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A search for pair production of the lightest supersymmetric partner of the top quark, ¢1, is per-
formed in the leptonjets channel using 0.9 fb™! of data collected by the DO experiment. Kinematic
differences between #1t; and the dominant top quark pair production background are used to sepa-
rate the two processes. First limits from Run II of the Fermilab Tevatron Collider for the scalar top
quark decaying to a chargino and a b quark (£1 — ¥, b) are obtained for scalar top quark masses of
130-190 GeV and chargino masses of 90-150 GeV.

PACS numbers: 12.60.Jv, 13.85.Rm, 14.65.Ha, 14.80.Ly



Supersymmetry [1] introduces a superpartuner for each
of the left and the right-handed top quarks. Because of
the large top quark mass, the mixing between those two
can be substantial and lead to a large difference in the
mass eigenvalues of the two scalar top (“stop”) quarks.
Thus, the lighter stop quark #; could possibly be the
lightest scalar quark and within reach at the Fermilab
Tevatron Collider. In the Minimal Supersymmetric Stan-
dard Model (MSSM) stop quarks are produced mainly in
pairs (£1f1) via the strong interaction, the same mech-
anism as for top quark pair production (tf) |2]. The
expected next-to-leading-order (NLO) cross section at
a center of mass energy of 1.96 TeV for a stop quark
of mass equal to 175 GeV is (0.58%015) pb [3], while
for a top quark of the same mass the cross section is
(6.840.6) pb |4]. The stop quark pair production cross
section strongly depends on the mass of the stop quark.

The different possible decay modes of the stop quark
result in a number of distinct final state signatures. The
branching ratios for stop quark decays depend on the
parameters of the model, in particular the masses of the
supersymmetric particles involved. The decays to a ¢
quark and the lightest neutralino (f; — cx?) [3] and to a
b quark, a lepton, and a sneutrino (£; — bf*,) [6] have
already been explored at DO in Run II of the Tevatron.
For stop quarks lighter than the top quark the decay
channel #; — Y] b, with subsequent decay of the lightest
chargino Y7 to the lightest neutralino X9 and a W boson,
can dominate, if kinematically allowed. In this Letter we
assume that the branching ratio B(f; — Y b) = 1. This
channel has been explored only once before by the CDF
collaboration in Run I of the Tevatron at /s = 1.8 TeV
for stop quark masses of 100-120 GeV [7]. With a dataset
more than ten times larger, we obtain first limits in this
channel at /s = 1.96 TeV for stop quark masses in the
range 130-190 GeV.

The t,t; event signature in the studied decay chan-
nel can be similar to the tf signature, making it possi-
ble for the #1t; signal to be embedded in the tf event
sample. The goal of this analysis is to search for this
possible hidden admixture. The main difference relative
to tt production is the additional presence of neutralinos
in the event. However, this does not lead to significantly
higher missing transverse energy (Hr), since the neutrali-
nos are mostly produced back-to-back. We consider the
decay channel with one W boson decaying to hadrons
and the other one to an electron or muon and a neutrino.
Scenarios with both on-shell and off-shell W bosons pro-
vide the same signature. The final state consists of one
high-pr lepton, £ from the neutrino and the neutrali-
nos, two jets originating from b quarks (“b jets”), and two
light-quark jets. This is referred to as the “lepton+jets”
channel. We consider twelve mass points, for which the
studied decay can dominate. We fix the neutralino mass
to 50 GeV, a value close to the experimental limit from
LEP [§], and we vary the stop quark mass from 130 to

190 GeV and the chargino mass from 90 to 150 GeV to
obtain the desired event signature. For larger neutralino
masses the signature changes and the sensitivity of this
study decreases.

The search is conducted using data collected by the
DO detector 9] in pp collisions at the Fermilab Tevatron
Collider. Triggers require an electron or muon and at
least one jet with large transverse momentum (pr). The
dataset comprises an integrated luminosity of 913 pb—!
for events containing electrons in the final state, and
871 pb~! for events with muons.

We select events with one isolated electron with pr >
20 GeV and pseudorapidity |n| < 1.1, or one isolated
muon with ppr > 20 GeV and || < 2.0, and Fr >
20(25) GeV in the electron (muon) channel [10]. To re-
ject events with mismeasured leptons, the lepton momen-
tum vector and the ' vector are required to be sepa-
rated in azimuth. In addition, we only accept events
with >3 jets, each with pr > 15 GeV and |n| < 2.5,
of which the jet with largest pr (“leading jet”) has to
have pr > 40 GeV. Events with a second isolated elec-
tron or muon with pr > 15 GeV are rejected. Details
about object identification, jet energy corrections, and
trigger requirements can be found in Ref. |10]. In addi-
tion, we require at least one b-tagged jet in each event,
where the b jets are identified through a neural network
algorithm [11]].

For events with four or more jets, a kinematic fitting
algorithm [12] is used to reconstruct the objects to a tt
hypothesis, which is used to separate £, from tf events.
The fitter minimizes a x? statistic within the constraints
that both candidate W boson masses are 80.4 GeV and
that the masses of the two objects reconstructed as top
quarks are the same. The fitter considers only the four
jets of highest pr, uses b-tagging information to minimize
combinatorics, and varies the four-vectors of the detected
objects within their resolution. Only events for which
the fit converges (86-95% of signal events depending on
the mass point and lepton flavor) are selected for further
analysis.

The events are classified into four distinct subsamples,
according to jet multiplicity (3 jets or > 4 jets) and lepton
flavor (e+jets or p+jets). All subsamples are used to
obtain the final limit.

Because of their topological similarity to the signal, t#
events are the most challenging background. Of the other
background processes, production of W bosons in associ-
ation with jets (W+jets), and multijet events, where jets
are misidentified as isolated leptons, are most important.
Far smaller contributions arise from Z+jets, single top
quark, and diboson production.

Except for the multijet background, the shape of dis-
tributions in all processes are modeled through Monte
Carlo (MC) simulation. The #;f; signal is generated by
PYTHIA v6.323 [13] in its general MSSM mode, where the
top trilinear coupling A; and the SU(2) gaugino mass Mo



TABLE I: Expected numbers of events with total uncertain-
ties and observed numbers of events after the final selection.

Sample =3 jets > 4 jets

e+jets ptjets e+jets p+jets
Signal
mg, [GeV]/m).(li [GeV]
190/150 3.2703 2.2702 2.9704 2.1703
130/90 10.4719 6.570°% 52707 3.270%
Background
tt 77.67190 5857120 103.07228  g4.21159
W +jets 67.775y,  TT4Tigy  17T1TIRS 21.6T I
Z+jets 528 1% 69T 1% 28t 0% 33% 0%
Single top  9.3% 16 75t 13 g+t 0T g5t 07
Diboson 427 oo 38800 14t 0L 1.2f 073
Multijet 223442  3.0+24 107426  3.3£2.7
Total 186.27557 157.27329 13817258 116.0720
Data 193 163 133 135

are varied to set the stop quark mass and the chargino
mass, respectively. The neutralino mass is kept at the
same value by keeping the U(1) gaugino mass M; con-
stant. The tf background is also generated by PYTHIA,
using a top quark mass of 175 GeV. The W-+jets and
Z+jets processes are generated by ALPGEN 2.05 [14] for
the matrix element calculation, with subsequent par-
ton showering and hadronization generated with PYTHIA.
Single top quark events are generated by CoMPHEP-
SINGLETOP [15] and diboson production is modeled by
PYTHIA. All generated events are passed through a
GEANT-based [16] simulation of the DO detector and re-
constructed using the same software as for data. To im-
prove agreement between data and MC simulation, addi-
tional corrections [10] are applied to the simulation before
selection.

The contribution of the multijet background for each
jet multiplicity and lepton flavor is determined from data
using a method which exploits the fact that this back-
ground contains jets that mimic leptons, whereas the
other processes have a true isolated lepton [17]. The nor-
malization of the W+jets background is estimated be-
fore imposing the b-tagging requirement, by subtracting
from data: (i) the estimated multijet background, and
(ii) the tt, Z+jets, single top, and diboson contributions
as calculated from their next-to-leading order cross sec-
tions [4, [18]. The remaining events are assumed to be
W +jets background, where we have scaled the heavy fla-
vor component (Wbb plus Wce) by a relative factor of
1.1740.18. This factor was derived on a statistically in-
dependent sample with two jets and at least one b-tag.

Table [l shows the numbers of expected and observed
events after the final selection, found to be in good agree-
ment. For signal events the mass points with the highest
and lowest event yield are shown as examples.

Because of the similarity of the #;#; and tf final
states [19], a multivariate likelihood discriminant [20] is

employed to discriminate between the two processes. We
study the kinematic differences and choose the variables
of greatest discrimination and low correlation as input
to the multivariate discriminant. For events with three
jets, where the two jets besides the leading b-tagged jet
are referred to as light jets j, the following five vari-
ables are used: (i) the invariant mass of the three jets,
(i) Kmin = AR?jinp?“, where AR;njin is the minimum
AR [10] separation between a pair of jets (in rapidity-
azimuth space) and p'® is the minimum jet pr in that
pair, (iii) the smaller of the AR separations between the
leading b-tagged jet and either the lepton or the vector
sum of the two light jets, (iv) the pr of the system of the
two light jets, and (v) the lepton-Fr transverse mass [21].
For events with four or more jets, the following five vari-
ables are used: (i) the top quark mass as reconstructed
by the kinematic fitter, (ii) the scalar sum of the pr of
the four leading jets, (iii) the invariant mass of the sys-
tem of the second and third leading jet, excluding the
leading b-tagged jet, (iv) K#" and (v) the pr of the
fourth leading jet.

Figure [1l shows the variable with the greatest separa-
tion for each jet multiplicity as a comparison between
data and the prediction. Figure [2] shows the resulting
discriminant for the mass point with m; =175 GeV and
m)zli:135 GeV in the 3-jet and the 4-jet subsample, com-

paring the prediction with data. The prediction for 51;1
signal (solid line) peaks at 1, while it peaks at 0 for ¢f.

We use a Bayesian approach [22] to extract upper
limits on the stop quark pair production cross section
(0551) from the discriminant distributions. We construct
a binned likelihood as a product over all bins in the dis-
criminant distribution as well as each of the four chan-
nels considered, assuming a Poisson distribution for the
observed counts per bin. For the signal cross section,
we assume a flat non-negative prior probability. By in-
tegrating over signal acceptance, background yields and
integrated luminosity using Gaussian priors for each sys-
tematic uncertainty, we obtain the posterior probability
density as a function of cross section for signal. The up-
per limit on 077, at 95% confidence level is the point
where the integral over the posterior probability density
reaches 95% of its total.

We differentiate between systematic uncertainties that
change the yield uniformly for all bins of the discrim-
inant, and those that affect each bin differently. The
effects are given as a percentage on the event yield of the
affected process; they can vary widely, depending on the
subsample and the physics process. The sources chang-
ing the yield uniformly include the uncertainties on in-
tegrated luminosity (6.1%) [23], efficiency of the event-
based data quality selection (0.5%), theoretical cross sec-
tions (13-20%), top quark mass (1.3-7%), estimation of
the W+jets background (24-74%, depending on the jet
multiplicity and lepton flavor subsample), influence of
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FIG. 1: Comparison of the prediction with data after the final selection for the e+jets and u-+jets channels combined, a) the
invariant mass of the three jets in events with 3 jets, b) the reconstructed top quark mass in events with >4 jets. The solid
line shows the distribution for a signal point, enhanced by a factor of ten.

a) 1201
€ | —~data D@ 0.9 fi*
=100 tt
o B WH+jets
2 F
80 other ;
Il multijet 3jets
60 —1t,f,x10
: (m- =175 GeV, m,, = 135 GeV)
r L I
40: rot + | | | +
L + i *
20 ——
C

i T R S i i AR |
O0 0.1 02 03 04 05 06 07 08 09 1
Discriminant

by -
€ oof ~data D@ 0.9 fi*
2 a0k tt
§ 80; l W+jets
a 7oL | other .
60F B multijet =4 jets
50F —1tf,x10
E (m- =175 GeV, m_ =135 GeV) |
40 | % !
307 s ‘ —
20 i | |
g t_mt
10 ; TR :

Errrr | 5 ! ! T |
00 0.1 02 03 04 05 06 07 08 09 1
Discriminant

FIG. 2: Comparison of the discriminant distribution for data with the prediction after the final selection for the e+jets and
u+jets channels combined, for events with a) 3 jets, and b) >4 jets. The solid line shows the distribution for a signal point,

enhanced by a factor of ten.

the signal on the W+jets normalization (0.8-3.4%), es-
timation of the multijet background (19-84%, depend-
ing on the subsample), lepton identification and recon-
struction efficiencies (2.2-2.5%), primary vertex identi-
fication efficiency (2.7%), and trigger efficiencies (1.2—
2.7%). The sources that also change the shape of the
discriminant distribution include jet energy scale calibra-
tion (0.6-30%), and b-tagging (0.1-27%). Limits on the
stop quark pair production cross section are degraded by
about a factor of two when all systematic uncertainties
are accounted for.

Table [[I shows the results for each mass point for the
combination of all channels. The results are also illus-
trated in Fig. Bl The expected limits are derived from
the sum of all selected background samples without a titq
contribution, but including the ## background according
to its theoretical cross section. The observed limits on

the cross section are a factor of 2—13 larger than the the-
ory prediction and agree with the expected limits within
uncertainties. In some cases, most notably for the mass
point with mz, = 175 GeV and m g+ = 135 GeV, the ob-
served limit is higher than the expected limit, pointing
to an excess of signal-like data. To quantify the signif-
icance, the peak position of the posterior probability is
compared to its width. In this case, the peak is 1.62
standard deviations away from zero.

In summary, we present first limits on the #,¢; pro-
duction at the Tevatron Run II for a light stop quark
of 130-190 GeV decaying to a b quark and the lightest
chargino. In the MSSM scenarios studied by this search,
we derive upper limits on the cross section that are a fac-
tor of 2 — 13 above the theory prediction and agree with
the expected limits within uncertainties.
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FIG. 3: Expected (open markers and dashed lines) and observed (filled markers and solid lines) Bayesian limits at 95%

confidence level on the #1#1 cross section for all channels combined. Also shown is the +1 standard deviation band on the
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TABLE II: The predicted t1f1 cross section aqd the expected
and observed Bayesian upper limits on the t1f1 cross section
at the 95% confidence level for different assumed values of m;,
and M. We assume mzo = 50 GeV and B(ti — xX+b) = 1.
The uncertainties on the theoretical prediction result from the
simultaneous variation by a factor of two of the factorization
and renormalization scales about their nominal values, set
equal to the stop quark mass. The uncertainties on the ex-
pected limits represent the one standard deviations estimated
via background-only pseudo-experiments.

masses [GeV] oz 7 [pb]
tity
mg, My theory exp. limit obs. limit
190 150 0.3470 09 2.76+0.79 3.56
190 135 0.347000  2.69+0.75 3.26
190 120 0347000 4.2241.12 4.36
175 135 0.58T015  3.06+0.87 4.42
175 120 0.587015 4.4441.09 5.92
175 105 0.58%01%  4.71£1.26 5.78
160 120 1.0070 25 4.7941.27 5.87
160 105 1001525 5.3241.37 5.48
160 90 1001055 6.07£1.55 5.67
145 105 1.80703%  6.04+1.56 7.01
145 90 1.80%05s  6.75+1.74 6.23
130 90 3411592 9.514+2.51 8.34
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