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ABSTRACT

Context. The solar rotation profile is conical rather than cylindrical is to be expected from classical rotating fluid dynamics (e.g.
Taylor-Proudman theorem). Thermal coupling to the tachocline, baroclinic effects and latitudinal transport of heat have been
suggested to explain this peculiar state of rotation.
Aims. To test the validity of thermal wind balance in the solar convection zone using helioseismic inversions for both the angular
velocity and fluctuations in entropy and temperature.
Methods. Entropy and temperature fluctuations obtained from 3-D hydrodynamical numerical simulations of the solar convection
zone are compared with solar profiles obtained from helioseismic inversions.
Results. The temperature and entropy fluctuations in 3-D numerical simulations have smaller amplitude in the bulk of the solar
convection zone than those derived from seismic inversions. Seismic inversion provides variations of temperature from about 1 K
at the surface to up to 100 K at the base of the convection zone while in 3-D simulations they are of an order of 10 K throughout
the convection zone up to 0.96 R⊙. In 3-D simulations, baroclinic effects are found to be important to tilt the isocontours of
Ω away from a cylindrical profile in most of the convection zone, helped by Reynolds and viscous stresses at some locations.
By contrast the baroclinic effect inverted by helioseismology is much larger than what is required to yield the observed angular
velocity profile.
Conclusions. The solar convection does not appear to be in strict thermal wind balance, Reynolds stresses must play a dominant
role in setting not only the equatorial acceleration but also the observed conical angular velocity profile.
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1. Introduction

Helioseismic data from the Global Oscillation Network
Group (GONG) and the Michelson Doppler Imager (MDI)
have been used to infer the rotation profile in the solar
interior (e.g., Thompson et al. 1996; Schou et al. 1998).
The inversion results show that isocontours of the differ-
ential rotation Ω(r, θ) are conical at mid-latitude rather
than cylindrical as was expected from early numerical
simulations (e.g., Glatzmaier & Gilman 1982; Gilman &
Miller 1986). More recent theoretical work (Durney 1999;
Kitchatinov & Rudiger 1995; Brun & Toomre 2002 (here-
after BT02); Rempel 2005; Miesch et al. 2006 (hereafter
MBT06); Brun & Rempel 2008; Balbus et al. 2009) in-
dicates that in order to break the Taylor-Proudman con-
straint of cylindrical Ω, the Sun must either have a system-
atic latitudinal heat transfer in its convection zone or ther-
mal forcing from the tachocline or most likely both. This
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is due to the so-called thermal wind balance (Pedlosky
1987), which means that the existence in the solar con-
vection zone of latitudinal entropy (or temperature) vari-
ation due to baroclinic effect can result in a rotation state
that breaks the Taylor-Proudman constraint. Such lati-
tudinal variations of the thermal properties at the solar
surface have been looked for observationally by several
groups since the late 1960’s (e.g., Dicke & Goldenberg
1967; Altroch & Canfield 1972; Koutchmy et al. 1977;
Kuhn et al. 1985, 1998, Rast et al. 2008; to cite only a
few). This is a difficult task since one has to compensate
for limb darkening effect, photospheric magnetic activity,
instrument bias and many other subtle effects to extract a
relatively weak signal (see Rast et al. 2008). In most cases
a temperature contrast of a few degree K is found from
equator to pole at the surface, the pole being warmer.
In some observations a minimum at mid-latitude with a
warm equator and hotter polar regions is also found. The
warm polar regions and cool equatorial region pattern is
also found in 3-D simulations of the solar convection zone
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with temperature variation slightly larger (i.e., of order 10
K; BT02, MBT06). At the surface a banded structure of
the temperature field (warm-cool-hot) is also found in 3-
D simulation of global scale convection. While very useful
and instructive, most observations are confined to the so-
lar surface and lack the information on the deep thermal
structure of the solar convection zone which is key to char-
acterise the dynamics of the deep solar convection zone.
One way to remedy that limitation is to rely on helioseis-
mic inversions that allow us to probe deeper into the Sun
and to use 3-D global simulations of the solar convection
zone to guide our physical understanding.

Indeed, helioseismic inversions can give us the rota-
tion rate as well as the sound speed and density in the
solar interior as a function of radius and latitude. Inside
the convection zone the chemical composition is uniform,
and if we know the equation of state it is possible to
determine other thermodynamic quantities like the tem-
perature and entropy from the sound speed and density.
Although there may be some uncertainty in the equation
of state, the OPAL equation of state (Rogers et al. 1996;
Rogers & Nayafonov 2002) is quite close to the equation
of state of solar material (e.g., Basu & Antia 1995; Basu
& Christensen-Dalsgaard 1997). Consequently we use the
OPAL equation of state to calculate the perturbations in
entropy and temperature and assess how well a strict ther-
mal wind balance is established in the solar convective
envelope. To achieve this goal we make use of 2-D in-
versions of Ω, S, T , using the GONG and MDI data for
the full solar cycle 23 and analyse our findings using 3-
D simulations obtained with the ASH (anelastic spherical
harmonic) code (BT02; MBT06; Miesch et al. 2008) sup-
ported by theoretical considerations on the thermal wind
balance and vorticity equations.

The paper is organised as follows: in Sect. 2 we describe
the data and technique used in this work while the results
for the temperature and entropy inversions are described
in Sect. 3 along with those of 3-D simulations. In Sect. 4
we discuss at length the thermal wind balance and its
generalisation and interpret our seismic inversion with 3-
D simulation of global scale convection. Finally, in Sect. 5
we put our results in perspective and conclude.

2. The helioseismic data and inversion technique

We use data from GONG (Hill et al. 1996) and SOI/MDI
(Schou 1999). Each data set consists of mean frequencies
of different (n, l) multiplets and the corresponding split-
ting coefficients. We use 130 temporally overlapping data
sets from GONG, each covering a period of 108 days, start-
ing from 1995 May 7 and ending on 2008 May 9, with
a spacing of 36 days between consecutive data sets. The
MDI data consist of 61 non-overlapping data sets, each
covering a period of 72 days, starting from 1996 May 1
and ending on 2008 September 30. These data cover the
solar cycle 23. For most of the work we use the temporal
average over the available data to reduce the errors in in-
version results. For this purpose we repeat the inversion

process for all data sets and then take an average of all
sets to get temporally averaged inversion results.

We use a 2D Regularised Least Squares (RLS) in-
version technique in the manner adopted by Antia et
al. (1998) to infer the angular velocity in the solar in-
terior from each of the available data sets. Similarly, we
use a 2D RLS inversion technique as described by Antia et
al. (2001) to infer the sound speed and density in the so-
lar interior. In practice, we calculate the differences δc2/c2

and δρ/ρ with respect to a reference solar model. We use
the solar model from Brun et al. (2002) with tachocline
mixing as the reference model. In this work, we are only
interested in the latitudinal variation in solar structure
inside the convection zone. Thus the fluctuation in sound
speed can be converted to either temperature or entropy
using the relation:
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Here S is the specific entropy, T is temperature, P is
pressure and Γ1 is the adiabatic index. The required par-
tial derivatives are calculated using the OPAL equation of
state. The derivatives of Γ1 are small in most of the con-
vection zone, except for the ionisation zones of hydrogen
and helium, but for completeness’ sake we have included
these derivatives in all our calculations. Helioseismic in-
versions for rotation and asphericity are only sensitive to
the North-South symmetric components and hence the in-
verted profiles always show this symmetry. Hence, we show
the inversion results in only one hemisphere. Actual pro-
files may have some asymmetry about the equator.

3. Thermal perturbations in the solar convection

zone

Convection is a macroscopic transport of heat and energy.
It is directly associated to correlations between the veloc-
ity field and temperature fluctuations (Brun & Rempel
2008). Being able to infer the temperature and entropy
perturbations in the solar convection zone is thus key to
understanding its turbulent dynamics.

3.1. The inverted profiles

The aspherical part of temperature and entropy pertur-
bations determined from temporally averaged GONG and
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Fig. 1. The aspherical component of temperature fluctuation, δT obtained from the temporally averaged GONG (left panel)
and MDI (middle panel) data. The right panel shows the cuts at constant latitude of δT obtained from MDI data along with
1σ error estimates shown by dotted lines. All curves appear to merge at r = R⊙, because δT is of order of 1 K in that region.

Fig. 2. The aspherical component of entropy fluctuation, δS obtained from the temporally averaged GONG (left panel) and
MDI (middle panel) data. The right panel shows the cuts at constant latitude of δS obtained from MDI data along with 1σ
error estimates shown by dotted lines.

MDI data are shown in Figs. 1 and 2. The maximum tem-
perature fluctuation near the bottom of the convection
zone is found to be about 100 K. These fluctuations in-
crease with depth initially, because of a steep increase in
the temperature with depth which can induce an artifi-
cially large value for δT . The errors in δT also increase
with depth and the results may not be significant near
the base of the convection zone. If we consider the rela-
tive fluctuation δT/T , then the maximum would be much
closer to the surface and the value is of the order of 10−4

or less. Similarly, if the entropy fluctuation is divided by
its typical value of the order of Cp, then it too would be
of the same order. Both these relative perturbations are
of the same order as δc2/c2. A detailed look at Figs. 1
and 2 reveal that the fluctuations are negative (relatively
cold with respect to the spherically symmetric mean) at
low latitude and warm at mid latitudes. In the bulk of
the solar convection zone there is very little radial vari-
ation except near the surface. In the GONG data a cool
polar region is also apparent but its significance is ques-
tionable given the relatively poor resolution of inversion
techniques at high latitude. This feature is not clearly seen
in the MDI data. While this latitudinal variation imprints
through the surface for the entropy with little change in

amplitude that is not the case for the temperature. At the
surface the seismic inversion of the axisymmetric temper-
ature fluctuations are very small which is in agreement
with previous photospheric studies (Rast et al. 2008). It
needs to be said that the inversions may not be reliable
above the lower turning point of the modes, near the sur-
face. Around r = 0.95R⊙, where the inversions should be
reliable, the temperature variations are of the order of 10
K.

3.2. The profiles realised in 3-D models of large scale

convection

Recent efforts to develop high resolution global simula-
tions of the solar convection zone in order to identify the
physical processes at the origin of heat, energy and an-
gular momentum transport have been quite successful at
reproducing the seismically inverted differential rotation
profile (BT02; MBT06). We display in Fig. 3 a typical
solution of the solar convection zone and differential rota-
tion obtained with the ASH code (case AB3 of MBT06).
We used a meridional cut to show the longitudinal and
temporal average of the angular velocity Ω along with the
temperature and entropy fluctuations with respect to a
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Fig. 3. Left panel: Angular velocity (in nHz) achieved in model AB3 of Miesch et al. 2006. Middle panel: Associated entropy
S′ (erg/g/K) and temperature T ′ (K) fluctuations with respect to the spherically averaged background. All quantities have
been averaged over longitude and time (10 solar periods). Note the conical profile of the angular velocity at mid latitude and
the latitudinal variation of the thermal variables possessing hot poles. Near the surface the temperature is banded with warm
equator, cool mid latitudes and hot poles. Contrary to the helioseismic inversion no symmetry with respect to the equator is
assumed and the quantities exhibit a small North-South asymmetry.

spherically symmetric background. We first note that the
differential rotation in the model is solar-like, with a fast
equator and slow pole, and that the iso-contours of Ω are
constant along radial lines at mid-latitude (i.e, the rota-
tion profile is conical rather than cylindrical). Its ampli-
tude is also of the right order of magnitude. By contrast it
is important to note that the temperature T ′ and entropy
S′ fluctuations1 are smaller by a factor of about 10 with re-
spect to the seismic inversion, with temperature variations
of about 10 K from equator to pole up to r = 0.96R⊙. A
detailed analysis of the redistribution of heat and angular
momentum in the 3-D models reveals that the Reynolds
stresses and the latitudinal enthalpy flux are key players in
establishing the profile of angular velocity and the varia-
tion of temperature as well as entropy with latitude (Brun
& Rempel 2008). Reynolds stresses transport angular mo-
mentum from the polar region down to the equator being
opposed by meridional circulation and viscous effect. The
heat is transported poleward by the turbulent enthalpy
flux (e.g. ρ̄Cp〈v

′
θT

′〉, with 〈〉 denoting an azimuthal av-
erage, ρ̄ the mean background density and v′θ the fluc-
tuating latitudinal component of the velocity field with
respect to the axisymmetric mean, (see for more details

1 for the sake of clarity we make the distinction between the
seismic inversion of the temperature and entropy perturbations
denoted with a δ symbol and the one computed in the models
denoted by a prime

Brun & Palacios 2009) yielding a cool equator and hot
poles in most of the domain. It is opposed by the thermal
diffusion which tries to make the entropy and tempera-
ture field homogeneous. A careful study of the profile of
the temperature and entropy fluctuations reveals that the
entropy is monotonic with respect to latitude while near
the surface the temperature is banded (warm-cool-hot).
Furthermore the entropy profile is conical, as is the an-
gular velocity at mid-latitude, whereas the temperature
profile is more cylindrical. In these stratified (anelastic)
simulations the difference between the two thermal quan-
tities is due to density (or pressure) fluctuations that can-
not be neglected. This confirms that entropy is the key
quantity to consider when studying the angular velocity
profile of the Sun as is clearly stated in the thermal wind
equations detailed in Sect. 4.1. Mean field 2-D models also
find axisymmetric temperature variations of the order of
a few Kelvin at the surface and in the bulk of the convec-
tion zone (Kitchatinov & Rüdiger 1995, Küker & Rüdiger
2005). Current global 3-D numerical simulations of the
solar convection zone do not model the very surface, but
stop at around 0.96 to 0.98 R⊙, and as a consequence can
not be used yet to model the near surface shear layer (see
however the studies of Derosa et al. (2002) using a mod-
ified ASH code or of Robinson & Chan (2001), using a
spherical wedge model).
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4. Quality of thermal wind balance achieved in

the Sun and 3-D models

4.1. Theoretical considerations

In rotating convection, both radial and latitudinal heat
transport occurs, establishing latitudinal gradients in tem-
perature and entropy within the convective zone as illus-
trated in Fig. 3. A direct consequence of the existence of
such gradients is that the surfaces of pressure and density
fluctuations will not coincide anymore, thereby yielding
baroclinic effects. We can turn to the vorticity equations
(Pedlosky(1987), Zahn(1992)) to analyse the role of the
turbulence and baroclinic effects in setting the large scale
flows shown in Fig. 3. The thermal wind balance equation
can be derived from the vorticity equation as discussed in
detail by BT02 and MBT06. The equation for the vorticity
in the purely hydrodynamical case can be derived under
the anelastic approximation by taking the curl of the mo-
mentum equation (see also Fearn 1998 and Brun 2005 for
its MHD generalisation and the notion of magnetic wind)
:

∂ω
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= (ωa · ∇)v − (v · ∇)ωa − ωa(∇ · v) (4)
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with ωa = ∇×v + 2Ω0 the absolute vorticity, ω =
∇×v the vorticity in the rotating frame, and D the vis-
cous tensor given by:

Dij = −2ρ̄ν[eij −
1

3
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where eij is the strain rate tensor, and ν is an effective
kinematic viscosity.

This vorticity equation helps in understanding the rel-
ative importance of the different processes acting in the
meridional planes. In the stationary case (∂ω

∂t
= 0), and

assuming an azimuthal average (such that ∂
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the azimuthal component of Eq. (4) reads:
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In the above equation we have identified several terms:

• Stretching describes the stretching / tilting of the vor-
ticity due to velocity gradients;

• Advection describes the advection of vorticity by the
flow;

• Compressibility describes the stretching of vorticity
due to the flow compressibility;

• g
rcp

∂〈S′〉
∂θ

is the baroclinic term, characteristic of non-

aligned density and pressure gradients;

• 1
rρ̄cp

dS̄
dr

∂〈P ′〉
∂θ

is part of the baroclinic term but arises

from departure to adiabatic stratification;
• Viscous accounts for the diffusion of vorticity due to

viscous effects.

We wish to stress that for the nonlinear stretching
and advection terms (equivalent to Reynolds stresses
in Navier-Stokes equation) their azimuthal average still
yields partial derivatives in φ, since quadratic terms such
as 〈

ωφ

r sin θ

∂vφ

∂φ
〉 are non zero.

Under the assumption that the convection zone is adi-
abatic, the Rossby number Ro = ω/2Ω0 is small, and that
compressibility, Reynolds and viscous stresses can be ne-
glected, equation (6) simplifies to give:

∂〈vφ〉

∂z
=

g

2Ω0rcp

∂〈S′〉

∂θ
(8)

This is the thermal wind equation. It simply states that
baroclinic effect can break the Taylor-Proudman con-
straint of cylindrical differential rotation since otherwise
∂vφ/∂z = 0 for barotropic flows (Zahn 1992). This is due
to the fact that the baroclinic terms drive meridional flows
that under the influence of Coriolis force yield longitudinal
flows that in turn lead to a non cylindrical state of rota-
tion. We now turn to our numerical simulation to evaluate
the role played by all the terms of the vorticity equation
identified above and to discuss the quality of the thermal
wind balance achieved.

4.2. Results from 3-D models

Fig. 4 displays for case AB3 the left-hand side of Eq. (6),
along with the dominant terms of the right-hand side and
their sum. We clearly see that the sum of the dominant
RHS term is in very close agreement with the LHS. We
have chosen to form the temporal average over 10 solar pe-
riods because it corresponds to about 10 convective over-
turning times and leads to a very close balance between
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Fig. 4. Meridional cut of the terms discussed in equation (6)
averaged over azimuth and 10 solar periods. Shown are in turn:
∂〈vφ〉/∂z, the stretching and advection of vorticity, the baro-
clinic effects, the viscous stresses and the sum of the RHS terms
(we have divided all the RHS terms by 1/2Ω0). Each panel
share the same colour table with red denoting positive value.
The min/max values used to scale the plots are [−10−6, 10−6]
expressed in s−1.

the LHS and the RHS of equation (6). Shorter averages do
not lead to such a good balance, whereas longer averages
change neither the quality of the balance obtained signifi-
cantly nor the patterns of the various terms. Our more de-
tailed decomposition of the vorticity equation is allowing
us to identify which term is contributing and where. First
the baroclinic term is found to be dominant in most of the
bulk of the convection zone as was found by BT02 and
MBT06. Advection terms are found to contribute both in
the bulk and near the surface. Contrary to the baroclinic
term they do not possess a systematic dominant contri-
bution in each hemisphere. Their contribution leads to a
change in key places, yielding a more structured profile
of the RHS than the baroclinic term would have yielded
if considered alone. Since the Rossby number realised in
the simulation is less than one, we expect the advection
and stretching term to be small on average in the simula-
tions and indeed, their maximum amplitude is not as large
as the baroclinic term. As stressed above however this is
not the case in all scales nor in all locations and they do
contribute in key places, leading to the very good balance
shown in Fig. 4 between the LHS and RHS of equation (6).
Finally, in our models a viscous shear layer is dominating
the balance at the surface where the isocontours of Ω pos-
sess the strongest latitudinal shear. Durney (1989) and
Kitchatinov & Ruediger (1999) have also stressed that a

strict thermal wind balance cannot be realised everywhere
in the convection zone and that viscous stresses may play a
role near the boundaries as observed in Fig. 4. We can con-
clude accordingly that equation (8) is only partly satisfied
in our 3-D hydrodynamical simulations of the solar con-
vective envelope. Clearly baroclinic effects play a central
role but these are far from being dominant everywhere,
and considering only equation (8) instead of the full bal-
ance expressed in equation (6) would be misleading. We
now turn to seismic inversion to see if the thermal wind
balance is strictly realised in the Sun or if other contribu-
tion must be invoked to explain the peculiar solar rotation
profile.

4.3. Inverted solar thermal wind balance

The entropy perturbations obtained in Sect. 3.1 can be
differentiated to calculate the RHS of equation (8)

g

2Ω0rCp

∂δS

∂θ
. (9)

The result is shown in Fig. 5. We clearly see that the baro-
clinic term is non monotonic with respect to latitude, with
large positive values near the poles and in a small region
at the equator, whereas it is negative in mid latitudes.
At the surface a surface thermal boundary layer is visible
that yields strong radial gradients at high latitudes.

As we have done with the 3-D model, the baroclinic
term should be compared with

sin θ

(

r cos θ
∂Ω

∂r
− sin θ

∂Ω

∂θ

)

, (10)

which is shown in Fig. 6. This quantity has much less
structure in the bulk of the convection zone. Except for a
slightly negative structure at mid depth and latitude, most
of the action occurs in the surface shear layer where strong
negative values are found due to strong radial gradient of
rotation rate in the near surface shear layer. This near
surface layer is not present in the simulations and hence
cannot be compared with the results of 3-D simulations.
It is clear that contrary to what we have seen with the 3-D
model in the previous section, the two quantities do not
agree with each other even slightly. In fact, these two terms
differ by more than an order of magnitude. While the term
involving Ω in equations 8 or 10 is of the same order in
both the 3-D simulations and the seismic inversion (∼
10−6 s−1), this is not the case for the baroclinic terms due
to the very large entropy and temperature variations in
the inverted profiles. Although the Ω profile in simulations
qualitatively reproduces the features seen in solar profile,
the detailed latitudinal variations in the two do not match
precisely.

5. Discussion of results

What can be the source of the disagreement between the
inverted baroclinic contribution and the z derivative of
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Fig. 5. The aspherical component of the latitudinal derivative of the entropy fluctuation, (g/2Ω0rCp)(∂δS/∂θ) obtained from
the temporally averaged GONG (left panel) and MDI (right panel) data. The values are in s−1.

Fig. 6. The derivative of rotation velocity, sin θ(r cos θ∂Ω/∂r− sin θ∂Ω/∂θ), obtained from the temporally averaged GONG (left
panel) and MDI (right panel) data. The values are in s−1.

the angular velocity (i.e equations 8, or 9 and 10)? The
first and easiest solution is that the inversion of the ther-
mal quantities lacks the necessary accuracy, and given the
increase by two orders of magnitude of the background
temperature and density with depth, we end up with vari-
ations that are too large. The source of discrepancy will
then be due to an overestimation of δT and δS. It is not
easy to decide if these inverted thermal fluctuations are
too large or if the simulations (both 2-D and 3-D) un-
derestimates the fluctuations realised in the Sun, because
of for instance their limited Reynolds number. We must
thus also consider the possibility that these large ther-
mal perturbations are genuine. If this is indeed the case

we need to see how we could resolve the discrepancy be-
tween the seismically inverted LHS and RHS of equation
8. As stated in section 4.1, to obtain a strict thermal wind
balance as expressed in equation 8, one needs to make a
certain number of assumptions: adiabaticity, weak Rossby
number, negligible compressibility, viscous and Reynolds
stresses, stationarity. By considering further only the hy-
drodynamic contributions we have omitted those associ-
ated with Maxwell stresses that are certainly present in
the magnetic Sun. We are confident that the Maxwell
stresses are not the source of the large observed discrep-
ancy because we have formed temporal averages over a
maximum and minimum period of activity and the differ-
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ences between the two periods are about 10 times smaller
than what would be required if all the sources of discrep-
ancy were coming from the Maxwell stresses alone. We
nevertheless intend to make a more systematic study of
the departure of the strict thermal wind balance linked to
magnetic effects (i.e. via the so called magnetic wind) by
analysing the solar cycle 23 in detail and by comparing
the results with dynamo simulations of the solar convec-
tion (Brun et al. 2004). We must thus question the validity
of the other hypothesis made in deriving equation 8. It is
clearly justified to consider the viscous terms as being neg-
ligible, given the very low microscopic value of the solar
kinematic viscosity. This is clearly not the case in the 3-D
models where near the surface they are major contribu-
tors to the overall balance (see Fig. 4, middle panel of the
bottom row), but this is due to our large effective viscos-
ity. Assuming adiabaticity is certainly reasonable in most
of the convection zone, but clearly not near the surface.
Since we are mostly interested in understanding the bulk
dynamics of the solar convection zone, this term is indeed
very small. The choice of a low Rossby number that al-
lows us to neglect ω over the planetary vorticity 2Ω0, is
certainly not justified at all scales of the turbulent velocity
spectra, in particular for those scales much smaller than
the Rossby radius of deformation (Pedlosky 1987). In the
Sun the large range of convection scales implies that a sub-
set of those scales undergo different dynamics depending
on how sensitive they are to the Coriolis force. The subtle
angular momentum and heat redistribution realised in the
Sun is in part captured in our 3-D models. We can thus
analyse if the Reynolds stresses associated with the tur-
bulent motion indeed play a central role. As discussed in
detail in Brun & Toomre (2002) and in Sect. 4 we know
that it is indeed the case in our numerical simulations (see
Fig. 4, middle and right panel of the top row) even though
our simulations do not possess a Reynolds number and a
degree of turbulence as high as that in the Sun. We can
thus expect, given the very large Reynolds number of the
solar convection zone, that Reynolds stresses must play a
central role in the Sun in shaping the differential rotation
profile and that they somehow in part compensate the
baroclinic contribution to yield the observed profile of an-
gular velocity. This is a significant result for two reasons:
It confirms for one that the Reynolds stresses are key to
explain the equatorial acceleration of the solar differen-
tial rotation (as anticipated by studying angular momen-
tum transport in our simulations as in BT02 or Miesch
et al. 2008). Secondly it indicates that they are also im-
portant to explain the conical profile of the solar differ-
ential rotation, helping or opposing in some regions the
baroclinic effects to break Taylor-Proudman constraint.
Of course this conclusion only holds if the inverted large
thermal fluctuations are real.
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