebe 0.0295 2005 January 13 Bauer et al. (2006)

Uranus
Rings 0.0138 1997 July 29 Karkoschka (2001)
Portia group 0.0138 1997 July 29 Karkoschka (2001)
Ariel 0.0138 1997 July 29 Karkoschka (2001)
Titania 0.0138 1997 July 29 Karkoschka (2001)
Oberon 0.0138 1997 July 29 Karkoschka (2001)

Neptune
Fraternité 0.00885 2002 July 27 de Pater et al. (2005)
Egalité 0.00885 2002 July 27 de Pater et al. (2005)
Nereid 0.00889 1998 June 20 Schaefer and Tourtellotte (2001)
Triton 0.00885 1988 June 20 Buratti et al. (1991)

Bold text corresponds to observations whose time-of-day was not specified; in these cases we assumed an hourly time of 18:00. In some cases the observations extended
over a period of years, so we have chosen one date arbitrarily.
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Kepler’s second law states that the radius vector of a planet
sweeps out equal areas in equal times. The planet must speed up
and slow down in its orbit. The true anomaly f gives the planet’s
actual angular position in its orbit. It is the angle (at the Sun)
between perihelion of the orbit and the current location of the
planet. To obtain its value, first we compute the eccentric
anomaly, E, from M and the eccentricity e by using the ‘‘Kepler
equation’’:

M ¼ E# e sin E (12)

An expansion to order e3 of the solution to the ‘‘Kepler equation’’ is

E ¼ M þ e#
e3

8

! "
sinM þ

1
2
e2 sin2M þ

3
8
e3 sin3M (13)

Now, to find the orbital elements of a planet at a specific date,
we use

a ¼ a0 þ _at (14)

e ¼ e0 þ _et (15)

i ¼ i0 þ ð_a=3600Þt (16)

õ ¼ õ0 þ ð _̃o=3600Þt (17)

O ¼ O0 þ ð _O=3600Þt (18)

l ¼ l0 þ ð _l=3600þ 360NrÞt (19)

where t is the observation time (Table 6 in the Appendix)
converted into Julian centuries since JD 2451545.0, the quantities
with the subscript ‘‘0’’ are the orbital elements at the epoch of
J2000 (JD 2451545.0) and the dot quantities are the change per
julian century (1 julian century ¼ 31,557,600 s) of the orbital
elements (values are taken from Murray and Dermott, 2000).
When we have the heliocentric radius at the given observation
time, we can compute the solar angular size a* using rp and r*, the

radius of the Sun:

a* ¼ arcsin
r*
rp

(20)

The limb darkening function of Pierce and Waddell (1961) has
been used in the past to be convolved with a theoretical opposition
effect function (Kawata and Irvine, 1974). Its formula is

Wðm0Þ ¼ al þ blm0 þ cl 1# m0 ' log 1þ
1
m0

! "# $
(21)

where m0 ¼ cosy0 and y0 varies from 0 to the Sun’s angular radius
a*. al, bl and cl are coefficients that depend on the wavelength
(values are given in Table 7 in the Appendix). We perform a
normalized convolution of the limb darkening function to the
linear-exponential function PðaÞ by doing

P0ðaÞ ¼
R a*
0 PðaÞ 'Wðcosy0Þ dy0
R a*
0 Wðcosy0Þdy0

(22)
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