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A current objective of low-energy nuclear theory is to build non-empirical nuclear energy density
functionals (EDFs) from underlying inter-nucleon interactions and many-body perturbation theory
(MBPT). The density matrix expansion (DME) of Negele and Vautherin is a convenient method
to map highly non-local Hartree-Fock expressions into the form of a quasi-local Skyrme functional
with density-dependent couplings. In this work, we assess the accuracy of the DME at reproducing
the non-local exchange (Fock) contribution to the energy. In contrast to the scalar part of the
density matrix for which the original formulation of Negele and Vautherin is reasonably accurate,
we demonstrate the necessity to reformulate the DME for the vector part of the density matrix, which
is needed for an accurate description of spin-unsaturated nuclei. Phase-space averaging techniques
are shown to yield a significant improvement for the vector part of the density matrix compared
to the original formulation of Negele and Vautherin. The key to the improved accuracy is to
take into account the anisotropy that characterizes the local-momentum distribution in the surface
region of finite Fermi systems. Optimizing separately the DME for the central, tensor and spin-
orbit contributions to the Fock energy, one reaches a few-percent accuracy over a representative set
of semi-magic nuclei. With such an accuracy at hand, one can envision using the corresponding
Skyrme-like energy functional as a microscopically-constrained starting point around which future
phenomenological parameterizations can be built and refined.
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I. INTRODUCTION

The nuclear energy density functional (EDF) approach
is the many-body method of choice to study medium-
mass and heavy nuclei in a systematic manner [1]. Mod-
ern parameterizations of empirical energy functionals
(e.g. Skyrme, Gogny or their relativistic counterparts)
provide a fair description of bulk properties and certain
spectroscopic features of known nuclei. However, such
empirical EDFs lack predictive power and a true spectro-
scopic quality away from known data. Consequently, an
intense ongoing effort is dedicated to empirically improv-
ing the analytical form and the fitting of energy density
functionals [2–7].

A complementary approach in the quest for predictive
EDFs [8–12] relies less on fitting empirical functionals to
known data, but rather attempts to constrain the analyt-
ical form of the functional and the values of its couplings
from many-body perturbation theory (MBPT) and the
underlying two- and three-nucleon (NN and NNN) inter-
actions. Switching from conventional hard-core poten-
tials to low-momentum interactions is essential in this
respect, as the many-body problem formulated in terms
of the latter becomes significantly more perturbative1.

∗Electronic address: gebremar@nscl.msu.edu
†Electronic address: thomas.duguet@cea.fr
‡Electronic address: bogner@nscl.msu.edu
1 The need for infinite resummation of certain sets of diagrams

Indeed, second-order perturbative calculations provide a
good account of bulk correlations in both infinite nuclear
matter [13] and doubly-magic nuclei [14]. Using many-
body perturbation theory (MBPT) [15] as a baseline,
the long term goals of the project are to (i) bridge non-
empirical EDF methods with ab-initio many-body tech-
niques applicable to light nuclei, (ii) calculate properties
of heavy/complex nuclei from basic vacuum interactions
and (iii) perform EDF calculations with controllable the-
oretical errors.

MBPT contributions to the energy are written in
terms of density matrices and propagators convolved with
finite-range interaction vertices, and are therefore highly
non-local in both space and time. In order to make such
functionals numerically tractable in heavy open-shell nu-
clei, it is desirable to develop simplified approximations
expressed in terms of the local densities and currents.
Starting at lowest order, which displays only non-locality
in space through the Fock contribution to the energy2 ,
the objective of the present work is to revisit the density
matrix expansion (DME) of Negele and Vautherin [16] to
assess its accuracy in reproducing non-local Fock contri-
butions.

The focus of the present paper is on the vector part of
the density matrix, which is relevant for approximating

and/or the redefinition of the unperturbed vacuum |Φ〉 cannot
be ruled out at this point.

2 For simplicity, we are assuming local NN and NNN interactions.
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EDF Energy density functional

DME Density matrix expansion

PSA Phase space averaging

OBDM One-body density matrix

INM Infinite nuclear matter

TABLE I: List of acronyms repeatedly used in the text.

the central, tensor and spin-orbit Fock contributions in
spin-unsaturated nuclei, i.e. in nuclei where only one of
two spin-orbit partners is filled. Indeed, the few tests
of the DME over the past thirty-five years have focused
entirely on the scalar part [11, 17, 18], given that no re-
liable expansion of the vector part of the density matrix
was ever proposed. As acknowledged by Negele and Vau-
therin in their seminal paper, the expansion suggested
for the vector part of the density matrix was not on the
same level as the one designed for its scalar part. Such a
feature is obviously critical since the overwhelming ma-
jority of nuclei are spin unsaturated. Here, we demon-
strate that phase-space averaging techniques allow a con-
sistent expansion of both the scalar and the vector parts
of the density matrix, such that the accuracy is greatly
improved for the latter. A key feature of the new method
is to take into account the deformation displayed by the
local momentum distribution at the surface of most fi-
nite fermi systems [19, 20]. While it is shown to have
little impact on the expansion of the scalar part, the de-
formation of the local momentum distribution is crucial
to accurately reproduce contributions to the energy that
probe the vector part of the density matrix.

The paper is organized as follows. Section II provides
the basic ingredients needed to conduct the present study.
Section III is dedicated to the reformulation of the den-
sity matrix expansion on the basis of phase-space aver-
aging techniques. The accuracy of the approximation
method is gauged in Sec. IV through non-self consistent
tests that make use of two schematic nucleon-nucleon
interactions and of density matrices obtained from self-
consistent EDF calculations of a large set of semi-magic
nuclei. Each of the central, tensor and spin-orbit contri-
butions to the Fock energy is analyzed separately. Con-
clusions are given in Sec. V while appendices provide
complete sets of formulae and analytical derivations. In
particular, couplings of the generalized Skyrme-like EDF
obtained through the DME (see Eq. 20) are provided in
appendix B.

II. DENSITY MATRIX AND HF ENERGY

Let us consider a product state of reference |Φ〉. As
briefly explained in Sec. II B, this typically is the un-

perturbed many-body state around which perturbation
theory is performed or, in a more phenomenological
language, the auxiliary state in terms of which one
builds a so-called single-reference energy density func-
tional (EDF). In the present case, we consider an im-
plementation without explicit treatment of superfluidity
such that |Φ〉 takes the form of a Slater determinant. In
addition, we consider the system to be invariant under
time-reversal.

A. The one-body density matrix

The one-body density matrix (OBDM) ρ of the
many-body state |Φ〉 is defined in terms of operators
c† (rσ q)/c (rσ q) that create/annihilate a nucleon at a
given position in space r with given spin and isospin pro-
jections σ = ±1/2 and q = n, p on the quantization axis

ρq(rσ, r′ σ′) ≡ 〈Φ| c†(r′ σ′ q) c (rσ q) |Φ〉

=
∑
ij

ϕ∗i (r
′σ′q) ϕj(rσq) ρ

q
ji , (1)

where it is assumed that single-particle states do not
mix isospin projections so that the OBDM is diagonal in
isospin space3. In Eq. 1, ρqji ≡ 〈Φ | c

†
i cj |Φ〉 defines the

OBDM in an alternate single-particle basis {ci;ϕi(rσq)}.
Choosing the particular basis from which |Φ〉 is built, ρqji
becomes diagonal with matrix elements equal to one for
occupied states and zero for empty states. The OBDM
can be further separated into

ρq(rσ, r′ σ′) =
1
2
{
ρq(r, r′) δσσ′ + sq(r, r′) · σσσ′

}
,(2)

where the scalar and vector parts are respectively defined
as

ρq(r, r′) ≡
∑
σσ′

ρq(rσ, r′ σ′) 〈σ′|1|σ〉

=
∑
σ

∑
ij

ϕ∗i (r
′σq)ϕj(rσq) ρ

q
ji , (3)

sq(r, r′) ≡
∑
σσ′

ρq(rσ, r′ σ′) 〈σ′|σ|σ〉

=
∑
σσ′

∑
ij

ϕ∗i (r
′σ′q) 〈σ′|σ|σ〉ϕj(rσq) ρqji .(4)

In the approximation that the single-particle wave-
functions of spin-orbit partners are identical, it can be
shown that the vector part of the density matrix sq(r, r′)
is zero in spin-saturated nuclei.

3 The Slater determinant can however break spatial symmetries.
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B. Long-term strategy

Our long-term objective is to build so-called non-
empirical nuclear energy functionals E [ρ] through the ap-
plication of many-body perturbation theory implemented
in terms of low-momentum interactions [21]

E [ρ] = EHF + ∆EHF , (5)

where EHF denotes the (symmetry-unrestricted)
Hartree-Fock (HF) contribution from two-, three-
. . . nucleon forces whereas ∆EHF encompasses the
corresponding correlation energy to all orders in per-
turbation theory4. As opposed to the wisdom based on
the use of conventional nuclear potentials, it has been
shown recently that so-called low-momentum two- and
three-nucleon interactions make the nuclear many-body
problem more perturbative, with Hartree-Fock serving
as a reasonable zeroth-order approximation [13]. Still,
calculations of the infinite nuclear matter (INM) equa-
tion of state [13], as well as binding energies and charge
radii of doubly-magic nuclei [14], demonstrate that it is
necessary to go at least to second-order in perturbation
theory to resum enough bulk correlations into the EDF
to get realistic binding. In the present paper though,
we focus on the lowest-order contribution to the energy
that is bilinear in the OBDM, i.e. the Hartree and Fock
diagrams. While treating the direct (Hartree) term
exactly, the objective of the density matrix expansion
is to simplify the non-local character of the exchange
(Fock) contribution to the energy by mapping it into a
generalized Skyrme functional with density-dependent
couplings. Therefore, the DME can be viewed as a
constructive approach to encode finite-range physics into
density-dependent couplings of a Skyrme-like functional.

The reasons for restricting our attention to the
Hartree-Fock contributions in this initial study are two-
fold. First, a non-trivial extension of the DME is needed
to treat non-localities in both space and time that arise
in higher orders of perturbation theory. I.e., one must
properly account for the presence of energy denomina-
tors when designing a DME for 2nd-order MBPT and
beyond [22] . To date, a satisfactory generalization of
the DME has not yet been formulated. Second, even if
we follow the ad-hoc prescription of neglecting the non-
locality in time by using averaged energy denominators,
it is well established that the dominant contributions
to bulk nuclear properties are of the Brueckner-Hartree-
Fock (BHF) type. Operationally, this amounts to replac-
ing the vacuum NN interaction in the Hartree-Fock ex-

4 In applications to nuclei, except for doubly-magic ones, the
ground-state energy will in fact be expanded around a quasi-
particle vacuum of the Bogoliubov type rather than around a
Slater determinant. This is necessary to take care of the Cooper
pair instability that arises in the 1S0 channel of the in-medium
NN amplitude.

pression by a Brueckner G-matrix (or a perturbative ap-
proximation in the case of low-momentum interactions)
evaluated at some average energy. Since the G-matrix
“heals” to the NN potential at long distances, applying
the DME to the long-range part of the NN interaction
at the Hartree-Fock level will in any event capture the
same contributions to the density-dependent couplings as
given by the long-range part of the G-matrix in a more
sophisticated BHF calculation. In this way, the domi-
nant density-dependence that arises from the finite-range
of the inter-nucleon interactions is accounted for. Once
a satisfactory generalization of the DME is developed
to handle spatial and temporal non-locality on the same
footing, non-localities arising from in-medium propaga-
tion can be mapped into the density-dependent Skyrme
couplings as well.

C. Two-nucleon interaction

For simplicity, and because the main point of the
present paper does not depend on it, we restrict our study
to two-nucleon interactions only. Note however that a
forthcoming publication is dedicated to the application of
the presently developed DME to the HF energy derived
from a chiral-EFT three-nucleon potential at N2LO [23].
In the present paper, we consider a generic local two-
body interaction that includes central, tensor and spin-
orbit parts. Defining xi ≡ (riσiqi), one can write in the
position ⊗ spin ⊗ isospin basis

〈x1x2|V STI |x3x4〉 ≡ V STI δ(r1 − r3) δ(r2 − r4) , (6)

where I can be C−central, LS−spin-orbit or T−tensor
whereas (S, T ) takes values (1, 0), (0, 1), (1, 1) or (0, 0),
where the first number 1/0 refers to two-body spin-
triplet/singlet channels whereas the second number 1/0
refers to two-body isospin-triplet/singlet channels. More
explicitly, the central part of the interaction reads

V STC ≡ vSTC (r) Πσ
s/t Πτ

s/t ,

where the relative and center of mass coordinates are
defined as

r ≡ r1 − r2 and R ≡ 1
2

(r1 + r2). (7)

while spin/isospin singlet/triplet projectors

Πσ
s/t ≡

1
2

(1−/+ Pσ12) and Πτ
s/t ≡

1
2

(1−/+ P τ12) , (8)

are expressed in terms of spin/isospin exchange operators

Pσ12 ≡
1
2

(σ1.σ2 + 1) and P τ12 ≡
1
2

(τ1.τ2 + 1) . (9)

The spin-orbit and tensor parts of the two-nucleon inter-
action take the form

V STLS ≡ − i
2
vSTLS (r) r×∇ · (σ1 + σ2) Πσ

s/t Πτ
s/t ,

V STT ≡ vSTT (r)
[
3
(
σ1 · er

)(
σ2 · er

)
− σ1 · σ2

]
Πσ
s/t Πτ

s/t ,
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with er ≡ r/r. It should be noted that the spin-orbit and
tensor parts of the interaction only act in the spin-triplet
channel.

D. Fock contribution to the energy

As mentioned earlier, the strategy consists of applying
the DME to the exchange part of the HF energy while
treating the Hartree term exactly. Indeed, it was realized
long ago, starting with the early works on the DME by
Negele and Vautherin [16, 24], that treating the direct
part exactly has the following advantages:

(i) It provides a better reproduction of the density fluc-
tuations and the energy produced from an exact HF
calculation [24].

(ii) It significantly reduces the self-consistent propaga-
tion of errors if one restricts the DME to the ex-
change contribution [17, 24].

(iii) There is no additional complexity in the numerical
solutions of the resulting self-consistent HF equa-
tions [24] compared to applying the DME to both
Hartree and Fock terms.

The Fock contributions from central, spin-orbit and
tensor parts of the two-body interaction take the form

EFC [ST ] ∼
∫
dr1dr2

[
ρq(r1, r2) ρq′(r2, r1)

+ sq(r1, r2) · sq′(r2, r1)
]
vSTC (r) , (10)

EFLS [ST ] ∼
∫
dr1dr2

[
ρq(r1, r2) r×∇2 · sq′(r2, r1)

+ sq(r1, r2) · r×∇2ρq′(r2, r1)
]
vSTLS (r), (11)

EFT [ST ] ∼
∫
dr1dr2

[
sq(r1, r2) · sq′(r2, r1)

+
∑
µν

rµrν
r2

sq,µ(r1, r2)sq′,ν(r2, r1)
]
vSTT (r),(12)

where numerical coefficients and overall signs, as well as
sums and/or selection rules over isospin projections have
been omitted. Indeed, only the structure of the terms at
play is of importance for the present paper. For time-
reversal invariant systems, the scalar and vector parts of
the OBDM satisfy the relations [25]

ρq(r1, r2) = ρq(r2, r1) , (13)
sq(r1, r2) = −sq(r2, r1) , (14)

such that the exchange contribution from the spin-orbit
interaction reduces to

EFLS [ST ] ∼
∫
dr1dr2 v

ST
LS (r) sq(r1, r2) · r×∇2ρq′(r2, r1) .

III. REVISITING THE DME

A. Basics of the DME

The DME was originally proposed by Negele and Vau-
therin to establish a theoretical connection between the
empirical zero-range Skyrme force and Hartree-Fock cal-
culations with realistic NN interactions [16]. The central
idea is to factorize the non-locality of the OBDM by ex-
panding it into a finite sum of terms that are separable in
relative and center of mass coordinates. Adopting nota-
tions similar to those introduced in Ref. [26], one writes

ρq(r1, r2) ≈
nmax∑
n=0

Πρ
n(k r) Pn(R) , (15)

sq(r1, r2) ≈
mmax∑
m=0

Πs
m(k r) Qm(R) , (16)

where k is a momentum scale to be determined that
sets the scale for the decay in the off-diagonal direc-
tion, Πf

n(k r) are the so-called Π−functions that re-
main to be specified, and {Pn(R),Qm(R)} denote var-
ious bilinear products of local densities and their gradi-
ents {ρq(R), τq(R), Jq,µν(R),∇ρq(R),∆ρq(R)} obtained
from the OBDM through

ρq(R) ≡ ρq(r1, r2)|r1=r2=R , (17)
τq(R) ≡ ∇1 · ∇2 ρq(r1, r2)|r1=r2=R , (18)

Jq,µν(r) ≡ − i
2

(∇1 −∇2)µ sq,ν(r1, r2)|r1=r2=R .(19)

The above local densities relate to the matter density,
the kinetic density and the cartesian spin-current pseu-
dotensor density, respectively. See Appendix A for more
details. Provided that large enough nmax and mmax give
an accurate reproduction of the Fock contributions to the
energy (Eqs. 10, 11 and 12), the benefit of expansion 15-
16 is to provide a local approximation of the form (for
time-reversal invariant systems)
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EF ≈
∑
q

∫
dR
{
Aρρ ρq(R) ρq(R) + Aρτ ρq(R) τq(R) + Aρ∆ρ ρq(R) ∆ ρq(R) + Aρ∇J ρq(R)∇ · Jq(R)

+ A∇ρJ ∇ρq(R) · Jq(R) + AJJ
∑
µν

Jq,µν(R) Jq,µν(R)

+ AJJ̄
[(∑

µ

Jq,µµ(R)
)(∑

µ

Jq,µµ(R)
)

+
∑
µν

Jq,µν(R) Jq,νµ(R)
]}

+
∑
q̄

∫
dR
{
Bρρ ρq(R) ρq̄(R) + Bρτ ρq(R) τq̄(R) + Bρ∆ρ ρq(R) ∆ ρq̄(R) + Bρ∇J ρq(R)∇ · Jq̄(R)

+ B∇ρJ ∇ρq(R) · Jq̄(R) + BJJ
∑
µν

Jq,µν(R) Jq̄,µν(R)

+ BJJ̄
[(∑

µ

Jq,µµ(R)
)(∑

µ

Jq̄,µµ(R)
)

+
∑
µν

Jq,µν(R) Jq̄,νµ(R)
]}

, (20)

which is nothing but a local Skyrme-like EDF with cou-
plings microscopically derived from the vacuum interac-
tion. The couplings depend on the yet to-be-specified
momentum scale k, and are given by integrals of the
finite-range NN interaction over various combinations of
Π-functions, e.g.

Aρρ[k] ∼ 4π
∫
r2dr vSTC (r)

[
Πρ

0(k r)
]2

. (21)

Complete formulas for all the couplings appearing in
Eq. 20 are provided in appendix B. Before coming to
the details of the DME method, a few remarks are in
order:

(i) Eventually, the momentum scale k will be linked
to the local Fermi momentum kqF (R), or to a simi-
lar function, such that all couplings become den-
sity/position dependent. From Eq. 21, one sees
that such density/position dependence is a direct
consequence of the finite-range of the NN interac-
tion. In this respect, the form given in Eq. 20 is
more general than any existing empirical Skyrme
EDF.

(ii) Due to such a density/position dependence of
the couplings, terms that are usually connected
through a partial integration, e.g. ρq(R) ∆ ρq(R)
and ∇ρq(R) · ∇ρq(R), can in general no longer be
transformed into one another. As a result, one
keeps both types of terms explicitly in the resulting
EDF.

(iii) Starting from a realistic vacuum Hamiltonian con-
taining a three-nucleon force, one obtains a richer
EDF including a wealth of trilinear terms [23]. In-
cluding such terms will be eventually essential to
any realistic application of the present work.

(iv) Eq. 20 is to be complemented with the Hartree con-
tribution that can either be put under the form of a

local EDF or treated exactly. Regardless, the EDF
thus obtained only contains the physics of the HF
approximation such that further correlations must
be added in order to produce any reasonable de-
scription of nuclei. In the short term, such an ad-
dition can be done empirically by adding the above
DME coupling functions to empirical Skyrme func-
tionals and performing a refit of the Skyrme con-
stants to data [27]. This phenomenological proce-
dure is motivated by the earlier observation that
a Brueckner G-matrix differs from the vacuum NN
interaction only at short distances. Therefore, one
can interpret the refit to data as approximating the
short-distance part of the G-matrix with a zero-
range expansion thru second order in gradients.
Eventually though, and as already stated, it is the
goal of a future work to design a generalized DME
that is suited to higher orders in perturbation the-
ory [22].

B. Existing variants of the DME

Several DME variants applicable to the HF energy
have been developed in the past [16, 28–30]. They mainly
differ regarding (i) the choice made to fix the momentum
scale k, (ii) the path followed to obtain actual expres-
sions of the Π−functions (see below) and (iii) the set
of local densities that occur in the expansion. For in-
stance, the DME of Ref. [28] is a variant of the original
one proposed by Negele and Vautherin (NV-DME) [16]
that improves the accuracy of the expansion obtained at
first order (nmax = 0) by optimizing the momentum scale
k. The DME of Ref. [30] is based on a semi-classical ex-
tended Thomas-Fermi approximation, while the one pro-
posed in Ref. [29] is a phenomenological method that
introduces parameters to be optimized in order to obtain
the correct local semiclassical kinetic energy density and
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integrated projector identity of the OBDM (see Eq. 30).

C. Motivation for a PSA reformulation of the DME

The central part of the present work relates to a new
and more general DME variant that is based on phase-
space averaging (PSA) techniques. It will be denoted as
PSA-DME throughout. The need for such a new for-
mulation of the DME, in light of the number of already
available variants, relies on the following observations

(i) Existing DME formulations have focused mostly on
the scalar part of the OBDM. For instance, Negele
and Vautherin acknowledge in their seminal paper
that they were not able to design an approximation
of the vector part of the OBDM on the same level,
and thus with the same accuracy, as the one they
obtained for the scalar part. This is an essential
problem in view of constraining non-empirically the
nuclear EDF. Indeed, the vector part of the OBDM
is non zero in spin-unsaturated nuclei, i.e. in almost
all nuclei.

(ii) The PSA reformulation proposed below provides a
consistent derivation of the DME expansion of both
the scalar and the vector pieces of the OBDM. In
addition, it recovers the NV-DME as a particular
case, such that one is offered the freedom to choose
in a consistent fashion the variant that best opti-
mizes the reproduction of the each of the three Fock
contributions to the energy.

(iii) In the PSA approach, one uses information from
the local momentum phase space distribution of the
system of interest in order to optimize the DME
length-scale k and to produce analytical expres-
sions for the Πf

n(kr) functions.

(iv) Finally, it should be pointed out that all available
DME techniques hold only for time-reversal invari-
ant systems. Hence, an approach that can be ex-
tended to non time-reversal invariant systems is
important to constrain the nuclear EDF for non-
time reversal invariant systems. In that respect,
the requirements of Galilean, alternatively gauge
invariance, can be used to establish various rela-
tions between the Π−functions multiplying certain
time-even and time-odd densities [26, 31].

Note that the PSA formulation of the DME is not com-
pletely new. Negele and Vautherin mentioned the possi-
bility to use such an approach, having in mind to use the
phase space of infinite nuclear matter, before reverting to
a formal Bessel-function plane-wave expansion. From a
formal point of view, the PSA approach developed below
differs from that mentioned in Ref. [16] and is applied
consistently to both the scalar and the vector parts of
the OBDM. For instance, in spite of the weak angular
dependence of the scalar part of the OBDM [32], the

inconsistency in the order of application of the angle-
averaging and series expansion that exists in Ref. [16] is
not an issue in the present case.
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FIG. 1: The quadrupole anisotropy Pn
2 (R) of the local neu-

tron momentum distribution in a selected set of semi-magic
nuclei. The black, red and blue vertical lines indicate the ap-
proximate half-radii (where the density becomes half of the
density at the origin).

D. Momentum phase-space of finite Fermi systems

A finite fermi system exhibits peculiar properties for
the momentum phase-space distribution that are not
present for homogeneous systems. The intent of this
section is to mention those features that are relevant to
the present work. The local momentum distribution of
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quantum systems can be studied via a multitude of quan-
tum phase-space distribution functions [33]. Using the
Wigner distribution in Ref. [19] and the Husimi distri-
bution in Ref. [20], the local single-particle momentum
distribution is shown to display a diffuse and anisotropic
Fermi surface when sitting at the (spatial) surface of the
finite system. For reasons discussed in Sec. III E, the dif-

fuseness is not as important as the anisotropy. Hence, we
now describe a method that can be used to quantify of
the anisotropy of the local Fermi surface.

In Ref. [20], the local quadrupolar deformation of the
momentum Fermi surface (for a given isospin) is given
by5

P q2 (r) ≡
∫
dp
[
3(er · p)2 − p2

]
Hq(r,p)∫

dpp2Hq(r,p)
=
[

3
τq(r)

∑
i

|(er · ∇)ϕi(rq)|2 ρqii − 1
]

+O((kqF r0)2) , (22)

where Hq(r,p) is the Husimi distribution, r0 is a length
scale used in the Husimi distribution and kqF is a short-
hand notation for the local Fermi momentum kqF (R) de-
fined in a local density approximation through

kqF ≡
[
3π2 ρq(R)

]1/3
. (23)

Equation 22 is computed in the basis ϕi(rq) that diago-
nalizes ρ, i.e. the basis from which the Slater determinant
|Φ〉 is built6. A simplified expression of P q2 (r) in spher-
ical symmetry suitable for semi-magic nuclei is provided
in appendix C.

Figure 1 shows the quadrupole anisotropy of the local
neutron momentum distribution calculated for a selec-
tion of semi-magic nuclei. Single-particle wave-functions
are obtained from a Skyrme-EDF calculation performed
with the BSLHFB code [34] using the SLy4 parametriza-
tion of the Skyrme EDF with no pairing. Figure 1 also
displays the local neutron Fermi momentum (Eq. 23) in
order to locate the position of the nuclear surface. In
spite of pronounced shell fluctuations, the result corrob-

orates the conclusions drawn in Ref. [20]; Pn2 (R) becomes
negative just inside the surface, denoting an oblate mo-
mentum Fermi surface while, outside this region, the lo-
cal momentum Fermi surface becomes strongly prolate.
In both cases, we have taken an axis normal to the nu-
clear surface as the reference axis. The next two sections
show how we make use of these properties of the phase-
space distribution of finite Fermi systems to design our
PSA-DME.

E. The scalar part of the OBDM

In a nutshell, the PSA approach consists of three basic
steps: (i) the isolation of the non-locality as an expo-
nential derivative operator acting on the OBDM, (ii) the
expansion of that operator around a momentum scale k
and (iii) the averaging of that momentum scale over the
local momentum distribution of the system of interest.

Applying the first two steps to the scalar part of the
OBDM of a time-reversal invariant system, one writes

ρq
(
R +

r
2
,R− r

2
)

=
∑
iσ

ϕ∗i (r2σq)ϕi(r1σq) ρ
q
ii

= eir·k er·
(
∇1−∇2

2 −ik
) ∑

iσ

ϕ∗i (r2σq)ϕi(r1σq) ρ
q
ii

∣∣∣∣
r1=r2=R

' eir·k
{

1 + r ·
(
∇1 −∇2

2
− ik

)
+

1
2

[
r ·
(
∇1 −∇2

2
− ik

)]2} ∑
iσ

ϕ∗i (r2σq)ϕi(r1σq) ρ
q
ii

∣∣∣∣
r1=r2=R

.

(24)

Before approximating the action of the non-locality op-
erator, er·(∇1−∇2)/2, a phase factor eir·k was extracted
in order to perform a Taylor series expansion of the non-
locality about the momentum scale k. We presently trun-
cate the expansion at second order although nothing pre-

vents to study higher orders in principle. The next step
consists in performing an angle averaging over the orien-
tation of r, which is a reasonable step as the scalar part of
the OBDM has negligible dependence on the orientation
of r [32]. See appendix D for details.
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The final step involves averaging the dependence on
the momentum scale k over a model phase space that
characterizes the system under study. Performing the
PSA of a function g(k) over the locally-equivalent pure
isospin infinite matter phase-space, i.e. defining G(kqF )
as

G(kqF ) ≡ 3
4πkq 3

F

∫
|k|≤kqF

dk g(k) (25)

one obtains for time-reversal invariant systems

ρq(R +
r
2
,R− r

2
) ' Πρ

0(kqF r) ρq(R) +
r2

6
Πρ

2(kqF r)
[

1
4

∆ρq(R)− τq(R) +
3
5
kq 2
F ρq(R)

]
, (26)

with

Πρ
0(kqF r) ≡ 3

j1(kqF (R)r)
kqF (R)r

, (27)

Πρ
2(kqF r) ≡ 3

j1(kqF (R)r)
kqF (R)r

. (28)

For details of the derivation, refer to appendix D. Several
comments are in order:

(i) The phase space of finite nuclei has a marked dif-
ference from that of INM [19, 20]. Still, using
INM phase space suffices for the scalar part as
will be apparent from the results discussed in sec-
tion IV B. This is because, unlike the vector part
of the OBDM discussed below, the scalar part is a
bulk quantity with most of its contribution coming
from the interior of the nucleus where, to a good
approximation, the momentum distribution resem-
bles the one of INM [32].

(ii) Dealing separately with the neutron or proton
OBDM in a finite nucleus, it is natural to perform
the corresponding PSA over the phase space of the
locally-equivalent neutron or proton infinite mat-
ter. However, this provides Π−functions with an
explicit isospin dependence that eventually breaks
the explicit isospin invariance of the EDF (but not
its isospin symmetry). Considering the small dif-
ference between kqF and the total local momen-
tum kF (R), defined in terms of the total density
ρ(R) ≡ ρn(R) + ρp(R) through

kF ≡

[
3π2

2
ρ(R)

]1/3

, (29)

it might be preferred to perform the PSA over the
phase space of symmetric nuclear matter, even in
a neutron rich nucleus. In any case, all results pre-
sented below are obtained using kqF but would not
be significantly different if using kF instead.

(iii) The DME is not a naive Taylor expansion of the
OBDM with respect to the non-locality r. The
Π−functions resum dependencies on r to all or-
ders such that the long distance limit behavior of
the OBDM is reproduced (see below). However, as
noted in Ref. [16], the truncation of the expansion
about k to second order leaves the specific value
of the coefficients of terms beyond kqF r undeter-
mined (in the Taylor series expansion of Πρ

2(kqF r)).
This indeterminateness gives one the freedom to
optimize Πρ

2, which can be viewed as selecting a
different rearrangement and truncation of the ex-
pansion [16].

(iv) The zeroth-order Π−function Πρ
0(kqF r) found above

is exactly the one found in the original NV-DME
of Ref. [16]. Just as in the NV-DME, the lead-
ing term of the PSA-DME reproduces the exact
OBDM of infinite nuclear matter. The second or-
der Π−function Πρ

2(kqF r) is different7 from the one
found in Ref. [16]. However, this relates to the
previous remark that emphasized the freedom in
choosing the second-order Π-function. Moreover,
we will find in Section IV that these differences are
rather small for contributions to the Fock energy.
Therefore, our PSA-DME of the scalar part of the
OBDM is essentially equivalent to the NV-DME of
Ref. [16].

The freedom mentioned above can be used to adjust Πρ
2

to satisfy certain properties of the exact OBDM, or sim-
ply to optimize the quality of the approximation through
a comparison with realistic a OBDM. One example re-
lates to the integrated idempotency of the OBDM, e.g.
for neutrons

N =
∫
dr ρn(r) =

∫ ∫
dr1dr2 |ρn(r1, r2)|2 . (30)

7 The Bessel expansion of Ref. [16] provides Πρ2 =
105 j3(kqF r)/(kqF r)3.
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As shown in Ref. [35], there is a class of DME that sat-
isfies this constraint. Unfortunately, the Πρ

2 given in Eq.
(28) does not satisfy this constraint. Even though the
non-self consistent result given in IV B is satisfactory,
this might not be the case in a self-consistent test.

Other constraints on the Π−functions come from the
expected limits for large and small values of r. The
Π−functions should go to zero in the large r limit, while
for small r, the expansion must to reduce to a simple
Taylor series. These requirements8 lead to [26, 31]

Πρ
0(0) = Πρ

2(0) = 1 , (31)
Πρ ′

0 (0) = Πρ ′′
2 (0) , (32)

lim
r→∞

Πρ
0 = lim

r→∞
Πρ

2 = 0 . (33)

It can easily be shown that the above constraints are
satisfied by the Π−functions listed in Eqs. (27) and (28).

F. The vector part of the OBDM

Restricting again the discussion to time-reversal invari-
ant systems and applying the same steps as for the scalar
part of the OBDM, one obtains for its vector part

sq

(
R +

r
2
,R− r

2

)
=
∑
iσ1σ2

ϕ∗i (r2σ2q) 〈σ2|σ|σ1〉ϕi(r1σ1q) ρ
q
ii

= eir·k er·
(
∇1−∇2

2 −ik
) ∑
iσ1σ2

ϕ∗i (r2σ2q) 〈σ2|σ|σ1〉ϕi(r1σ1q) ρ
q
ii

∣∣∣∣
r1=r2=R

' eir·k
{

1 + r ·
(
∇1 −∇2

2
− ik

)} ∑
iσ1σ2

ϕ∗i (r2σ2q) 〈σ2|σ|σ1〉ϕi(r1σ1q) ρ
q
ii

∣∣∣∣
r1=r2=R

, (34)

where only the first order term in the expansion of
the non-locality operator was kept for reasons explained
below. One also notes that the zero-order term pro-
vides the local spin density sq(R) which is zero for the
time-reversal invariant systems we are considering. In
Ref. [16], it was argued that averaging over the orien-
tation of k and setting k = kqF should be sufficient to
provide a reasonable account of the vector part of the
exact OBDM. This gives

sq,ν

(
R +

r
2
,R− r

2

)
' iΠs

1(kqF r)
∑
µ

rµJq,µν(R) , (35)

where

Πs
1(kqF r) = j0(kqF (R)r) . (36)

If instead one applies the same procedure as for the
scalar part of the OBDM and performs the PSA over
the locally-equivalent pure-isospin infinite matter phase-
space, one obtains9

Πs
1(kqF r) = 3

j1(kqF (R)r)
kqF (R)r

. (37)

However, as mentioned in section III D, the local mo-
mentum distribution in the surface region of a finite nu-
cleus has a markedly different behavior than the isotropic

9 See appendix E for details.

momentum distribution of infinite nuclear matter. Given
that the vector part of the density matrix peaks around
the nuclear surface, it seems more appropriate to perform
the PSA over a deformed Fermi sea that incorporates the
information contained in the function P q2 (R) discussed in
section III D. The details are given in appendix E. The
final result differs from that in Ref. [16] only in the ana-
lytical form of Πs

1. The result reads

Πs
1(k̃qF r) = 3

j1(k̃qF (R)r)
k̃qF (R)r

, (38)

where

k̃qF ≡
(

2 + 2P q2 (R)
2− P q2 (R)

)1/3

kqF (R) . (39)

The PSA over the locally-equivalent neutron or proton
infinite matter modifies the analytical form of Πs

1 com-
pared to NV-DME, i.e. compare Eqs. 37 and 38. In ad-
dition, and contrary to the scalar part of the OBDM for
which it is unimportant, taking into account the defor-
mation of the local momentum distribution of the finite
system leads to a modification of the relevant momentum
scale k̃qF . In view of isolating the significance of such an
effect, while preserving the benefit of using PSA, one can
set P q2 (R) = 0 in Eq. 39. In Sec. IV C, we discuss and
compare the accuracy obtained using all of the preceding
variants.
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Note that the expansion was limited to first order in
Eq. 34. The reason is that, for time-reversal invariant
systems, the cartesian spin-current pseudotensor density
Jq,µν(R) and its gradients are the only standard local
densities at hand to express the DME. Given that, we
could not find any closed and parameter-free expression
of higher-order contributions in terms of such local den-
sities only. This points however to the possibility to
study higher-order terms in the context of the generalized
Skyrme EDF discussed in Ref. [6].

Finally, one can easily verify that the large and small
r limits, viz,

Πs
1(0) = 1 , Πs ′

1 (0) = 0 and lim
r→∞

Πs
0 = 0 , (40)

mentioned at the end of section III E are satisfied by the
expressions of Πs

1 given by either Eq. (37) or Eq.(38).

IV. COMPARING PSA- AND NV-DME

The accuracy of our newly developed PSA-DME needs
to be tested against both non-self consistent and self-
consistent HF calculations. A self-consistent test of the
PSA-DME is the aim of a forthcoming publication. As
explained below, we limit ourselves in the present paper
to gauging the accuracy of the NV-DME and the PSA-
DME against two non self-consistent measures. Where
relevant, we also set P q2 (r) = 0 in the PSA-DME of the
vector part of the OBDM to isolate the significance of
using a deformed local momentum Fermi surface. We
denote that last variant as INM-DME.

A. Inputs to non-self-consistent tests

The generic form of the central, spin-orbit and tensor
interactions considered here have been given in Sec. II C.
The radial form factors used in the present calculations
for either of those interactions take the form (i) a gaussian
or (ii) a renormalized Yukawa (according to Ref. [36]).
Specifically we use

vSTI (r) =


v0 e
−r2/a2

,

v0
2r

[
e−mπrerfc

(
mπ
λ − rλ

)
−
(
r → −r

)]
,

(41)

independently of the (S, T ) channel and with v0 = 50
MeV, a = 1.5 fm, mπ = 0.7 fm−1. The momentum cut-
off λ is set equal to 2.1 fm−1 while erfc is the comple-
mentary error function. It must be stressed that none of
these interactions are realistic two-nucleon interactions,
but rather schematic representatives. The objective of
the present study is to gauge the accuracy of the DME
variants against a reasonable reference point that is not
itself meant to provide useful or realistic results. The
application of the present DME scheme to realistic chiral
two- and three-nucleon interactions is the objective of a
forthcoming publication [23]. Finally, note that neutron
density matrices and local densities used in the following
sections have been obtained, for all semi-magic nuclei of
interest, through spherical self-consistent EDF calcula-
tions employing the SLy4 EDF parameterizations with
no pairing.

B. Fock contribution from VC

The expression of the Fock contribution to the energy
from the central part of the two-nucleon interaction is
given in Eq.(10). It contains a bilinear product of non-
local matter densities as well as a bilinear product of
non-local spin densities. Since the latter also appears as
part of the tensor contribution to the Fock energy (see
Eq.(12)), we postpone the discussion regarding the spin-
density product to section IV C.

Before comparing the Fock energy to its DME counter-
part, we first conduct a more stringent test on the energy
density in which the integration over the angle of r has
already been performed, i.e. we compare the integrand

CFnn(R, r) ≡ 1
4π

∫
der ρn(r1, r2) ρn(r2, r1) , (42)

to its DME counterpart

CDME
nn (R, r) ≡

[
Πρ

0(knF r)
]2
ρn(R) ρn(R) +

r2

3
Πρ

0(knF r) Πρ
2(knF r) ρn(R)

(
1
4

∆ρn(R)− τn(R) +
3
5
kn 2
F ρn(R)

)
,(43)

where the latter depends on which variant of the DME
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has been adopted10. Having in mind existing empirical
Skyrme EDFs that contain only up to two spatial deriva-
tives, terms containing fourth-order gradients have been
truncated in CDME

nn (R, r). A consistent account of such
fourth-order derivatives in the EDF would require to go
also to fourth order in the DME itself, which is beyond
the scope of the present study. This is an important point
that underlines our philosophy that the primary purpose
of the DME method is not to reproduce the fine details of
the OBDM, but rather to reproduce as best as possible
the energy density and the total energy at a given order
in the expansion. The latter two are precisely what is
gauged in this paper, whereas no tests dedicated to the
reproduction of the OBDM by itself are performed.

10 We denote such integrands as energy densities throughout the
paper. Strictly speaking, it is necessary to multiply them by the
interaction to obtain the dimension of an energy density. Still, we
postpone the folding with the interaction to the second measure
introduced below.
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FIG. 2: Comparison of CF
nn(R, r) and CDME

nn (R, r) where
the latter is either computed from NV-DME or PSA-DME
Π−functions. Upper panels: two-dimensional integrands.
Lower panels: ratios of CDME

nn (R, r) over CF
nn(R, r) for fixed

values of R. Densities are obtained from a self-consistent
EDF calculation of 208Pb with the SLy4 Skyrme EDF in the
particle-hole part and no pairing.

Figure 2 shows11 that both NV-DME and PSA-DME
provide comparably good profile-reproduction of the inte-
grand CF (R, r) within the typical range of nuclear inter-
actions (r∼2 fm). Beyond such a non locality, the quality
of the reproduction deteriorates significantly, with that
of PSA-DME deteriorating slightly faster. In addition,
one sees from the lower panels of Fig. 2 that the quality
of the reproduction decreases as one goes to the nuclear
surface, i.e. for R & 4 fm. This could be slightly im-
proved by taking into account the deformation of the
local momentum distribution when designing the PSA-
DME for the scalar part of the OBDM, which we do not
do here. Note also that, although the plots are provided

11 Note that for semi-magic spherical nuclei used in the present
paper, the energy densities CFnn(R, r) and CDME

nn (R, r) only de-
pend on the magnitude of R.
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for two sample nuclei, more systematic tests have been
performed over several semi-magic isotonic and isotopic
chains that support such conclusions.

Coming to the energy itself, i.e. to the integrated prod-
uct of the interaction vC(r) with the central energy den-
sity, we compare12

EFC [nn] = 4π
∫
dR dr r2 vC(r)CFnn(R, r) , (44)

EDME
C [nn] = 4π

∫
dR dr r2 vC(r)CDME

nn (R, r).(45)

12 We do not analyze individual couplings of the Skyrme-like EDF
produced through the DME (Eq. 20) in the present paper, but
rather test the complete Fock energy provided by each of the
terms (i.e. central, tensor, spin-orbit) of the two-nucleon in-
teraction. We postpone to a forthcoming publication [23] the
analysis of the EDF couplings computed from realistic two- and
three-nucleon chiral interactions using appendix B.
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FIG. 3: Percentage error of EDME
C [nn] compared to EF

C [nn],
where the former is either computed from NV-DME or
PSA-DME Π−functions. Densities are obtained from self-
consistent EDF calculations using the SLy4 Skyrme EDF in
the particle-hole channel and no pairing.

Figure 3 shows the relative error obtained from the two
DME variants compared to the exact Fock contribution
for both the Gaussian and the renormalized-Yukawa ra-
dial form factors and for three semi-magic isotopic chains.

Let us start with Fig. 4 that shows that the depen-
dence of the accuracy on the range of the (Gaussian)
interaction used is significant, i.e. about a factor of two
between a = 1.0 fm and a = 1.5 fm. As can be expected
from the two-dimensional density profiles in Fig. 2, the
accuracy decreases as the range of interaction increases,
which holds for all available DME techniques [16, 28–
30]. This stresses that the local quasi-separability of the
OBDM with respect to r and R underlining the DME,
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FIG. 4: The same as Figure 3 but for two different values of
the range of the Gaussian interaction.

which is exact in INM, deteriorates with increasing non-
locality r in finite nuclei. As long as the hypothesis of
quasi-separability is well realized within the range of the
interaction, the DME can be quantitatively successful.

On average, the error obtained with PSA-DME and
NV-DME are similar as can be seen in Fig. 3, i.e. about
6−8% for the three isotopic chains and for both for the
Gaussian and the renormalized-Yukawa interactions. In
Ref. [37], we demonstrate that one can obtain a better
accuracy (1-2% error) by using a parameterized and em-
pirically optimized phase-space distribution that takes
the diffuseness of the Fermi surface into consideration.
A similar improvement over that of Ref. [16] is reported
in Refs. [28, 29].

C. Fock contribution from VT

We now turn to the Fock contribution coming from the
tensor part of the two-nucleon interaction. As shown by
Eq. (12), such a contribution involves bilinear products
of non-local spin densities. As a matter of fact, two terms
with different analytical structures emerge such that the
exchange tensor energy-density reads13

TFnn(R, r) ≡ TFnn,1(R, r) + TFnn,2(R, r) , (46)

TFnn,1(R, r) ≡ 1
4π

∫
der sn(r1, r2) · sn(r2, r1) , (47)

TFnn,2(R, r) ≡ 1
4π

∫
der

∑
µν

rµrν
r2

sn,µ(r1, r2)

× sn,ν(r2, r1) , (48)

where TFnn,1(R, r) also appear in the central contribution
to the Fock energy. The two DME counterparts, which

13 We recall that the weights of the two terms have been omitted
in agreement with Eq. 12.

eventually depend on which variants of the DME is being
adopted, read

TDME
nn,1 (R, r) ≡ −r

2

3
[
Πs

1(k̃nF r)
]2 z∑
µ,ν=x

Jn,µν(R) Jn,µν(R) ,

TDME
nn,2 (R, r) ≡ − r

2

15
[
Πs

1(k̃nF r)
]2 z∑
µ,ν=x

(
Jn,µν(R) Jn,µν(R)

+Jn,µµ(R)Jn,νν(R) + Jn,µν(R)Jn,νµ(R)
)
,

and reduce for spherical systems to

TDME
nn,1 (R, r) ≡ −r

2

6
[
Πs

1(k̃nF r)
]2

Jn(R) · Jn(R) ,(49)

TDME
nn,2 (R, r) ≡ 0 . (50)

One recovers a pattern which is seen when deriving the
empirical Skyrme EDF from an auxiliary Skyrme effec-
tive interaction. That is, the central part of the in-
teraction only produces the so-called symmetric bilin-
ear tensor terms proportional to Jn,µν(R) Jn,µν(R) while
TDME
nn,2 (R, r) that contains asymmetric bilinear tensor

terms proportional to Jn,µν(R) Jn,νµ(R) solely comes
from the tensor interaction [38]. This can be easily
traced back to the spin-space coupling that character-
izes the tensor operator. Since the numerical tests are
presently carried out for spherical systems, we are only
concerned with TFnn,1(R, r) and TDME

nn,1 (R, r). For spin-
unsaturated nuclei, TFnn,1(R, r) is highly localized around
the nuclear surface as seen in Fig. 5 for 208Pb. The
same figure shows the progressive and significant im-
provement that the PSA approach brings to the DME of
the vector part of the OBDM. Within the typical range
of nuclear-interactions, NV-DME falls off much faster
than PSA-DME. Less importantly, NV-DME also intro-
duces artificial and pronounced structures in a region
that corresponds to the tail of the interaction. Both of
these drawbacks are rectified progressively by PSA-DME.
While most of the improvement is already brought by the
spherical PSA (P2(R) = 0), an even better accuracy is
obtained by incorporating the quadrupolar deformation
P2(R) of the local momentum Fermi distribution. The
overestimation of TFnn,1(R, r) at very small r seen for all
DMEs in the lower panels of Fig. 5 corresponds to a re-
gion where the integrand is small and where its weight is
further reduced in the integrated energy by the r2 phase-
space factor.

Coming to the energy itself, i.e. to the integrated prod-
uct of the interaction vT (r) with the tensor energy den-
sity, we compare

EFT [nn] = 4π
∫
dR dr r2 vT (r)TFnn(R, r) , (51)

EDME
T [nn] = 4π

∫
dR dr r2 vT (r)TDME

nn (R, r) .(52)

which for spherical nuclei reduce to the contribution
from TFnn,1 and TDME

nn,1 . Figure 6 shows the relative er-
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FIG. 5: Comparison of TFnn,1(R, r) and TDME
nn,1 (R, r) where
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Upper panels: two-dimensional integrands. Lower panels: ra-
tios of TDME
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Densities are obtained from a converged self-consistent calcu-
lation of 208Pb with the SLy4 Skyrme EDF in the particle-hole
channel and no pairing.
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FIG. 6: Percentage error of EDME
T [nn] compared to EF

T [nn]
where the former is either computed from NV-DME or from
PSA-DME. Densities are obtained from self-consistent EDF
calculations using the SLy4 Skyrme EDF in the particle-hole
channel and no pairing. Notice the different vertical scale
compared to Fig. 3.

ror of NV-DME and PSA-DME compared to the ex-
act Fock contribution, for both the Gaussian and the
renormalized-Yukawa radial form factors and for three
semi-magic isotopic chains. For both types of interac-
tion, the percentage error of NV-DME easily reaches
40%. This is in contrast to PSA-DME whose percent-
age error is typically within ±10% for most parts of the
three isotopic chains. This can be traced to the fact that,
while both NV-DME and PSA-DME overestimate the
reference quantity for small r (typically less than 1 fm),
NV-DME decreases much faster with r, thereby over-
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compensating for its initial overestimation. In contrast,
PSA-DME stays close to the exact value for a much larger
range of r values.

There exist short sequences of isotopes for which the
percentage error shows a considerable increase. The fact
that both DMEs display such a feature suggests that
the problem is independent of the specific form of the
Πs

1 function used. To identify the source of the prob-
lem, Fig. 7 shows TFnn,1(R, r) for three nuclei displaying
a sudden loss of accuracy. One notices that TFnn,1(R, r)
extends over larger intervals in R and r than for 208Pb
(see Fig. 5). This corresponds to the fact that the selected
nuclei are nearly spin-saturated and generates very small
EFT [nn] in absolute value, as seen from the lower pan-
els of Fig. 7. As a result, the relative inaccuracy of any
DME becomes large and the percentage error increases
suddenly. Of course, the resulting error in the total EDF
remains very small as the corresponding tensor contribu-
tion is anyway negligible, i.e. the local spin-orbit density
Jq(R) is close to zero in nearly spin-saturated nuclei.
Eventually, those sudden losses of relative accuracy are
not as worrying as Fig. 6 initially suggests.

In conclusion, the use of PSA techniques has allowed
us to bring the DME applicable to the bilinear product
of non-local spin densities on the same level of accuracy
as for terms depending on the scalar part of the OBDM.
One could certainly work even harder to bring the overall
DME accuracy below 1%. This could be achieved (i) by
allowing free parameters in the Π−functions to be op-
timized on a set of reference calculations14 and/or (ii)
by going to higher orders in the DME, consistently for
both the scalar and the vector parts of the OBDM. This
should however be done within the frame of the general-
ized Skyrme EDF proposed in Ref. [6].

D. Fock contribution from VLS

1. Basic analysis

We now turn to the spin-orbit contribution to the Fock
energy. As shown in Eq. (11), and unlike for central and
tensor forces, such a contribution involves both the scalar
and the vector parts of the OBDM. In this case, we first
compare the spin-orbit energy density

LSFnn(R, r) =
i

4π

∫
der sn(r1, r2) · r×∇2ρn(r2, r1) ,(53)

14 As shown in Ref. [37], parameterizing Πs
1 cannot remove the sud-

den loss of relative accuracy discussed above for spin-saturated
nuclei. As already stated, this is not a problem in the end as the
corresponding contribution to the energy is negligible anyway.
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together with absolute EF
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chains. Densities are obtained from a self-consistent EDF
calculation using the SLy4 Skyrme functional in the particle-
hole part and no pairing.

to its DME counterpart

LSDME
nn (R, r) =

1
6

Πs
1(knF r) r

2
z∑

µ,ν,β=x

εµνβJn,µν(R)

×∇βR
(

Πρ
0(knF r)ρn(R)

)
,

which eventually depends on which variants of the DME
is being adopted15 and that reduces for spherical systems
to

LSDME
nn (R, r) =

1
6

Πs
1(knF r) r

2Jn(R) · ∇R

(
Πρ

0(knF r)ρn(R)
)
.(54)

15 The numerical tests shown in the present section actually use
INM-DME rather than PSA-DME, i.e. kqF is employed rather

than k̃qF in Πs
1. We still label the results as PSA-DME as no

significant difference is seen compared to INM-DME.
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Note that terms containing more than two gradients have
been truncated in LSDME

nn (R, r).
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FIG. 8: Comparison of LSFnn(R, r) and LSDME
nn (R, r) where

the latter is computed from either NV-DME or PSA-DME.
Upper panels: two-dimensional integrands. Lower panels: ra-
tios of LSDME

nn (R, r) over LSFnn(R, r) for fixed values of R.
Densities are obtained from a converged self-consistent calcu-
lation of 208Pb with the SLy4 Skyrme EDF in the particle-hole
channel and no pairing.

Figure 8 shows that PSA-DME significantly over-
estimates (in absolute values) the maximum peak of
LSFnn(R, r) at the nuclear surface. In addition, oscil-
lations at larger r, i.e. in the tail of the two-nucleon
interaction, are not captured by PSA-DME. In contrast,
NV-DME reproduces relatively well the density profile
LSFnn(R, r), in particular as for the main peak at the nu-
clear surface. This suggests that the significant improve-
ment for PSA-DME over NV-DME as to reproducing the
tensor energy density does not transpose to the spin-orbit
energy density. The previous assertions are supported
by tests carried over several isotonic and isotopic chains.
Looking for possible improvements, we tested that in-
cluding truncated higher-order terms associated with the
action of ∇R on (1/4∆ρn − τn + 3/5kn 2

F ρn), when going

from Eq. 53 to 54, does not improve the accuracy of PSA-
DME.

Coming to the energy itself, i.e. to the integrated prod-
uct of the interaction vLS(r) with the spin-orbit energy
density, we compare

EFLS [nn] = 4π
∫
dR dr r2 vLS(r)LSFnn(R, r) , (55)

EDME
LS [nn] = 4π

∫
dR dr r2 vLS(r) r2 LSDME

nn (R, r) .(56)

Figure 9 shows the percentage error obtained for three
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LS [nn] compared to EF

LS [nn]
where the latter is either computed from NV-DME or from
PSA-DME. Densities are obtained from self-consistent EDF
calculations using the SLy4 Skyrme EDF in the particle-hole
channel and no pairing. Notice the different vertical scale
compared to Figs. 3 and 6.
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isotopic chains. In agreement with the analysis done
for the spin-orbit energy density, the percentage error
of PSA-DME is impractically large and negative, in the
range of -15% to -50% for the two schematic interactions
used. In contrast, NV-DME provides a much better ac-
curacy with percentage errors within ± 10% for most
studied isotopes. Last but not least, one notes that the
spikes in the percentage errors already discussed in sec-
tion IV C arise for the same isotopes and relate to the
vanishing non-local spin density in near spin-saturated
nuclei.

2. Further investigation of the spin-orbit exchange

The results of the previous section show that NV-DME
is better suited than PSA-DME to reproduce the spin-
orbit contribution to the Fock energy. This can be con-
founding in light of the better accuracy obtained using
PSA-DME to reproduce the tensor contribution to the
Fock energy. We can infer from Fig. 5 that NV-DME
underestimates the main peak of the nonlocal spin den-
sity while the latter is well captured by PSA-DME. It is

thus puzzling to find the opposite for the Fock spin-orbit
energy density. In the following we employ a toy model
of the OBDM of finite nuclei to show that this is due to
a fortuitous cancelation of errors.

Having already a handle on the non-local spin den-
sity sq(r1, r2), we focus on the term it multiplies in the
spin-orbit energy density, i.e. r×∇2ρq(r1, r2), which we
first approximate by r×∇Rρq(r1, r2) thanks to the weak
dependence of the non-local matter density on the ori-
entation of r [32]. Hence, and focusing arbitrarily on
neutrons, we want to compare the two quantities

GE = ∇Rρn(R, r) , (57)

GDME = ∇R

(
Πρ

0(knF r) ρn(R)
)
, (58)

where the latter is independent of whether NV-DME or
PSA-DME is used. To do so, we employ a toy model in
which the nonlocal and local matter densities are built
from a three-dimensional harmonic oscillator model with
smeared occupancy [39]. The corresponding analytical
expressions, as given in Ref. [39], read as

ρn(R +
r
2
,R− r

2
) = exp

[
−1/4α2r2 1 + t

1− t

]
ρn(R) , (59)

ρn(R) =
2α3

π3/2
(1− t2)−1/2 exp

[
−α2R2 1− t

1 + t

]
, (60)

where α2 ≡ mω/~, t ≡ 1− (2/N)1/2 and
∫
ρn(R) dR = N . From Eqs. 59 and 60, one easily obtains

∇Rρn(R +
r
2
,R− r

2
) = exp

[
−1/4α2r2 1 + t

1− t

] [
∇Rρn(R)

]
, (61)

∇Rρn(R) = − 4α5

π3/2
(1− t2)−1/2 1− t

1 + t
R exp

[
−α2R2 1− t

1 + t

]
. (62)

The corresponding PSA-DME reads

ρn(R +
r
2
,R− r

2
) ≈ 3

j1(knF r)
knF r

[
1 +

r2

4

(
−1 + t

1− t
α2 +

2
5
kn 2
F

)]
ρn(R) , (63)

such that, given the definition of kqF (R), one can easily
obtain

∇R

[
Πρ

0(knF r)ρ(R)
]

= j0(knF r)∇Rρn(R) (64)

and show that

Gratio(R, r) ≡ GDME(R, r)
GE(R, r)

= j0(knF r) exp
[
1/4α2r2 1 + t

1− t

]
.

In order to study Gratio quantitatively, we fix the in-
verse oscillator length, α, using the Blomqvist and Moli-
nari formula, i.e. α =

(
0.90A1/3 + 0.70

)
. In subsequent

discussions, we take reasonable combinations of A and
N although we show that the conclusions of the present
section are independent of the actual value of A.

Before analyzing the behavior of Gratio(R, r), it is
worth noticing that the toy nonlocal matter density is
exactly separable in relative and center-of-mass coordi-
nates. Such a separability being one inherent, usually
only approximate, aspect of the DME, we expect the lat-
ter to work well in the present case [39]. Computing the
same ratio as in Gratio(R, r) without the gradient oper-
ators, we do indeed obtain the good performance of the
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DME as is visible in Fig. 10. Note in particular that
the ratio is independent of the value of R. Such a result
proves that the toy model provides a situation compa-
rable to the one studied in Sec. IV B, i.e. the DME of
the scalar part of the density matrix performs well. Such
a performance sets the stage in view of qualifying the
results obtained below for Gratio(R, r).
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FIG. 10: Ratio of the DME (Eq.(63)) over the exact (Eq.(59))
expressions of the toy nonlocal matter density.

In order to identify the short distance behavior of
Gratio(R, r), we perform a Taylor series expansion in r

Gratio(R, r) ≈ 1 +
(
−k

n 2
F

6
+
α2(1 + t)
4(1− t)

)
r2 . (65)

Defining Gerror(R, r) ≡ Gratio(R, r)−1 and looking deep
inside the nucleus (R → 0) where knF can be approxi-
mated by

knF (R) ≈
[
6π1/2α3(1− t2)−1/2

]1/3

, (66)

we obtain

Gerror(R, r) ≈
(√

N

8
− 1

4

)
α2 r2 . (67)

Equation 67 shows that, even inside the nucleus where knF
is the largest, GDME overestimates GE for practically all
values of N . According to Eq. (65), Gerror increases as
knF decreases. Thus, one can anticipate an even more
pronounced overestimation of GE by GDME as one ap-
proaches the nuclear surface where the spin-orbit energy
density is the most important. Figure 11 confirms such
an expectation for a wide range of R, A and N values.

Keeping the results shown in Fig. 10 as a reference,
we conclude that the application of the gradient oper-
ator on the scalar part of the density matrix deterio-
rates the quality of the DME that overestimates the ex-
act results, in particular as one goes to the surface of
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FIG. 11: Gratio(R, r) as a function of r for a selected set of
(R, A, N).

the nucleus where the exchange spin-orbit energy den-
sity is maximum16. Combined with the good approx-
imation of the vector part of the density matrix, such
a semi-quantitative analysis explains the overall overes-
timation (in absolute value) of the exchange spin-orbit
energy provided by PSA-DME (see Fig. 9). Contrar-
ily, the underestimation of the vector part of the density
matrix by NV-DME provides a fortuitous, but rather ac-
curate, cancelation of errors such that the nonlocal spin-
orbit energy density is much better reproduced overall
(see Fig. 9). Even though we can be satisfied with such
a situation in the short term future and advocate the use
of the NV-DME variant for the spin-orbit contribution to
the Fock energy, it would be more satisfying on the long
run to design a suitable DME for the gradient of the
scalar part of the density matrix that can be combined
with the improved PSA-DME for the vector part.

V. CONCLUSIONS AND OUTLOOK

The present paper is part of a long-term project to
build non-empirical nuclear energy density functionals
from realistic two- and three-nucleon interactions using
many-body perturbation theory [8–11]. The density ma-
trix expansion is an important component of this effort,
as it can be used to construct numerically-tractable ap-
proximations to the non-local Hartree-Fock energy. In
the first part of this paper, we assessed the accuracy of
the DME at reproducing central, tensor, and spin-orbit
contributions to the non-local Fock energy. Our central
finding is that the conventional DME of Negele and Vau-

16 Averaging Gratio over a function r2e−r
2/a2 , where r2 is for the

phase space factor and a for the interaction range comprised
between 0.75 to 1.5 fm, provides a typical overestimation by a
factor 1.5 to 2.5.
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therin performs very poorly in describing the spin-vector
part of the density matrix, while the scalar part is de-
scribed reasonably well. In order to address this defi-
ciency, we have reformulated the density matrix expan-
sion using phase-space averaging techniques. The PSA
formulation offers the following benefits:

(i) It allows one to design expansions of both the scalar
and the vector parts of the OBDM on an equal
footing. This constitutes a significant improvement
over the formulation of Negele and Vautherin who,
as they acknowledged in their seminal paper, were
not able to provide a satisfactory expansion of the
vector part of the density matrix. Considering that
the vector part of the density matrix is non-zero in
spin-unsaturated nuclei, i.e. in the large major-
ity of nuclei, such an improvement is mandatory
in view of constraining a universal energy density
functional.

(ii) By construction, the PSA formulation allows one to
incorporate information about the local momentum
distribution of the Fermi system of interest. For the
scalar part of the OBDM, one recovers the satisfac-
tory expansion of Negele and Vautherin by averag-
ing over the phase space of the locally-equivalent
infinite nuclear matter system. For the vector part
of the OBDM, one can go beyond this by taking
into account the anisotropy that characterizes the
local-momentum distribution at the spatial surface
of finite Fermi systems. In contrast to the scalar
part of the density matrix for which it has little
impact, incorporating the deformation of the lo-
cal momentum distribution in the expansion of its
vector part is crucial since the latter peaks at the
nuclear surface where such an anisotropy is maxi-
mum.

In the second part of the paper, we gauged the accu-
racy of the new PSA-DME and the original NV-DME
over a large set of semi-magic nuclei using two non-self
consistent measures, i.e., the Fock energy density pro-
file and the Fock energy itself. The different analytical
structures of the central, tensor and spin-orbit contribu-
tions led us to perform separate tests for each type of
contribution. The main conclusions were:

(a) A few percent accuracy is reached for the central
force contribution to the Fock energy that depends
on the scalar part of the density matrix. The level
of accuracy is insensitive to the particular variant
of density matrix expansion.

(b) The original expansion of Negele and Vautherin
leads to about 50% errors in the evaluation of the
central and tensor force contributions to the Fock
energy that depend on the vector part of the density
matrix. The new expansion based on phase-space
averaging techniques reduces errors to the few per-
cent level, which is the same level of accuracy as

for terms involving the scalar part of the density
matrix only.

(c) The spin-orbit exchange is somewhat trickier as it
combines the vector part of the density matrix with
the gradient of its scalar part. Surprisingly, the ex-
pansion of Negele and Vautherin is shown to work
much better than the new one proposed here. Using
a semi-realistic toy model, we demonstrated that
this is due to a fortuitous cancelation of errors be-
tween the underestimation of the vector part of the
density matrix and the overestimation of the gra-
dient of its scalar part. Even though one can be
satisfied in the short term with using the NV-DME
variant for the spin-orbit contribution to the Fock
energy, the present analysis calls for the design of
a suitable expansion of the gradient of the scalar
part of the density matrix that can be combined
with the improved expansion proposed here for the
vector part.

Optimizing the density matrix expansion for the cen-
tral, tensor and spin-orbit contributions to the Fock en-
ergy as explained above, one reaches an overall error level
of a few-percent over a representative set of semi-magic
nuclei. With such an accuracy at hand, one can envision
using the corresponding generalized Skyrme-like energy
functional as a microscopically-constrained starting point
around which future refined phenomenological parame-
terizations can be built. Indeed, the goal of a forthcom-
ing publication [23] is to explicitly compute and analyze
all the density-dependent couplings entering the general-
ized Skyrme-like energy density functional starting from
realistic two- and three-nucleon Chiral-EFT potentials at
N2LO [40, 41]. Of particular interest will be the analy-
sis of (i) the importance of building explicit pion physics
into the energy functionals, (ii) the density dependence
of spin-orbit and tensor couplings in view of their anal-
ysis in recent phenomenological studies [3, 38, 42, 43]
and (iii) the role of three-nucleon forces in these aspects,
as well as their effects on the evolution of nuclear shells
with isospin. Still, the EDF obtained in this approach
will only contain the Hartree-Fock physics such that fur-
ther correlations must be added to produce any reason-
able description of nuclei. In the short term, such an
addition can be done empirically by adding the DME
couplings to empirical Skyrme functionals and perform-
ing a refit of the Skyrme constants to data [27]. While
this is a purely empirical procedure, it is motivated by
the well-known observation that a Brueckner G-matrix
differs from the vacuum NN interaction only at short
distances. Therefore, one can interpret the refit to data
as approximating the short-distance part of the G-matrix
with a zero-range expansion thru second order in gradi-
ents. Eventually though, it is the goal of a future work to
design a generalized DME that is suited to higher orders
in perturbation theory [22].

In addition to using the results of the present and forth-
coming papers as building blocks for a microscopically-
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constrained Skyrme phenomenology, additional work is
needed to validate the density matrix expansion method
and to gauge its accuracy. Given the outcome of our
analysis, several paths can be followed:

(i) The conclusions reached in the present work must
be further validated through self-consistent tests,
i.e. binding energies, radii and single-particle en-
ergies must be benchmarked against self-consistent
Hartree-Fock calculations. The question of whether
the Hartree term must be treated exactly is to be
addressed quantitatively in such a context.

(ii) An even better accuracy could be reached for the
central and tensor contributions to the Fock energy
by going consistently to higher orders in derivatives
in the expansion of both the scalar and the vector
parts of the density matrix. This should be done
within the frame of the extended Skyrme energy
density functional proposed in Ref. [6].

(iii) As already stated, the present analysis of the spin-
orbit contribution calls for a suitable expansion of
the gradient of the scalar part of the one-body den-
sity matrix.
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APPENDIX A: LOCAL DENSITIES

Non-zero local densities can be formed by taking
derivatives of the OBDM up to second order. In the
basis from which |Φ〉 is built, they read

ρq(r) =
∑
i

ϕ†i (rq)ϕi(rq) ρ
q
ii , (A1)

τq(r) =
∑
i

∇ϕ†i (rq) · ∇ϕi(rq) ρ
q
ii , (A2)

sq,µ(r) =
∑
ii

ϕ†i (rq)σµ ϕi(rq) ρ
q
ii , (A3)

jq,µ(r) = − i
2

∑
i

(
ϕ†i (rq)∇µ ϕi(rq)

−∇µϕ†i (rq)ϕi(rq)
)
ρqii , (A4)

Jq,µν(r) = − i
2

∑
i

(
ϕ†i (rq)

[
σν∇µϕi(rq)

]
−
[
∇µ ϕ†i (rq)

]
σν ϕi(rq)

)
ρqii , (A5)

Tq,µ(r) =
∑
i

∇ϕ†i (rq)
[
σµ · ∇ϕi(rq)

]
ρqii , (A6)

Fq,µ(r) =
1
2

∑
i

([
∇ · σϕ†i (rq)

]
∇µϕi(rq)

+
[
∇µ ϕ†i (rq)

]
∇ · σϕi(rq)

)
ρqii . (A7)

and denote the matter density, the kinetic density, the
spin density, the current density, the spin-current pseu-
dotensor density, the spin kinetic density and the tensor
kinetic density. In the above formulae, ϕi(rq) denotes a
spin 1/2 spinor. Among those local densities, the time-
odd ones [25] vanish in time-reversal invariant systems,
viz,

sq(r) = 0 , jq(r) = 0 ,
Tq(r) = 0 , Fq(r) = 0 . (A8)

APPENDIX B: SKYRME-LIKE COUPLINGS

We now provide explicit expressions of the couplings
entering the Skyrme-like functional (Eq.(20)) that results
from the application of the DME to the Fock contribution
to the ground-state energy (Eqs. (10), (11) and (12)
with the proper coefficients restored). The central, spin-
orbit and tensor parts of the two-nucleon interaction are
as specified in section II C. These couplings are derived
under the assumption of time-reversal invariance. For
the case where time-reversal invariance is relaxed, refer
to Ref. [31].

Starting from the definitions

aIST1 [Πρ/s
i Πρ/s

i ] ≡ 4π
∫
dr r2V TSI (r) Πρ/s

i Πρ/s
i , (B1)

aIST2 [Πρ/s
i Πρ/s

i ] ≡ 4π
3

∫
dr r4V TSI (r) Πρ/s

i Πρ/s
i ,(B2)

the couplings take the form



21

Aρρ = +
1
8
aC01

1

[
Πρ

0 Πρ
0

]
− 3

8
aC11

1

[
Πρ

0 Πρ
0

]
Bρρ = +

3
16
aC10

1

[
Πρ

0 Πρ
0

]
+

1
16
aC01

1

[
Πρ

0 Πρ
0

]
− 3

16
aC11

1

[
Πρ

0 Πρ
0

]
+

1
16
aC00

1

[
Πρ

0 Πρ
0

]
Aρτ = −1

8
aC01

2

[
Πρ

0 Πρ
2

]
+

3
8
aC11

2

[
Πρ

0 Πρ
2

]
= −4Aρ∆ρ

Bρτ = − 3
16
aC10

2

[
Πρ

0 Πρ
2

]
− 1

16
aC01

2

[
Πρ

0 Πρ
2

]
+

3
16
aC11

2

[
Πρ

0 Πρ
2

]
+

1
16
aC00

2

[
Πρ

0 Πρ
2

]
= −4Bρ∆ρ

Aρ∇J = −1
4
aLS11

2

[
Πρ

0 Πs
1

]
= −A∇ρJ

Bρ∇J = −1
8
aLS10

2

[
Πρ

0 Πs
1

]
+

1
8
aLS11

2

[
Πρ

0 Πs
1

]
= −B∇ρJ

AJJ = −1
8
aC01

2

[
Πs

1 Πs
1

]
− 1

8
aC11

2

[
Πs

1 Πs
1

]
+

1
2
aT11

2

[
Πs

1 Πs
1

]
− 3

2
aT11

3

[
Πs

1 Πs
1

]
BJJ = +

1
16
aC10

2

[
Πs

1 Πs
1

]
− 1

16
aC01

2

[
Πs

1 Πs
1

]
− 1

16
aC11

2

[
Πs

1 Πs
1

]
+

1
16
aC00

2

[
Πs

1 Πs
1

]
−1

4
aT10

2

[
Πs

1 Πs
1

]
+

3
4
aT10

3

[
Πs

1 Πs
1

]
+

1
4
aT11

2

[
Πs

1 Πs
1

]
− 3

4
aT11

3

[
Πs

1 Πs
1

]
AJJ̄ = −3

2
aT11

3

[
Πs

1 Πs
1

]
BJJ̄ =

3
4
aT10

3

[
Πs

1 Πs
1

]
− 3

4
aT11

3

[
Πs

1 Πs
1

]
.

To carry on further the computation of the couplings, one
must choose an explicit form of the two-nucleon interac-
tion and perform the integrals entering Eqs. B1 and B2.
As schematic interactions have been used in the present
paper for illustrative purposes, we postpone such an in-
tegration to the explicit computation of the couplings
obtained from a Chiral-EFT lagrangian at N2LO [23].

APPENDIX C: LOCAL ANISOTROPY P2(r)

The Husimi distribution is one of the many quantum
phase-space distribution functions. It possesses the key
property of positive definiteness [33, 44] and is defined as

Hq(r,p) ≡ 1
N

∑
i

∣∣∣∣∫ ϕi(r1q) e
i
~ p·(r−r1)− 1

2r20
(r−r1)2

dr1

∣∣∣∣2
× ρqii , (C1)

where N ≡ 1/(π3/4r
3/2
0 ) and r0 is a chosen parameter.

To derive Eq. (22) for the quadrupolar local anisotropy
of the momentum Fermi surface P q2 (r) we start from the
definition

P q2 (r) ≡
∫
dp
[
3(er · p)2 − p2

]
Hq(r,p)∫

dpp2Hq(r,p)
, (C2)

and make use of the relations∫
dpp2 e−

i
~ p·(r′1−r1) = (2π)3~5∇′1 · ∇ δ(r′1 −∇1) ,(C3)

e
− 1
r20

(r1−r′1)2

≈ δ(r1 − r′1) + O
(
(kqF r0)2

)
.(C4)

Through direct application of the above relations, one
obtains∫

dpp2Hq(r,p) ≈ (2π)3~5
∑
i

∣∣∇ϕi(rq)∣∣2 ρqii
+O

(
(kqF r0)2

)
,∫

dp
(
r̂ · p

)2
Hq(r,p) ≈ (2π)3~5

∑
i

∣∣(r̂ · ∇)ϕi(rq)∣∣2 ρqii
+O

(
(kqF r0)2

)
,

which, plugged into Eq.(C2), gives

P q2 (r) =
[

3
τq(r)

∑
i

|(er · ∇)ϕi(rq)|2 ρqii − 1
]

+O((kqF r0)2) .

Further simplifications can be performed for spherical
systems, using single-particle wave-functions expressed in
terms of spherical coordinates r = (r, θ, ϕ) as

ϕi(rq) =
uqnlj(rq)

r

∑
mlσ

Y mll (θ, ϕ)〈lml
1
2
σ|jm〉 |σ〉,(C5)

through several angular momentum coupling operations.
For that, the following Clebsch-Gordon and spherical
harmonic relations∑

σ

〈lml
1
2
σ|jm〉2 =

2j + 1
2l + 1

, (C6)

∑
ml

Y ml∗l (θ′, ϕ′)Y mll (θ, ϕ) =
2l + 1

4π
Pl
(
er′ · er

)
,(C7)
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turn out to be handy. In these relations, Y mll refers to
a spherical harmonic function and Pl refers to Legendre
polynomial of order l. Applying these relations, one ob-
tains∑
i

∣∣(er · ∇)ϕi(rq)∣∣2 ρqii =
∑
nlj

2j + 1
4π

(
∂

∂r

uqnlj(r)
r

)2

ρqnjl

∑
i

∣∣∇ϕi(rq)∣∣2 ρqii =
∑
nlj

2j + 1
4π

(
∂

∂r

uqnlj(r)
r

)2

ρqnjl

+
∑
nlj

F (l, j)
(
uqnlj(r)
r2

)2

ρqnjl,

where F (l, j) is some function of l and j. The occupa-
tion probability of a given spherical shell ρqnjl is one or
zero, except for open-shell semi-magic nuclei where the
so-called filling approximation provides the valence shell
with a partial occupation. To obtain the explicit form of
F (l, j), one can use the relation

∇µ1Y
m′

l (θ, ϕ) =
1
r

∑
LM

f(l, L) 〈l1m′µ1|LM〉YML (θ, ϕ) ,

where

f(l, L) =


−l
√

l+1
2l+3 if L = l + 1;

−(l + 1)
√

l
2l−1 if L = l − 1;

0 otherwise.

and perform involved angular momentum coupling oper-
ations. Alternatively, one notes that

∑
i

∣∣∇ϕi(rq)∣∣2 ρqii is
nothing but the kinetic energy density given in Eq.(A2)
and use the corresponding expression [45]. Either way,
one obtains

F (l, j) =
l(l + 1)(2j + 1)

4π
. (C8)

Plugging these intermediate results into Eq. (C5) yields
the expression of P2(r) as

P2(r) =
1

τq(r)

∑
nlj

2j + 1
4π

[
2
(
∂

∂r

uqnlj(r)
r

)2

− l(l + 1)
r2

(
uqnlj(r)
r

)2]
ρqnjl , (C9)

where

τq(r) =
∑
nlj

2j + 1
4π

[(
∂

∂r

V qnlj(r)
r

)2

+
(
V qnlj(r)
r2

)2]
ρqnjl . (C10)

APPENDIX D: SCALAR PART OF THE OBDM

We start from Eq. (24), average over the orientation
of k and r17, and apply relations

1
4π

∫
der (r ·A)(r ·B) =

r2

3
A ·B , (D1)(

∇2 +∇′2
)
ρ(r, r ′)

∣∣∣∣
r=r′

= ∇2ρ(r)− 2 τ(r) , (D2)

to obtain

ρq
(
R +

r
2
,R− r

2
)
≈ j0(kr) ρq(R) + L(kr) ρq(R) (D3)

+
r2

24
j0(kr)

(
∆ρq(R)− 4τq(R)

)
,

17 The order of the two averaging operations is dictated only by
the requirement of simplicity. In this case, we averaged over the
orientation of r followed by that of k.

where

L(kr) ≡ kr j1(kr)− (kr)2

2
j0(kr) . (D4)

As discussed in section III E, the effects of anisotropy
and diffuseness are minimal for the scalar part of the
OBDM. Therefore, we perform the PSA over the phase-
space of the locally equivalent pure-isospin nuclear mat-
ter18 to obtain

ρq
(
R +

r
2
,R− r

2
)
≈ 3

j1(kqF r)
kqF r

ρq(R)

+
r2

2
j1(kqF r)
kqF r

%q(R) , (D5)

with the second-order correction density being composed

18 The angle integration with respect to the orientation of k is triv-
ial as such a dependence has already been averaged out.
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of

%q(R) ≡ 1
4

∆ρq(R)− τq(R) +
3
5
kq 2
F Λ(kqF r)ρq(R) .(D6)

Expanding Λ(kqF r) in Taylor series, one has

Λ(kqF r) ≈ 1 +O((kqF r)
2) . (D7)

such that, by retaining the lowest order only, one recovers
Eq. 26 with the Π−functions given by Eqs. 27 and 28.

APPENDIX E: VECTOR PART OF THE OBDM

We start from Eq. (34). For time-reversal invariant
systems, the local spin density sq(r) vanishes. Conse-
quently, the only non-vanishing contribution relates to
the term r · (∇1−∇2). Using the definition for the lo-
cal spin-current pseudotensor density given by Eq. (A5),
one obtains

sq,ν

(
R +

r
2
,R− r

2

)
≈ i eir·k

∑
µ

rµ Jq,µν(R) .(E1)

The final step involves performing the PSA over a de-
formed sphere that characterizes the local momentum
distribution. Let us start from a spheroid given in mo-
mentum space given by the equation

k2
x

a(R)2
+

k2
y

a(R)2
+

k2
z

c(R)2
= 1 . (E2)

For ease of notation, we write a(R) as a and c(R) as
c in the following. We constrain the position-dependent
quantities a and c by requiring that the spheroid has a
given volume and quadrupole moment, viz,

Vq ≡
4
3
π3kq 3

F =
4
3
π3a2c , (E3)

P q2 (R) =
2 (−a2 + c2)

2 a2 + c2
. (E4)

The Π−function is obtained via the integration over the
phase space of interest

Πs
1 =

3
4π3kq 3

F

∫
Vq

dk eir·k . (E5)

Carrying out the integration over the volume Vq encom-
passed by the spheroid given in Eq. (E2) can be done
by using a stretched coordinate system from the trans-
formation

k ≡ (kx, ky, kz)→ k′ ≡ (kx, ky,
a

c
kz) , (E6)

such that one finally obtains

sq,ν

(
R+

r
2
,R− r

2

)
' iΠs

1(kqF r)
z∑

µ=x

rµJq,µν(R) , (E7)

where

Πs
1(k̃qF r) ≡ 3

j1(k̃qF r)
k̃qF r

, (E8)

and

k̃qF ≡
(

2 + 2P q2 (R)
2− P q2 (R)

)1/3

kqF . (E9)

Setting P q2 (R) = 0, which consists of performing the PSA
over INM phase-space, results in the same Π−function
with k̃qF replaced by kqF .

For spherical systems, one can simplify the expression
further by writing Jq,µν(R) as a sum of pseudoscalar,
vector and (antisymmetric) traceless tensor parts

Jq,µν(R) =
1
3
δµν J

(0)
q (R) +

1
2

z∑
k=x

εµνk J
(1)
q,k(R)

+J (2)
q,µν(R) , (E10)

where the three components read

J (0)
q (R) ≡

z∑
µ,ν=x

δµν Jq,µν(R) , (E11)

J
(1)
q,k(R) ≡

z∑
µ,ν=x

εµνk Jq,µν(R) , (E12)

J (2)
q,µν(R) ≡ Jq,µν(R)− 1

3
δµν J

(0)
q (R)

−1
2

z∑
k=x

εµνk J
(1)
q,k(R) . (E13)

In spherical systems, both the pseudoscalar and the ten-
sor parts vanish such that one obtains

sq

(
R +

r
2
,R− r

2

)
' − i

2
Πs

1(k̃qF r) r× Jq(R) . (E14)
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