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ABSTRACT

Aims. We construct families of time-sequences ofx-invariant magnetostatic equilibria which describe idealquasi-static evolutions driven by
stationary shearing motions imposed on a boundary. The change in the thermal pressure of the plasma is determined by imposing either an
adiabatic, or an isothermal, or an isobaric, prescription.
Methods. We start from a well known family of linear force-free fields,on which we effect simple transforms.
Results. In either case, the magnetic field and the pressure are expressed fully analytically as functions of space and time. The field is found to
suffer an indefinite expansion, with a decrease to zero of the pressure in the adiabatic and isothermal cases, and to eventually open. Moreover,
the configurations forming any sequence are shown to be linearly stable with respect tox-invariant perturbations.
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1. Introduction

Solar eruptive phenomena occurring in very elongated struc-
tures present in active regions have often been studied by us-
ing a simplified 212D model. In the latter the corona is repre-
sented by a half-space{z > 0} containing a magnetized low
beta highly conducting plasma with properties independentof
the x-coordinate. The magnetic field has an arcade topology,
and it is imposed to evolve quasi-statically through a sequence
of force-free configurations as a result of slow shearing mo-
tions imposed to its footpoints on the “photospheric” boundary
{z = 0}. Energy thus gets stored in the field, and one looks for
the possibility of reaching some critical state beyond which a
catastrophic release of a part of that energy becomes unavoid-
able. Analytical studies (Aly 1985, 1990, 1994) have shown
that one of the most significant feature of such an evolution in
the ideal MHD case is an indefinite expansion of the field lead-
ing asymptotically (fort → ∞) to its partial or full opening,
with the formation of an infinitely thin current-sheet, a transi-
tion by reconnection to a lower energy state becoming however
energetically favorable at some stage if resistivity is introduced
in the model. Numerical simulations based on both dynamical
and static schemes (Amari et al. 1996; Choe & Lee 1996) have
lead to similar conclusions, and have also provided valuable
descriptions of the nonideal reconnection phase.
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Although the force-free assumption appears to be justified
by the low value of the plasma beta in the mid-corona and the
slowness of the photospheric motions driving the evolution, it
is in any case an approximation, and working out the correc-
tions due in particular to pressure and gravity forces appears to
be a valuable task. Moreover, the later forces may be nonnegli-
gible in the upper part of the corona, and it has even been sug-
gested by several authors that they may play an important role
in the triggering of eruptive events (e.g., Low & Smith (1993);
Shibasaki (2001)). As yet these forces have been taken into ac-
count in 21

2D numerical simulations (Zwingmann 1987; Finn
& Chen 1990; Choe & Lee 1996), but not much seems to have
been done from an analytical point of view (see, however, Aly
(1994), in which a particular example is discussed). This has
lead us to undertake a general study of this particular question.
As a first step, we have looked for exact solutions of the quasi-
static evolution problem including the effects of the thermal
pressure (gravity is still neglected). The aim of this paperis to
present families of such solutions which seem to have not been
noticed before, in spite of the fact that they can be obtainedby
effecting some simple transforms on a well known sequence of
linear force-free solutions (described, e.g., in Priest & Forbes
(1990)).

The paper is organized as follows. We first state precisely
(Sect. 2) the general evolutionary problem in which we are in-
terested. Thus we explain (Sect. 3) our method for transforming
a sequence of force-free fields describing an evolution driven
by a stationary shearing velocity field into a non-force-free
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sequence having the same property, with the pressure of the
plasma evolving according to either an adiabatic prescription,
or an isothermal one, or an isobaric one. This method works
if the original sequence satisfies a peculiar condition, which is
shown in Sect. 4 to be fulfilled by the sequence of linear force-
free fields alluded to above. We can thus obtain new sequences
of equilibria, whose properties are studied in Sect. 5. Our re-
sults are summarized and discussed in Sect. 6.

2. Statement of the general problem

2.1. Assumptions

We use hereafter Cartesian coordinates (x, y, z). For 0< L ≤ ∞,
we defineD, S , andΩ to be, respectively, the domain{−L <
y < L; 0 < z} ⊂ R3, its lower plane boundary{−L < y < L; z =
0}, and its cross-sectionD∩{x = 0}. We assume thatD contains
a magnetized perfectly conducting plasma whose propertiesare
invariant by the translations parallel to thex-axis. We denote
asB(y, z, t) and p(y, z, t), respectively, the magnetic field and
the plasma thermal pressure at timet. Initially (at t = 0) the
system is in a given state of equilibrium, with the pressure force
being balanced by the Lorentz force (the gravitational force is
neglected here). The total energy (magnetic+thermal) per unit
of x-length is finite, andB is taken to have an arcade topology
and no shear (Bx ≡ 0). Moreover, we require in the caseL < ∞
that By(±L, z, 0) = 0, i.e., the field does not thread the lateral
boundaries, taken otherwise to be perfectly conducting.

For t ≥ 0, a velocity fieldv(y) = v(y)x̂ is applied to the mag-
netic footpoints onS (also taken to be perfectly conducting),
with v(y) decreasing fast enough at infinity in the caseL = ∞
for the energy input rate to keep a finite value. Consequently
the system is driven into an evolution which is assumed to be
quasi-static. Of course, we also need to fix a rule determining
the behavior of the pressure. We shall use hereafter one or the
other of the following prescriptions: (i) Adiabatic prescription
(Finn & Chen 1990; Choe & Lee 1996): the mass and the en-
tropy contents in any flux tube are conserved, which amounts
to consider the photosphere as a wall impeding any exchange
of matter and heat between the corona and the subphotospheric
region, while assuming that there are no heat sources or sinks
in D. (ii) Isothermal prescription: the mass in any flux tube
is conserved, while the temperatureT keeps a constant exter-
nally fixed value. Then mass transfer throughS is forbidden,
while energy may be exchanged with a heat reservoir (thermo-
stat). (iii) Isobaric prescription (Zwingmann 1987): the pres-
sure keeps its initial value on each magnetic line. In that case,
the photosphere is considered as a reservoir regulatingp by al-
lowing plasma to flow onto or out the corona. There does not
seem to be yet an agreement on which one of these assumptions
may be the more realistic for describing the corona (see the
discussion in Schindler (2006)). Actually, it seems likelythat
to obtain a definitive answer to that question it will be neces-
sary to introduce a more global model in which both the corona
and the subphotospheric layers (and then the exchange between
them) are taken into account. Meanwhile, studying the conse-
quences of these various assumptions and comparing them is
certainly a profitable exercice.

2.2. Equations

We use the standard representation

B = Bxx̂ + Bp = Bxx̂ + ∇A × x̂, (1)

in which the field is expressed in terms of a “toroidal” function
Bx(y, z, t) and a “poloidal” flux functionA(y, z, t). For A to be
uniquely defined, we require

A(±L, z, t) = 0 whenL < ∞, (2)

lim
(|y|+z)→∞

A = 0 whenL = ∞, (3)

(we can impose Eq. (2) becauseBy(±L, z, t) = 0, this condi-
tion resulting from both the fact that the lateral walls are per-
fectly conducting and the assumptionBy(±L, z, 0) = 0). The
level contoursL(a, t) = {(y, z) | A(y, z, t) = a} of A(y, z, t) in Ω
are the field lines ofBp (just note thatBp · ∇A = 0).

Equilibrium at each timet requiresBx and p to be of the
form

Bx(y, z, t) = Bx(A(y, z, t), t), (4)

p(y, z, t) = p(A(y, z, t), t), (5)

andA to satisfy the Grad-Shafranov equation

−∇2A = BxḂx + 4π ṗ, (6)

where a dot denotes a derivative with respect to A at constant
time (see, e.g., Schindler (2006), p. 78). Moreover, we needto
have at each timet (finite energy condition)
∫

Ω

(B2(y, z, t) + p(y, z, t)) ds < ∞. (7)

The initial equilibrium is given, and it satisfiesBx(a, 0) ≡ 0.
Its lines have an arcade topology, i.e., they connect two points
of S by just bridging above the line onS along whichBz = 0.
Without any loss of generality, we assume that all the lines
emerge from the right side of the latter, which implies that
A(y, z, t) > 0. As a direct consequence of the frozen-in law
and of the velocity field onS being directed alonĝx, the flux
function onS stays invariant,

A(y, 0, t) = A(y, 0, 0), (8)

and the linesL(a, t) in Ω keep their initial topology,

topology{L(a, t)} ≡ topology{L(a, 0)}. (9)

It may be worth recalling that this means thatL(a, t) is obtained
from L(a, 0) by a continuous deformation keeping fixed the
footpoints on the lower boundary ofΩ.

Finally, we have to write equations prescribing howBx(a, t)
andp(a, t) change with time. For that we introduce the function

ω(a, t) :=
∫

{A(x,y,t)>a}
ds =

∫ a0

a

(∫

L(a′,t)

dl
Bp

)

da′, (10)

wherea0 = maxy A(y, 0, 0)> 0, and its derivative

ω̇(a, t) = −
∫

L(a,t)

dl
Bp
. (11)
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ω(a, t) represents the area of the subdomain ofΩ comprised be-
tween the lineL(a, t) and they-axis, and then−ω̇(a, t)da is the
area of the domain comprised between the poloidal linesL(a, t)
andL(a + da, t). To get an equation forBx(a, t), we consider a
line of B admittingL(a, t) as its projection ontoΩ, and define
its shearX(a, t) to be the difference between thex-coordinates
of its left and right footpoints, respectively. Then we haveon
the one handX(a, t) = (−Bxω̇)(a, t) (just use the equation deter-
mining a magnetic line and Eqs. (4) and (11)), and on the other
handX(a, t) = [v(y−(a)) − v(y+(a))]t =: ζ(a)t, wherey±(a) de-
note they-coordinates of the left (−) and right (+) footpoints
(we use here the fact thatX(a, t) is created by the stationary ve-
locity field imposed onS ). ThereforeBx has to obey the non-
local equation

X(a, t) = Bx(a, t)[−ω̇(a, t)] = tζ(a). (12)

The pressure functionp(a, t) is obviously given by

p(a, t) = p(a, 0)

(

−ω̇(a, 0)
−ω̇(a, t)

)Γ

, (13)

wherep(a, 0) is its given initial value, and we takeΓ = 0 for
an isobaric evolution,Γ = 1 for an isothermal evolution, and
Γ = γ for an adiabatic evolution, withγ > 1 being the adiabatic
index of the gas. For theoretical purpose, the latter will betaken
here to be an arbitrary parameter.

To summarize, our problem – referred to as EvPb hereafter
– consists to determine a sequence{(A, Bx, p)(y, z, t); t ≥ 0} sat-
isfying Eqs. (2)/(3)-(9) and (12)-(13), when we are given an
initial unsheared configuration (A, Bx = 0, p)(y, z, 0), a velocity
profile v(y), and a value ofΓ. In the case wherep(a, 0) ≡ 0,
EvPb reduces to the force-free evolutionary problem studied in
the papers quoted in the introduction.

3. A tentative method to get solutions to EvPb
having p . 0 from a force-free solution

We assume that we know a force-free solutionB(t) to EvPb –
i.e., a solution for which the pressure vanishes –, and we choose
a timet0 > 0. Then we set fort ≥ t0

p(a, t) =
Bx

2
(a, t0)
8π

(

−ω̇(a, t0)

−ω̇(a, t)

)Γ

, (14)

B2
x(a, t) = Bx

2
(a, t) − 8πp(a, t), (15)

B(t) = Bx(A(t), t)x̂ + ∇A(t) × x̂, (16)

where an overline indicates that a quantity is associated toB,
andΓ is a given number either equal to 0, or equal to 1, or larger
than 1. The time-sequence (B(t), p(t)) that we obtain that way
is a sequence of arcade equilibria asB andB have the same
flux function, A, and the same right-hand side of the Grad-

Shafranov equation (6) (B2
x(a, t)+8πp(a, t) = Bx

2
(a, t)). It starts

at the new initial timet0 from the nonpotential unsheared equi-
librium

(B(t0), p(t0)) = (∇A(t0) × x̂, Bx
2
(A(t0), t0)/8π), (17)

and the thermal pressure evolves according to Eq. (13).

The shearX(a, t) of the new field satisfies the first equality
in Eq. (12) and then

X2(a, t) = B2
x(a, t)ω̇

2(a, t) =















t2 − t20

(

ω̇(a, t0)

ω̇(a, t)

)Γ−2












ζ
2
(a), (18)

where we have used the obvious fact thatω(a, t) = ω(a, t). If
we now suppose that the factorization

X2(a, t) = f 2
t0(t)ζ

2(a) (19)

holds true for someΓ and some functionsζ(a) and ft0(t), with
ft0(t0) = 0 and ft0(t) increasing, we can adoptt′ = ft0(t) as a
new time (as we consider a quasi-static evolution, there is no
dynamics involved and time just plays the role of a labeling
parameter for the configurations), and we get after substitut-
ing f −1

t0 (t′) for t in (B(t), p(t)) a sequence (B(t′), p(t′)) which is
clearly another solution to EvPb.

Our “method” for constructing a solution to EvPb having
p . 0 should now appear clearly. It just consists in looking
for force-free solutions (which are a priori simpler) for which
the functionX2 defined by Eq. (18) possesses the factorization
property (19) for some value ofΓ, and to apply to it the trans-
form explained above. Obviously the method works for any
B(t) if we takeΓ = 2 (in that case the pressurep just evolves

as did the magnetic pressureBx
2
/8π, and we can takeζ = ζ

and ft0(t) =
√

t2 − t20). That it works for other values ofΓ may

appear a priori dubious. However, it turns out to be the case,as
shown in the next section.

4. An example of application of the method

4.1. A force-free solution to EvPb

We start with a well known construction which may be found,
e.g., in Priest & Forbes (1990). We first introduce the sequence
{Bα} of linear arcade force-free fields defined inΩ (with L <
∞) by

Bα(y, z) = ∇Aα(y, z) × x̂ + αAα(y, z)x̂, (20)

Aα(y, z) =
B0

k
e−z
√

k2−α2
cos(ky), (21)

whereB0 > 0 is a constant,k = π/2L, andα is a parameter
ranging in ]− k, k[. A short calculation shows that the differen-
tial area function (see Eq. (11)) associated toBα is given by

−ω̇α(a) =
∫

Lα(a)

dl
Bαp
=

2

ka
√

k2 − α2
arccos

a
a0
, (22)

wherea0 = maxy A(y, 0, 0) = B0/k. Using the first equality in
Eq. (12), we thus obtain for the shear of a line ofBα on which
Aα = a

Xα(a) = αa[−ω̇α(a)] =
2α

k
√

k2 − α2
arccos

a
a0
. (23)

Next we set fort ≥ 0

α(t) = k
t/T

√

1+ (t/T )2
, (24)
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whereT is some fixed number, and we define a time-sequence
of arcade force-free fields by

B(t) = Bα(t). (25)

ForB(t), we have

−ω̇(a, t) = −ω̇α(t) =
2 arccos(a/a0)

k2a

(

1+
t2

T 2

)1/2

, (26)

and the shear function writes

X(a, t) = Xα(t) = t [(2/kT ) arccos(a/a0)] =: tζ(a). (27)

X(a, t) is just of the form occuring in Eq. (12) and thenB(t)
appears to be the solution of the EvPb defined by the initial
arcade potential fieldB(0) = Bα=0, and the stationnary velocity
field

v(y) = (y/T )x̂ (28)

which is easily checked to produce the shear profileζ.

4.2. The new solutions

A simple look at Eq. (26) shows that the ratio−ω̇(a, t0)/ −
ω̇(a, t) (with t andt0 being arbitrary positive numbers) is inde-
pendent ofa, and that the term inside the bracket in the right-
hand side of Eq. (18) is always positive. Then the fieldB(t) has
the factorization property (19) for all the values ofΓ, and we
can apply toB(t) the method of the previous section to pro-
duce solutions to EvPb withp . 0. Actually, it will prove more
convenient here to start directly from the sequenceBα.

We thus fix a numberα0 ∈] − k, k[, and define our new time
sequence of equilibria, (B(t), p(t)), t ≥ 0, by setting

B(t) = Bx(Aα(t), t)x̂ + ∇Aα(t) × x̂, (29)

Bx(a, t) = ±[α2(t)a2 − 8πp(a, t)]1/2, (30)

p(a, t) =
α2

0a2

8π

(

−ω̇α0(a)

−ω̇α(t)(a)

)Γ

, (31)

whereα(t) is an unknown function satisfyingα(0) = α0. This
sequence starts from the unsheared equilibrium

B(0) = ∇Aα0 × x̂ and p(a, 0)=
α2

0a2

8π
, (32)

with the latter having a beta at the origin given by

β0 =
p(0, 0, 0)

B2(0, 0, 0)/8π
=
α2

0

k2 − α2
0

⇒
α2

0

k2
=
β0

1+ β0
. (33)

Using Eqs. (12), (22), and (30) we get the relation

X2(a, t) =















α2(t) − α2
0













k2 − α2(t)

k2 − α2
0













Γ/2












[2 arccos(a/a0)]2

k2(k2 − α2(t))
(34)

for the shearX(a, t). The latter can be put into the formX(a, t) =
tζ(a) by choosingζ(a) = ζ(a), with ζ defined by (27) – the
shearing velocity field thus keeping the form (28), withT hav-
ing the sign ofBx – and by requiringα2(t) to be a solution of
the equation

t2

T 2
=

α2(t)
k2 − α2(t)

−
α2

0

(k2 − α2
0)Γ/2(k2 − α2(t))1−Γ/2 . (35)

Simple considerations show that Eq. (35) has a unique so-
lution α2(t, α2

0, Γ) for t ≥ 0, with the latter satisfying

∂α2

∂t
> 0,

∂α2

∂α2
0

> 0,
∂α2

∂Γ
< 0. (36)

Thenα2 increases witht (actually fromα2
0 up tok2) and with

α2
0, while it decreases withΓ.

In many cases, it is possible to giveα2 in closed form:

– For the isobaric law,Γ = 0, we have

α2(t, α2
0, 0) =

α2
0 + k2t2/T 2

1+ t2/T 2
. (37)

– For the isothermal law,Γ = 1, we can write

α2(t, α2
0, 1) = k2 − 1

4(1+ t2/T 2)2
×



























α4
0

k2 − α2
0

+ 4k2

(

1+
t2

T 2

)











1/2

−
α2

0

(k2 − α2
0)1/2















2

. (38)

– For the adiabatic law,Γ = γ > 1, a closed form solution
is possible for the particular values ofγ for which Eq. (35)
reduces to an algebraic equation of degree no larger than
5 (γ = 6/5, 8/5, 4/3, 3/2, 2, 5/2, 8/3,3,10/3, 4,5,6,8,10).
For instance, we obtain in the simplest case whereγ = 2

α2(t, α2
0, 2) =

α2
0 + (k2 − α2

0)t2/T 2

k2 + (k2 − α2
0)t2/T 2

k2. (39)

We shall refrain here from writing the quite heavy formulas
for the other values ofγ as they are not very illuminating.

5. Some properties of the new solutions

5.1. Expansion of the poloidal structure

It results immediately from Eq. (21) that the maximum height,
Z(a, t), reached at timet by the lineL(a, t) is given by

Z(a, t) =
1

√

k2 − α2(t)
ln

a0

a
. (40)

Whent increases from 0 to infinity,α2(t) increases fromα2
0 up

to k2, and thenZ(a, t) increases monotonically up to infinity,
with an asymptotically constant speed. Then shearing the foot-
points leads to a continuous expansion of the poloidal structure
and to its eventual opening. Moreover, it results from Eq. (36)
that increasingα2

0 leads to an increase ofZ(a, t) while increas-
ingΓ leads to a decrease of that quantity. This behavior is illus-
trated in Figure 1 where we have plottedZ(a, t)/L for a = a0/2,
Γ = 0, 1, 2, andα2

0 such thatβ0 = 0.5, 1 (see Eq. (33)).
The open equilibrium which is asymptotically approached

whent→ ∞ is 1D forΓ ≥ 1, being given by

B(∞) = B0[cos(ky)x̂ + sin(ky)ẑ], (41)

p(∞) = 0, (42)

and 11
2D for Γ = 0, in which case

B(∞) = B0

[

(1− α2
0/k

2)1/2 cos(ky)x̂ + sin(ky)ẑ
]

, (43)

p(∞) =
α2

0B2
0

8πk2
cos2(ky). (44)
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Fig. 1. Evolution of Z(a, t)/L as a function oft/T for a = a0/2, and
β0 = 0.5 (a) andβ0 = 1.0 (b). In both (a) and (b), we have plotted
(from the bottom to the top) the force-free case (β0 = 0, black curve),
and the three casesΓ = 2 (green),Γ = 1 (red), andΓ = 0 (blue).

In these final states, the total pressureP (magnetic+thermal) is
uniform (P = B2

0/8π), but no current sheet is present (this is a
peculiar feature due to their 1/11

2D character).

5.2. Energy

Let us denote asWp, Wx, and Wi, respectively, the poloidal
magnetic energy (energy ofBp), the toroidal magnetic energy
(energy ofBx), and the plasma internal energy (we recall that
“energy” means here “energy per unit ofx-length”). Then we

get after a short calculation

Wp(t) =
B2

0

32k3

2k2 − α2(t)
√

k2 − α2(t)
, (45)

Wx(t) =
B2

0

32k3

√

k2 − α2(t)
t2

T 2
, (46)

Wi(t) =
B2

0

32(γ − 1)k3

α2
0

√

k2 − α2(t)













k2 − α2(t)

k2 − α2
0













Γ/2

, (47)

and the total energyW = Wp +Wx +Wi is given by

W(t) =
B2

0

32k3
√

k2 − α2(t)















2k2 + α2
0
2− γ
γ − 1













k2 − α2(t)

k2 − α2
0













Γ/2












. (48)

As it is easily checked,Wp, Wx, andW, increase monotonically
with time in any case, and they all tend to infinity whent →
∞, while Wi increases up to infinity in the isobaric case (Γ =
0), keeps a constant value in the isothermal case (Γ = 1), and
decreases to zero in the adiabatic case (Γ > 1).

5.3. Linear stability

Consider any one of the configurations forming a solution to
EvPb, and submit it – the driving boundary motions being
frozen – to an arbitrary small 212D displacement fieldξ(y, z) =
ξx(y, z)x̂ + ξp(y, z). We requireξ to satisfy the conditions

ξ(y, 0) = 0 and ξy(±L, z) = 0, (49)

which express the fact that the boundary ofD is rigid and per-
fectly conducting. Then we claim that the configuration is ide-
ally linearly stable with respect to this perturbation. This state-
ment is an immediate consequence of a general result reported
in Schindler (2006, p. 216). According to the latter, a 21

2D con-
figuration inΩ is stable if there does exist a fixed directionû
such that̂u.Bp keeps the same sign in the whole domain. This
is clearly the case here, witĥu = ŷ, as we havêy ·Bp = By < 0.

6. Conclusion

Up to now the analytical problem of the boundary driven quasi-
static evolution of anx-invariant magnetostatic equilibrium oc-
cupying either a half-space or a vertical slice of it has been
essentially considered in the case where the magnetic field is
force-free. In this paper, we have proposed a method which al-
lows to construct examples in which the thermal pressure of
the plasma is taken into account. The method amounts to trans-
form a solution of a force-free EvPb into a solution of a non-
force-free EvPb, withp evolving according to some prescribed
law, either adiabatic, or isothermal, or isobaric. For the method
to apply, the initial force-free solution has however to obey a
strong peculiar constraint. The latter has been checked to be
satisfied by a well known linear force-free solution which has
been already used by many authors, and we have explicitly con-
structed from it solutions to EvPb driven by the same boundary
velocity field, under each one of the three prescriptions forp(t)
recalled above. In the case where the constraint is not satisfied,
the transform may be still effected, but it leads to evolution-
ary sequences which are driven by boundary motions whose
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velocity profile evolves in time and becomes in any case de-
pendent of the imposed pressure prescription. Unfortunately,
the transform from a force-free state to a non-force-free one
which is at the base of the method is specific to the class of
translation-invariant equilibria, for which the thermal pressure
and the magnetic pressure associated to the component of the
field along the direction of invariance intervene on the same
footing in the Grad-Shafranov equation. This property is no
longer true for either the axisymmetric or the helical equilibria,
and a fortiori for the 3D ones.

It should be noted that many authors have already pro-
vided examples of conversion of some particular magneto-
static equilibrium into a new one as a result of the appli-
cation of an adequate mathematical transform (e.g., Low
(1982); Lites et al. (1995); Aly (2009)). For instance, Low
(1982) has shown that any one of the specific unsheared
2D equilibria we have used in Sect. 4.2 as possible initial
states of a quasi-static evolution, can be transformed into
a 3D laminar equilibrium submitted to a uniform gravi-
tational field. The new configuration consists of discrete,
finite-thickness flux tubes embedded in an isothermal field-
free atmosphere, and it turns out to be linearly stable with
respect to 3D perturbations. There is however something
new in the present paper: the transform method has been
applied not to a single equilibrium at a time, but to a whole
evolutionnary sequence driven by stationary boundary mo-
tions, with another sequence of the same type being eventu-
ally obtained.

One of the weakness of the solutions we have presented is
of course the presence of the lateral walls which impose to the
field an artificial confinement, and it is necessary to study inde-
tails the more interesting case where the evolution takes place
in the whole half-space (L = ∞). Preliminary results (Aly 2009,
in preparation) on that problem show that – as it can be a priori
expected – the pressure does not change qualitatively the evo-
lution when either the adiabatic or the isothermal prescription
is adopted. In the isobaric case, however, the evolution can-
not go on for ever. There is a critical time at which a global
nonequilibrium phenomenon (Aly 1993) develops: there is no
longer an equilibrium compatible with the constraints imposed
to the system, and a dynamical evolution has to start in, which
may be guessed to lead to an opening of the field. In spite of
that, we feel that the new solutions are quite useful. They give
an explicit example in which it is possible to evaluate quantita-
tively how a force-free solution is changed when the effects of
the thermal pressure of the plasma are introduced, they givean
interesting test for checking the accurateness of the various ex-
act estimates (generally in the form of upper and lower bounds
on some physical quantities) that we shall present in our forth-
coming paper on the general problem, and finally they may be
used as test cases for numerical MHD codes of evolution.
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