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ABSTRACT

Aims. We construct families of time-sequencesxeifivariant magnetostatic equilibria which describe idgadsi-static evolutions driven by
stationary shearing motions imposed on a boundary. Thegehamthe thermal pressure of the plasma is determined bydmgcither an
adiabatic, or an isothermal, or an isobaric, prescription.

Methods. We start from a well known family of linear force-free fields) which we &ect simple transforms.

Results. In either case, the magnetic field and the pressure are egorédly analytically as functions of space and time. Thielfiefound to
sufer an indefinite expansion, with a decrease to zero of thespresn the adiabatic and isothermal cases, and to evenapgh. Moreover,
the configurations forming any sequence are shown to berljnstable with respect tg-invariant perturbations.

Key words. MHD — Sun: magnetic fields — Sun: corona — Sun: coronal masti@js (CMESs)

1. Introduction Although the force-free assumption appears to be justified
by the low value of the plasma beta in the mid-corona and the
Solar eruptive phenomena occurring in very elongated strgtowness of the photospheric motions driving the evolytibn
tures present in active regions have often been studied-by idsin any case an approximation, and working out the correc-
ing a simplified 2D model. In the latter the corona is repretions due in particular to pressure and gravity forces apgtea
sented by a half-spade > 0} containing a magnetized low be a valuable task. Moreover, the later forces may be nonneg|
beta highly conducting plasma with properties independéntgible in the upper part of the corona, and it has even been sug-
the x-coordinate. The magnetic field has an arcade topologjsted by several authors that they may play an importat rol
and it is imposed to evolve quasi-statically through a sagee in the triggering of eruptive events (e.g., Low & Smith (1993
of force-free configurations as a result of slow shearing mghibasaki (2001)). As yet these forces have been takendato a
tions imposed to its footpoints on the “photospheric” boanyd count in Z%D numerical simulations (Zwingmann 1987; Finn
{z = 0}. Energy thus gets stored in the field, and one looks f&Chen 1990; Choe & Lee 1996), but not much seems to have
the possibility of reaching some critical state beyond Whic been done from an analytical point of view (see, however, Aly
catastrophic release of a part of that energy becomes whavgi994), in which a particular example is discussed). This ha
able. Analytical studies (Aly 1985, 1990, 1994) have showsad us to undertake a general study of this particular gprest
that one of the most significant feature of such an evolution As a first step, we have looked for exact solutions of the quasi
the ideal MHD case is an indefinite expansion of the field leagkatic evolution problem including thefects of the thermal
ing asymptotically (fort — oo) to its partial or full opening, pressure (gravity is still neglected). The aim of this papeo
with the formation of an infinitely thin current-sheet, arts& present families of such solutions which seem to have nat bee
tion by reconnection to a lower energy state becoming howevymticed before, in spite of the fact that they can be obtained
energetically favorable at some stage if resistivity isddticed effecting some simple transforms on a well known sequence of
in the model. Numerical simulations based on both dynamid@lear force-free solutions (described, e.g., in Priestdlies
and static schemes (Amari et al. 1996; Choe & Lee 1996) hai®90)).
lead to similar conclusions, and have also provided vatiabl The paper is organized as follows. We first state precisely
descriptions of the nonideal reconnection phase. (Sect. 2) the general evolutionary problem in which we are in
terested. Thus we explain (Sect. 3) our method for transfaym
a sequence of force-free fields describing an evolutioredriv
Send offporint requests to: J.J. Aly by a stationary shearing velocity field into a non-forcesfre
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sequence having the same property, with the pressure of th2. Equations
plasma evolving according to either an adiabatic pregoript
or an isothermal one, or an isobaric one. This method wo
if the or_iginal sequence sgtisfies a peculiar conditic_)ndvﬁﬂ. B = B,X + By = B,X + VAX, (1)
shown in Sect. 4 to be fulfilled by the sequence of linear force

free fields alluded to above. We can thus obtain new sequenigeghich the field is expressed in terms of a “toroidal” fucti
of equilibria, whose properties are studied in Sect. 5. @ur Bx(y, z t) and a “poloidal” flux functionA(y, z,t). For A to be

We use the standard representation
rks

sults are summarized and discussed in Sect. 6. uniquely defined, we require
AxL,zt) =0 whenL < co, (2)
2. Statement of the general problem lim A=0 whenL = o, 3)
(IY+2)—o0

2.1. Assumptions ) ) )
(we can impose Eq. (2) becauBg(+L,zt) = 0, this condi-

We use hereafter Cartesian coordinateg,). ForO< L < oo, tion resulting from both the fact that the lateral walls aes-p

we defineD, S, andQ to be, respectively, the domajrL < fectly conducting and the assumpti@(+L,z0) = 0). The

y < L;0< 2z c R3, its lower plane boundar-L <y < L;z= |evel contours£(a,t) = {(y,2) | A(y,z1t) = a} of A(y,z t) in Q

0}, and its cross-sectiddN{x = 0}. We assume thd2 contains are the field lines oB}, (just note thaB,, - VA = 0).

amagnetized perfectly conducting plasma whose propenties  Equilibrium at each time requiresB, and p to be of the

invariant by the translations parallel to tleaxis. We denote form

asB(y,z t) and p(y, z t), respectively, the magnetic field and

the plasma thermal pressure at timénitially (att = 0) the Bx(Y:z1) = B«(A(Y.Z1).1), (4)

system s in a given state of equilibrium, with the pressared  p(y,zt) = p(A(y, z t),t), (5)

being balanced by the Lorentz force (the gravitationaldédasc ) .

neglected here). The total energy (magnetfiermal) per unit @ndAto satisfy the Grad-Shafranov equation

of x-length is finite, and® is taken to have an arcade topology <2,  » ¢ .

and no shear, = 0). Moreover, we require in the cake< co “VA= BB+ 4rp, ©)

thatB,(+L,z0) = 0, i.e., the field does not thread the lateralhere a dot denotes a derivative with respect to A at constant

boundaries, taken otherwise to be perfectly conducting. time (see, e.g., Schindler (2006), p. 78). Moreover, we ieed
Fort > 0, a velocity fieldv(y) = v(y)X is applied to the mag- have at each time(finite energy condition)

netic footpoints orss (also taken to be perfectly conducting),

with v(y) decreasing fast enough at infinity in the case (B3(y, 2 t) + p(y, z 1)) ds < co. 7)

for the energy input rate to keep a finite value. Consequentiy

the system is driven into an evolution which is assumed to be The injtial equilibrium is given, and it satisfi@(a, 0) = 0.

quasi-static. Of course, we also need to fix a rule determinifys |ines have an arcade topology, i.e., they connect twotpoi
the behavior of the pressure. We shall use hereafter oneordhg by just bridging above the line 0B along whichB, = 0.
other of the following prescriptions: (i) Adiabatic pregtion \vjthout any loss of generality, we assume that all the lines
(Finn & Chen 1990; Choe & Lee 1996): the mass and the efmerge from the right side of the latter, which implies that
tropy contents in any flux tube are conserved, which amoumﬁ,’zt) > 0. As a direct consequence of the frozen-in law

to consider the photosphere as a wall impeding any exchanggy of the velocity field or8 being directed along, the flux
of matter and heat between the corona and the subphotosphgfiction ons stays invariant,

region, while assuming that there are no heat sources os sink

in D. (i) Isothermal prescription: the mass in any flux tubé&(y, 0,t) = A(y, 0, 0), (8)
is conserved, while the temperaturekeeps a constant exter-
nally fixed value. Then mass transfer througjtis forbidden,
while energy may be exchanged with a heat reservoir (thermg- _

stat). (iii) Isobaric prescription (Zwingmann 1987): theeg- "tpology £(a.9) = topologyl £(a. )} ®)
sure keeps its initial value on each magnetic line. In thaecalt may be worth recalling that this means tif(#, t) is obtained
the photosphere is considered as a reservoir regulptingal- from £(a, 0) by a continuous deformation keeping fixed the
lowing plasma to flow onto or out the corona. There does nigiotpoints on the lower boundary ©f.

seem to be yet an agreement on which one of these assumptionginally, we have to write equations prescribing hBy(a, t)
may be the more realistic for describing the corona (see thedp(a, t) change with time. For that we introduce the function
discussion in Schindler (2006)). Actually, it seems likéhat 2%

to obtain a definitive answer to that question it will be neceg,(a,t) := f ds = f (f ﬂ) da’, (10)
sary to introduce a more global model in which both the corona (Axy.D>a) a (. Bp

and the subphotqspheric layers (and the_zn the exghangemtvyﬁhereao — max, A(y, 0,0) > 0, and its derivative
them) are taken into account. Meanwhile, studying the conse

quences of these various assumptions and comparing them js

Wy dl
_ _ . R f Ly (11)
certainly a profitable exercice. @y Bp

and the linesL(a, t) in Q keep their initial topology,
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w(a, t) represents the area of the subdomaif@bmprised be- The sheaiX(a, t) of the new field satisfies the first equality

tween the linef(a, t) and they-axis, and ther-w(a, t)dais the in Eq. (12) and then

area of the domain comprised between the poloidal lif{@st) .

andL(a + da, t). To get an equation foB,(a, t), we consider a (8, to)

line of B admitting £L(a, t) as its projection ont®, and define 'w(a, )

its shearX(a, t) to be the diference between thecoordinates

of its left and right footpoints, respectively. Then we have Where we have used the obvious fact thé, t) = w(a,t). If

the one haniX(a, t) = (-Bxw)(a, t) (just use the equation deter-We Now suppose that the factorization

mining a magnetic line and Egs. (4) and (11)), and on the ot 200 52

handX(a. 1) = [V(y (@) — (y* (@)]t = £(@)t, wherey*(a) de- Wy = 20 (19)

note they-coordinates of the left) and right ¢) footpoints holds true for som& and some functions(a) and f, (t), with

(we use here the fact th&{a, t) is created by the stationary Ve-f, (to) = 0 and f, () increasing, we can adopt= f,(t) as a

locity field imposed orS). ThereforeBy has to obey the non- new time (as we consider a quasi-static evolution, thereis n

local equation dynamics involved and time just plays the role of a labeling
. parameter for the configurations), and we get after sulbstitu

X(a 1) = B(a Ol-w(a 1] = L(@). (12) ing f-1v) for tin (B(t), p(t)) a sequenceR(t). p(t) which is

The pressure functiop(a, ) is obviously given by clearly another solution to EvPb.

Our “method” for constructing a solution to EvPb having
~o(a,0)\" p # 0 should now appear clearly. It just consists in looking
—w(a, t)) ’ for force-free solutions (which are a priori simpler) for i
o I the functionX? defined by Eq. (18) possesses the factorization
wherep(a, 0) is its given initial value, and we take = 0 for property (19) for some value &, and to apply to it the trans-

an isobaric evolution’ = 1 for an isothermal evolution, andform explained above. Obviously the method works for any
I' = y for an adiabatic evolution, with > 1 being the adiabatic B(t) if we takeT = 2 (in that case the pressupgust evolves

index of the gas. For theoretical purpose, the latter wititken . . —2 -
here to be an arbitrary parameter. as did the magnetic pressuBg /8, and we can také = ¢

To summarize, our problem — referred to as EvPb hereafead fi,(t) = (/t? —t3). That it works for other values df may
— consists to determine a seque{(@e By, p)(y, z t); t > 0} sat- appear a priori dubious. However, it turns out to be the case,
isfying Egs. (2)(3)-(9) and (12)-(13), when we are given akhown in the next section.
initial unsheared configuratio®(By = 0, p)(y, z 0), a velocity
profile v(y), and a value of". In the case wherg(a, 0) = 0,
EvPb reduces to the force-free evolutionary problem stligie

the papers quoted in the introduction. 4.1. A force-free solution to EvPb

We start with a well known construction which may be found,
e.g., in Priest & Forbes (1990). We first introduce the segeen

r-2 )
xz(a,t)=Bi(at)wZ(at>=[t2—té( ) }Z(a), (18)

pat) = pla 0)( (13)

4. An example of application of the method

3. A tentative method to get solutions to EvPb

having p # 0 from a force-free solution {B,} of linear arcade force-free fields definedin(with L <
We assume that we know a force-free soluti(t) to EvPb — o) by
i.e., asolution for which the pressure vanishes —, and weszo o o
' ' B.(y,2 = V ,Z) X X (Y, 2X, 20
atimety > 0. Then we set fotr > tg .2 B?“(y ZXZ taA(.2) (20)
o o A(y.2) = eV cosky). (21)
8r —'E(a, ) ’ whereBy > 0 is a constantl = n/2L, and« is a parameter
2 =2 ranging in ]- k, k[. A short calculation shows that theftéiren-
B{ay = Bx Sa, H- 8”p(i’ 0. (15) tial area function (see Eq. (11)) associate@tds given by
B(t) = Bx(A(t), )X + VA(L) x X, (16)

_ . : d 2 a 29
where an overline indicates that a quantity is associatezl to_“’“(a) - arccosa—o, (22)

> an : £.a Bep  kaVikZ — a2
andrl is a given number either equal to 0, or equal to 1, or larger
than 1. The time-sequencB(f), p(t)) that we obtain that way Whereao = max A(y,0,0) = Bo/k. Using the first equality in
is a sequence of arcade equilibriaB@ndB have the same Ea. (12), we thus obtain for the shear of a lineBafon which
flux function, A, and the same right-hand side of the Grad = a

Shafranov equation (6)8é(a, t)+8rp(a, t) = B (at). It starts ~ _ 2 a 23
ﬁ\é:irsjemnew initial timeto from the nonpotential unsheared equiXe(®) = @al-w.(@)] = V= a2 arccosy.- (23)
_ o Next we set fot > 0
(B(to), p(to)) = (VA(to) X X, Bx (A(to), to)/8n), 17) T
a(t) = (24)

k—.
V14 (t/T)?

and the thermal pressure evolves according to Eq. (13).
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whereT is some fixed number, and we define a time-sequence Simple considerations show that Eq. (35) has a unigue so-

of arcade force-free fields by

B(t) = Bag- (25)
ForB(t), we have

- ) 2 arccosg/ap) 12 \¥?
-w(a,t) = —Wa(t) = T a (1 + T2 s (26)
and the shear function writes
X(@.1) = Xaq = t[(2/KT) arccosé/ao)] =: tZ(a). (27)

X(a, ) is just of the form occuring in Eq. (12) and th&t)

appears to be the solution of the EvPb defined by the initial
arcade potential fiel8(0) = B,-o, and the stationnary velocity

field

v(y) = (y/T)X
which is easily checked to produce the shear prdfile

(28)

4.2. The new solutions
A simple look at Eq. (26) shows that the raﬁm'_u(a, to)/ —

w(a, t) (with t andty being arbitrary positive numbers) is inde-
pendent ofa, and that the term inside the bracket in the right-

hand side of Eq. (18) is always positive. Then the fB{t) has
the factorization property (19) for all the valuesIgfand we

can apply toB(t) the method of the previous section to pro-

duce solutions to EvPb witp # 0. Actually, it will prove more
convenient here to start directly from the sequeBge

We thus fix a numbetg €] — k, k[, and define our new time

sequence of equilibriaB(t), p(t)), t > 0, by setting

B(t) = Bx(Auw, DX+ VA, X X, (29)
By(at) = +[e?()a® - 8rp(a,t)]2 (30)
2,2 - r
_ _0— _wﬂlo(a) )
pat) = & (_Wt) @) (31)

wherea(t) is an unknown function satisfying(0) = aq. This
sequence starts from the unsheared equilibrium
2,2

B(0)= VA, x&% and p(a,0)= %, (32)

with the latter having a beta at the origin given by
__Pp000) a5 % fo gy
~ B%0,0,0)/87  k2-a? k2 1+p0
Using Egs. (12), (22), and (30) we get the relation
K2 — o2(t)\'"?| [2 arccosé/ag)]?
K- ag k2(k2 — a?(t))

forthe sheaK(a, t). The latter can be putinto the fork{a, t) =
tZ(a) by choosingz(a) = (a), with £ defined by (27) — the
shearing velocity field thus keeping the form (28), witthav-
ing the sign ofBy — and by requiring(t) to be a solution of
the equation

a*(1) o
K2 —a2(t) (k2 — aQ)T/2(K2 — 2(t))L-T/2°

Bo

X%(a,t) = [a/z(t) - ag( (34)

t2

T2

(39)

lution @?(t, a3, I') for t > 0, with the latter satisfying
da? da’? da’?

E>O, aTd(z)>o, a—r<0 (36)
Thene? increases witht (actually fromea3 up tok?) and with
a3, while it decreases with.

In many cases, it is possible to giwé in closed form:

For the isobaric lawl] = 0, we have
a(z) + K2t2/T2

200 2 Ay _
(t.05.0) = =57 37)
For the isothermal lav; = 1, we can write
1
2 2 4y _ 12 _
a“(t,ag, 1) =k A1+ BT X
4 2\11/2 2 2
@ 2 t @
{[kz Swfon) -w —aé)l/Z} -

For the adiabatic law = y > 1, a closed form solution

is possible for the particular valuespfor which Eq. (35)
reduces to an algebraic equation of degree no larger than
5(y =6/5,8/5,4/3,3/2,2,5/2,8/3,3,10/3,4,5,6, 8, 10).

For instance, we obtain in the simplest case whete2

a(z) + (K% - a/cz))tz/T2 2. (39)
k2 + (k2 - 61/(2))'[2/T2

We shall refrain here from writing the quite heavy formulas
for the other values of as they are not very illuminating.

aA(t, a/(z), 2)=

5. Some properties of the new solutions
5.1. Expansion of the poloidal structure

It results immediately from Eq. (21) that the maximum hejght
Z(a, t), reached at timeby the lineL(a, t) is given by

In @.

Z(at) = 2

40
k2 — a2(t) (40)

Whent increases from 0 to infinity;?(t) increases fronag up
to k?, and thenZ(a, t) increases monotonically up to infinity,
with an asymptotically constant speed. Then shearing thie fo
points leads to a continuous expansion of the poloidal sirac
and to its eventual opening. Moreover, it results from E) (3
that increasingyg leads to an increase @fa, t) while increas-
ing T leads to a decrease of that quantity. This behavior is illus-
trated in Figure 1 where we have plottéh, t)/L for a = ag/2,
I'=0,1,2, anda? such thap, = 0.5, 1 (see Eq. (33)).

The open equilibrium which is asymptotically approached
whent — oo is 1D forI" > 1, being given by

B(c0) = Bg[cosky)X + sin(ky)Z], (412)

p(co) = 0, (42)

and D for T = 0, in which case

B(co) = Bo|(1- ad/k%)"? cosky)X + sinky)2| . (43)
a?2B?

p(eo) = g7 COS(ky). (44)



J.J. Aly: Quasi-static evolution of a magnetohydrostagjaiébrium 5

get after a short calculation

o f B2 2K2— a2(t)
@ By=05 _ 0 @
1 Wp(t) - 32(3 k2 _az(t)’ (45)
B3 ey
Wi(t) = I8 k-« (t)ﬁ, (46)
) BZ Clz k2— Zt r72
2 Wi(t) = o0 O (47)
320 - DK ke —a2(t) \ K-

and the total energW = W, + W, + W, is given by

B2 _ 2 2m\[/2
Wit = — 2 [2k2 + QEZ_)/ [%) } .(48)
323 k2 — a2(t) y-1{ k2-af

As it is easily checked)V,, Wy, andW, increase monotonically
with time in any case, and they all tend to infinity whier»
oo, while W increases up to infinity in the isobaric cage#
0), keeps a constant value in the isothermal c&se (), and
decreases to zero in the adiabatic case ().

5.3. Linear stability

Consider any one of the configurations forming a solution to
EvPb, and submit it — the driving boundary motions being
frozen — to an arbitrary smaII%ZD displacement field(y, 2) =
Ex(Y, 2% + &Y, 2. We require to satisfy the conditions

£(y,0)=0 and ¢&y(£L,2 =0, (49)

Z/L

which express the fact that the boundaryois rigid and per-
fectly conducting. Then we claim that the configuration is-id

I ally linearly stable with respect to this perturbation. g kiate-

0.00 1] ment is an immediate consequence of a general result reporte
in Schindler (2006, p. 216). According to the Iatter,%DQcon—
figuration inQ is stable if there does exist a fixed direction
such thatil.B, keeps the same sign in the whole domain. This
is clearly the case here, with= §, as we hav§ - B, = By < 0.

Fig. 1. Evolution of Z(a,t)/L as a function ot/T for a = ay/2, and

Bo = 0.5 (a) andBy = 1.0 (b). In both (a) and (b), we have plotted ;
(from the bottom to the top) the force-free cagg € 0, black curve), 6. Conclusion

and the three casé@s= 2 (green)I” = 1 (red), and” = 0 (blue). Up to now the analytical problem of the boundary driven quasi
static evolution of arx-invariant magnetostatic equilibrium oc-
cupying either a half-space or a vertical slice of it has been
essentially considered in the case where the magnetic §eld i
force-free. In this paper, we have proposed a method which al
lows to construct examples in which the thermal pressure of
the plasma is taken into account. The method amounts to-trans
form a solution of a force-free EvPb into a solution of a non-
force-free EvPb, witlp evolving according to some prescribed
fAw, either adiabatic, or isothermal, or isobaric. For thethod
to apply, the initial force-free solution has however to phe
strong peculiar constraint. The latter has been checkee&to b
satisfied by a well known linear force-free solution whicts ha
5.2. Energy been already used by many authors, and we have explicitly con
structed from it solutions to EvPb driven by the same boundar
Let us denote a¥V,, Wy, and W, respectively, the poloidal velocity field, under each one of the three prescriptiong{or
magnetic energy (energy &), the toroidal magnetic energyrecalled above. In the case where the constraint is nofisdiis
(energy ofBy), and the plasma internal energy (we recall thalhe transform may be stillfeected, but it leads to evolution-
“energy” means here “energy per unitlength”). Then we ary sequences which are driven by boundary motions whose

YT

In these final states, the total pressBrgmagnetie-thermal) is
uniform (P = B§/8n), but no current sheet is present (this is
peculiar feature due to theiV]]%D character).
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velocity profile evolves in time and becomes in any case daly, J. J. 1994, A&A, 288, 1012
pendent of the imposed pressure prescription. Unfortlyateily, J.-J. 2009, Preprint
the transform from a force-free state to a non-force-free oAmari, T., Luciani, J.-F., Aly, J.-J., & Tagger, M. 1996, A&A
which is at the base of the method is specific to the class 0f306, 913
translation-invariant equilibria, for which the thermakpsure Choe, G. S. & Lee, L. C. 1996, ApJ, 472, 360
and the magnetic pressure associated to the component offima, J. M. & Chen, J. 1990, ApJ, 349, 345
field along the direction of invariance intervene on the sanhées, B. W., Low, B. C., Martinez Pillet, V., et al. 1995, ApJ
footing in the Grad-Shafranov equation. This property is no 446, 877
longer true for either the axisymmetric or the helical eifpuid, Low, B. C. 1982, ApJ, 263, 952
and a fortiori for the 3D ones. Low, B. C. & Smith, D. F. 1993, ApJ, 410, 412
It should be noted that many authors have already pro- Priest, E. R. & Forbes, T. G. 1990, Sol. Phys., 130, 399
vided examples of conversion of some particular magneto- Schindler, K. 2006, Physics of Space Plasma Activity
static equilibrium into a new one as a result of the appli- (Cambridge University Press, Cambridge)
cation of an adequate mathematical transform (e.g., Low Shibasaki, K. 2001, ApJ, 557, 326
(1982); Lites et al. (1995); Aly (2009)). For instance, Low Zwingmann, W. 1987, Sol. Phys., 111, 309
(1982) has shown that any one of the specific unsheared
2D equilibria we have used in Sect. 4.2 as possible initial
states of a quasi-static evolution, can be transformed into
a 3D laminar equilibrium submitted to a uniform gravi-
tational field. The new configuration consists of discrete,
finite-thickness flux tubes embedded in an isothermal field-
free atmosphere, and it turns out to be linearly stable with
respect to 3D perturbations. There is however something
new in the present paper: the transform method has been
applied not to a single equilibrium at a time, but to a whole
evolutionnary sequence driven by stationary boundary mo-
tions, with another sequence of the same type being eventu-
ally obtained.
One of the weakness of the solutions we have presented is
of course the presence of the lateral walls which imposeeo th
field an artificial confinement, and it is necessary to studiemn
tails the more interesting case where the evolution takasepl
in the whole half-spacé (= ). Preliminary results (Aly 2009,
in preparation) on that problem show that — as it can be aiprior
expected — the pressure does not change qualitatively the ev
lution when either the adiabatic or the isothermal presicnip
is adopted. In the isobaric case, however, the evolution can
not go on for ever. There is a critical time at which a global
nonequilibrium phenomenon (Aly 1993) develops: there is no
longer an equilibrium compatible with the constraints ire@o
to the system, and a dynamical evolution has to start in, lwhic
may be guessed to lead to an opening of the field. In spite of
that, we feel that the new solutions are quite useful. Theg gi
an explicit example in which it is possible to evaluate gitant
tively how a force-free solution is changed when tlffeets of
the thermal pressure of the plasma are introduced, theyagive
interesting test for checking the accurateness of the vaga-
act estimates (generally in the form of upper and lower beund
on some physical quantities) that we shall present in odinfor
coming paper on the general problem, and finally they may be
used as test cases for numerical MHD codes of evolution.
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