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Abstract. Axions should be produced copiously in Stars such as the Sun. The

first part of the article reviews the capabilities and performance of axion helioscopes.

The mechanism they rely on is described and the achieved experimental results for

the interaction of solar axions and axion-like particles with matter are given. The

second part is actually observationally driven. New results obtained with Monte

Carlo simulation reconstruct solar observations, previously dismissed, supporting an

axion(-like) involvement with ma≈1-2×10−2 eV/c2. To further quantify the suggested

solar observations as being originated by axions, additional theoretical work is needed.

However, the recently suggested axion interaction with magnetic field gradients is

a generic theoretical example that seems to reconcile for the first time present

limits, derived from axion helioscopes, and potential axion-related solar X-ray activity,

avoiding thus contradictions with the best experimental limits. Magnetic quadrupoles

can be used to experimentally test this idea, thus becoming a new catalyst in axion

experiments. Finally, a short outlook for the future is given, in view of the experimental

expansion of axion research with the state-of-the-art orbiting X-ray observatories.
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1. Motivation

The recent WMAP measurements [1] have established with great precision that, about

84% of the matter content of the Universe is in the form of cold dark matter (CDM). The

composition of CDM is not yet known, however the most promising particle constituents

are WIMPs (Weakly Interacting Massive Particles) and axions. In this work, we focus

on the axions. The theoretically introduced axions have far reaching consequences in

astrophysics and cosmology. At the theoretical level, the imprint of axions appears in

the QCD Lagrangian, which includes a CP-violating parameter, the θ-QCD (θ̄):

LCPV = θ̄
αs

8π
GG̃ , (1)

where as is the strong coupling constant and G and G̃ represent the gluon field and its

dual. From this one can estimate within an order of magnitude the neutron EDM [2, 3]:

dn(θ̄) ≈ θ̄
e

mn

m∗

ΛQCD
≈ θ̄ · (5 × 10−17) e · cm , (2)

with m∗= (mu md)/(mu+md) being the reduced mass of the up and down quarks. ΛQCD

is the QCD scale (∼200MeV) and mn the neutron mass. When the estimation is done

more precisely [4–7] it comes out as dn(θ̄) ≈ θ̄ · (3.6×10−16) e · cm. The present neutron

EDM limit [8] of 3 × 10−26 e · cm results to a limit on θ-QCD of θ̄ ≤ 10−10. With the

planned dEDM and pEDM experiments at BNL, the experimental sensitivity can reach

the level of θ̄ ≤ 10−13.

The value of θ̄ could potentially be between 0 and 2π. However, it turns out to be

extremely tiny, apparently due to some fine tuning mechanism. There is no symmetry

reason within the Standard Model for such a small value, creating the so-called strong CP

problem. Peccei and Quinn postulated that such a tiny value arises from the breakdown

of a new symmetry, which gives rise to axions [9–13]. The latter are pseudoscalar

particles arising as a solution to the CP problem in strong interactions. They have

properties closely related to those of neutral pions. That is to say, the discovery of a

QCD inspired axion will explain why θ̄ is extremely small. Apart from all this, axions

also appear in string theory.

The standard axions were thought to have a symmetry-breaking scale (or axion

decay constant) of the order of the electroweak scale [12, 13]. However, after such

scenarios were ruled out, new models were developed where that scale was arbitrary.

In fact, it could be so large that would make axions interact so weakly that they were

dubbed ‘invisible’. Such were the first, thoroughly cited, axion models following the

work of Kim-Shifman-Vainshtein-Zakharov (KSVZ) [14, 15] and Dine-Fischler-Srednicki-

Zhitnitskii (DFSZ) [16, 17].

In order to detect axions, one could rely on the generic property of axions to couple

to two photons [18], as described by the Lagrangian term

Laγγ = −
1

4
gaγγFµνF̃

µνa = gaγγ E ·B a , (3)
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where a is the axion field, F is the electromagnetic field-strength tensor, F̃ its dual, E

and B the electric and magnetic field, respectively.

Over the last three decades, different experimental techniques have been developed

for the search of the ‘invisible axions’ or, more generally, ‘axion-like particles’: cavity

searches for galactic matter axions [18–23], solar axion searches using ‘helioscopes’

[18, 23–31], the Bragg scattering technique [32–35], the polarization of light propagating

through a transverse magnetic field [36–39], photon regeneration [38, 40–49] and others

like the resonant method involving nuclear couplings [50–54]§.

The second part of the article is observationally driven. We suggest atypical

solar axion signatures as the so far unnoticed manifestation of axions or axion-like

particles (ALPs), which fit decades-old puzzling solar observations and every day’s

experience of solar X-ray telescopes. To better understand relevant observations from

the ubiquitously magnetized solar surface within the axion or axion-like scenario, Monte

Carlo simulations have been performed, revising for the first time the propagation of

magnetically converted axions [55] near the solar surface, that is, the created X-rays.

This is due to isotropic Compton scattering of X-rays coming from axion conversion

underneath the lower chromosphere or even higher in the dynamic atmosphere. For

the conversion to happen efficiently, e.g. to ensure a large axion-to-photon coherence

length, it is reasonable to assume that the axion rest mass must match the local plasma

density (mac
2 ≈ ~ωpl). To reconcile magnetic field-related solar X-ray observations and

the axion scenario, the derived rest mass is, within a factor of 2-3, ma ≈ 10meV/c2,

which coincides with the upper limit derived from SN1987A [56], while cosmological

data allow for an axion rest mass below ∼1 eV/c2 [57].

In fact, star evolution arguments exclude the involvement of axions or the like

(up to a certain coupling strength) [56, 58]. In this work, we look more specifically

at solar X-ray observations as potential signatures for new exotica, with preference to

faint intensities, whose luminosity cannot actually affect stellar evolution. With this,

however, we do not exclude a priori large flaring events as being powered -or at least

triggered- by solar exotica.

Other, recently published work [59–64], refers to signatures on very light ALPs

(assuming ma≪10−7eV/c2) via the oscillatory behaviour of cosmic very high energy

(VHE) light and ALPs as they propagate over billions of years through the intergalactic

magnetic network. While the QCD-inspired axion implies a particle with one rest mass

and one coupling constant, ALPs do not have to follow this constrain. As an example,

we mention the massive axions of the Kaluza-Klein type [65], which have a tower of

mass states, but one common coupling constant.

Throughout this work, references to the solar axion scenario include any other

particle candidate with similar properties (ALPs).

§ A simple comparison between the methods, showing that the magnetic helioscopes are more effective

than the (crystalline) detectors, can be done by calculating that (0.1 Tm)2 corresponds to a detector

thickness of 2 Z−1 kg/cm2, where Z the atomic number of the detector material.
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2. Solar axion flux

The Lagrangian term (3) points to the E · B in a hot thermal plasma as a source

for the production of axions. E is provided by the charged particles of the plasma

whereas B arises from propagating thermal photons. The Primakoff process describes

an incoherent production, where a photon converts into an axion in the electric field of

a charged particle (Figure 1). Figure 2 shows the axion flux spectrum as expected at

the Earth; it is, essentially, a blackbody distribution of the thermal conditions in the

solar interior, which presents a maximum at the energy of 3 keV and a mean energy

value of 〈E〉=4.2 keV. The reason for the higher energy than the one in the Sun hot

core (kT∼1 keV) is the suppression of low energies (large wavelengths) which reaches in

total a factor of ∼25 due to screening effects [67]. An analytic approximation of the

γ a a γ

e, Ze B

γ γvirtual virtual

Figure 1. Left: The incoherent Primakoff effect, which is assumed to occur inside

the hot solar core and which gives rise to the creation of axions. Right: The inverse

coherent process in a magnetic field, which is so far the working principle of an axion

helioscope as it transforms the otherwise ‘invisible’ axions to observable photons. This

is an oscillation phenomenon, analogous to neutrino oscillations. The external magnetic

field is needed in order to compensate the spin-mismatch in the case of photon-axion

oscillation [61].

flux is given by [30]:

dΦa

dE
= 6 × 1010 cm−2 s−1 keV−1 g2

10 E2.481e−E/1.205 (4)

where Φa is the axion flux and g10 = gaγγ/10−10 GeV−1. This equation takes into account

the Primakoff effect of real thermal photons interacting with the Coulomb electric field

of the solar core plasma in atomic scale. Most of the axion flux emerges from R . 0.1R⊙

or from ∼2% of the solar disk surface (for an earth-bound observer).

So far, the impact of the solar magnetic fields has been widely ignored. This point

will be addressed in (sections 6 and 7). Some fine tuning cannot be excluded, taking into

account the variations of the dynamic Sun in all spatio-temporal scales, in particular in

the outer layer (R&0.9R⊙). The inner solar magnetic field must reach approximately
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Figure 2. The solar axion flux as expected at the Earth, following relation 4, plotted

in log-linear and log-log scales (inserted). The spectrum has a peak at around 3 keV

and mean energy of 4.2 keV. The sub-keV range was experimentally not accessible

before. Recently, first measurements have started covering the few-eV energy range

[66]. Axion helioscopes are the best suited for low energy searches, since the screening

effects, which appear in dense materials, are quasi-suppressed.

50 to 100T at the bottom of the convection zone (about 200 000 km below the surface,

i.e. at R≃ 0.7 R⊙), while even much higher fields might exist deeper in the Sun [68].

3. Principles of Detection

The search for solar axions with helioscopes is based on the inverse coherent Primakoff

effect (Figure 1): solar axions coming from the Sun (produced via the incoherent

Primakoff effect) will be re-converted to X-ray photons as they pass through a (strong)

transverse laboratory magnetic field. These excess photons would then be seen in X-ray

detectors [18], located outside the actual magnetic field region. The number of photons

expected to reach these detectors is

Nγ =

∫

dΦa

dE
Pa→γ A t dE (5)

where dΦa/dE is the axion spectrum as expected at the Earth (4), Pa→γ the probability

of the axion-to-photon conversion, t the observation time and A the axion-sensitive area

of the magnet aperture. The conversion probability is expressed as

Pa→γ =

(

gaγ B

2

)2
1

q2 + Γ2/4
[1 + e−ΓL − 2e−ΓL/2 cosqL] . (6)

With Γ, the inverse absorption length in the medium, the general case of the presence

of a refractive medium inside the magnetic pipes has been included. The axion-photon
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momentum transfer q is given by q = (m2
a − m2

γ)/(2Ea) and mγ is the effective mass of

the photon as acquired due to the medium (see (15)). Substituting (6) and (4) in (5),

we get

Nγ ≃ 10−6 cm−2 s−1 keV−1 g4
10 E 2.481e−E/1.205

(

L

10 m

)2 (

B

9.0 T

)2

A t dE . (7)

This equation makes evident the importance of the factors B, L and A in the detection

of axion-converted photons. To maintain the maximum conversion probability, i.e. zero

momentum transfer (q → 0), the axion and photon fields need to remain in phase over

the length of the magnetic field. This coherence condition is met when qL . π, meaning

that the experiment is sensitive to different mass ranges depending on q:
√

m2
γ −

2πEa

L
. ma .

√

m2
γ +

2πEa

L
(8)

The fractional resolution can be written as:

dma

ma

≡
dmγ

mγ

=
2π Ea

L m2
a

. (9)

Taking an axion energy of Ea=1 eV, mγ=10−3 eV/c2 and L=10 km, the width becomes

FWHM

m
≃ 1.2 × 10−4. (10)

Further, for solar axions with Ea=4.2 keV, m=1 eV/c2 and L=4m [24],

FWHM

m
≃ 10−3

(mγ

eV

)−2

, (11)

for mγ=0.1 eV/c2, FWHM=10%.

When changing to fractional density, one obtains

dρ

ρ
= 2

dm

m
. (12)

Choosing Ea=4.2 keV and ma=10−2 eV/c2, the allowed density fluctuations should not

be more than dρ/ρ ≃ 10−2, in order to maintain the coherence effect over the whole

length. For the static Sun these conditions are encountered at a few hundreds of km

underneath the surface and the coherence length there can be L ≃ 3 km (to be compared,

for example with the CAST 10m length)‖.
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Figure 3. The axion-to-photon conversion probability versus the axion rest mass,

assuming an axion-photon coupling constant of gaγγ=1×10−10 GeV−1. In black,

the line corresponding to vacuum inside a 10m long magnetic pipe at 9T. For

ma≥0.02 eV/c2, the conversion efficiency breaks down because the incident axion and

the emerging photon waves get out of phase (deconstructive interference). In red, the

conversion probability for a specific Helium density setting (equivalent to 6.08mbar

at 1.8K). The shown resonance curve has a very narrow (∼0.5%) width for which the

specific pressure (density) of the refractive material (Helium gas) restores the coherence

over the whole length [30].

3.1. Data-taking strategies

Vacuum In the particular case in which the magnetic field where axions are converted

into photons is under vacuum (Γ → 0, mγ → 0), equation (6) becomes [24]

Pa→γ =

(

gaγγB

q

)2

sin2

(

qL

2

)

, (13)

while q = m2
a/2Ea. Applying the coherence condition, the range of axion rest masses

one is sensitive to is

ma .

√

2πEa

L
. (14)

This implies that for a magnetic field of L=10m and for a mean solar axion

energy of 4.2 keV, the sensitivity of an experiment would cover axion rest masses of

‖ Taking into account the Sun’s dynamical character near its surface it is still reasonable to assume,

as a numerical example, L≈20km and B≈1T [69]. This results to Pa→γ≈10−12 (gaγγ = g10). For

comparison, the surface X-ray brightness of a large flare requires instead a conversion efficiency of

& 10−3. Then, the brightness of such events cannot be explained quantitatively only by QCD-axions

using the inverse Primakoff effect, even assuming favourable input parameters. We do not reject these

events from further consideration, since the rest of their behaviour fits the axion scenario of this work.

Nevertheless, much lower X-ray brightenings, like microflares, nanoflares, etc., but also the quiet Sun

itself, should then be more appropriate for the reasoning of this work (see section 6.2.4).
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ma .0.02 eV/c2 (Figure 3).

Refractive gas More massive axions will begin to fall out of phase with the emerged

photon waves, due to different velocities. The addition of a refractive material (a buffer

gas, for example) will ‘slow’ the photon giving it an effective mass (mγ). In order to

compensate for the velocity mismatch and restore maximum conversion probability,

mγ should be adjusted to approach ma. In a low-Z gas, where self absorption is

minimum, the effective photon mass (mγ) and the axion rest mass must fulfill the

following condition [24]

ma c2 = mγ c2 = ~ ωpl = ~

√

4παne

me

, (15)

in which α is the fine structure constant and me and ne the electron mass and number

density respectively ¶. For a rest mass of 1 eV/c2, this would imply a required pressure

at room temperature of almost 15 bar or, for the case of Helium in the cryogenic

environment of a magnet (e.g. 1.8K), a pressure of 90mbar. Extending the calculations

to the Sun surface, one finds ~ ωpl ≃ 10−2 eV for ρ = 2 × 10−7 g/cm3, or ~ ωpl ≃ 300 eV

in the core (ρ=150 g/cm3).

Different axion masses can be tuned by changing the gas density (pressure) in

discrete steps. For each density, the coherence condition is restored, but only for a

very narrow mass range around mγ = ma. For ma=1 eV/c2, L=10m and a mean

axion energy of Ea= 4.2 keV, (9) and (12) imply a required constant density at a level

of dρ/ρ ≃10−3. An example of the probability conversion for two different pressures

(vacuum and 6.08mbar) is given in Figure 3. To assure density homogeneity over the

length of the magnetic pipes, even gravity effects have to be taken into account when

tracking the sun with the magnet tilted. The effect of the gravity in the gas density in

the magnetic cold bores along with the attenuation of the X-rays are the ultimate limits

for the performance of an axion helioscope (for a detailed discussion, see [70]).

Another strategy of taking data with gas in the pipes is by performing a continuous

‘scanning’ over a large range of pressures during one solar tracking measurement. The

advantage this approach provides with respect to the previous one is that it allows for

a ‘fast-look’ to a wide range of axion rest masses, but with lower sensitivity. A possible

signal candidate can be scanned later over longer time intervals, following a specific,

predefined protocol procedure, excluding in this way any kind of bias in the selection.

A similar ‘scanning’, but covering eventually a much wider density [=axion rest mass]

range, is suggestive of taking place in the dynamic Sun (see section 6).

¶ Although in the actual experiments the refractive gases are not ionized, this equation holds as long

as the axion/photon energies involved are much higher than the binding energy of the atomic electrons

of the refractive gas. However, one needs to exercise cautiousness when applying this method searching

for much lower energy solar axions, if their energy approaches that of atomic transitions.
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Figure 4. Expected analog photon spectra (assuming an axion-photon coupling

constant gaγγ=1×10−10 GeV−1) depending on the shift S=mγ-ma from the resonance:

S=0 (top left), S=0.5×FWHM (top right), S=FWHM (bottom left) S=3×FWHM

(bottom right) [31]. Note the change of the spectral shape and decrease in intensity

with increasing S.

4. Axion Identification Techniques

In this section we discuss three techniques that can be applied for the identification of

an unambiguous solar axion signal, either individually or combined:

Excess Since axions are expected to oscillate into photons only while traversing a dipole

magnetic field which is pointing at the centre of the Sun, one expects an excess in X-

rays compared to the periods when the Sun is out of the field of view of the magnet

(background). In the case of a signal candidate one has -in principle- the possibility to

change the magnetic field, repeat the run and investigate whether the candidate signal

follows the B2 dependence dictated by (7). This is usually considered as the ultimate

cross check, although increasing the field is hardly an option (given that one usually

already runs at the maximum magnetic field, and running the magnet with significantly

reduced field is not trivial either).

On/Off-resonance identification technique This technique allows to definitely

and precisely establish a potential axion signal and its rest mass, provided that

m a& 0.01 eV/ c2, for L=10m. In addition, the CAST collaboration [31] for the first

time explains how the spectral distribution of the axion-converted photons depends

on the momentum mismatch between the axion and the emerging “massive” photon
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Figure 5. Simulation of the expected axion image of the Sun focusing the coherently

converted axions-to-X-rays inside the magnetic field of CAST on the CCD pixel

detector (64×200 pixels of 150µm×150µm)[30].

mγ (Figure 4). The striking oscillatory behaviour of the otherwise smooth solar axion

spectrum provides an undoubtable signature.

Focusing devices The discovery potential of an axion helioscope is improved

significantly by using an X-ray focusing device, as it has been implemented for the first

time by the CAST collaboration. An X-ray telescope (or other focusing optics) presents

a threefold importance: a) it projects all the axion-converted X-rays entering from the

axion sensitive region (in general, the magnet aperture with a surface of tens of cm2)

onto a small spot of few mm2 at the focal plane, thus increasing the S/B ratio by 1 or 2

orders of magnitude, b) it allows for a simultaneous measurement of signal (inside the

spot area) and background (outside the expected spot), a unique possibility in general

and c) as an imaging device, a strong signal resulting from axion-to-photon conversion

will reflect the energy and radial intensity distribution of the inner Sun (Figure 5), with

an unprecedented accuracy, having in mind for comparison the poor reconstruction with

the solar neutrinos.

We point out that the working principles of both techniques, i.e. the excess as well as

the on/off-resonance ID, apply to the Sun’s huge-sized magnetic fields. In fact, we use

below both to understand otherwise unexplained and unpredictable spatio-temporally

varying solar X-ray surface brightness.

5. Axion Helioscopes

In the following we describe the short list of the axion helioscopes built up to now.

5.1. The pioneering axion telescope

The first axion helioscope was built in 1992 by the Rochester-Brookhaven-Fermi

collaboration [25], following the recipe given in [18]. Their ‘axion converter’ was a

2.2T dipole magnetic field extended over 1.8m. This magnet, lying fixed, was oriented

towards the setting of the Sun in such a way that it would actually point directly to the

Sun during ∼15min for a few days. For the detection of the converted axions an X-ray

proportional chamber was employed. Data with this pioneering solar axion device were
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Figure 6. Recent pictures of the active axion helioscopes, Sumico on the left and

CAST on the right.
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Figure 7. Exclusion plots in the axion-photon coupling versus the rest mass of the

QCD-inspired axions. The limits achieved by helioscopes (RBF [25], Sumico [26–28],

CAST [29–31]) are put in the general picture of the axion searches. For comparison are

given the astrophysically and cosmologically derived conclusions: HB stars [56, 58], the

hot dark matter limit (HDM) for hadronic axions ma<1.05 eV/c2 [57] inferred from

WMAP observations of the cosmological large-scale structure, and the lower rest mass

limit following overproduction of dark matter axions (overclosure of the Universe).

taken for about 4 h with the magnet pipe in vacuum and another 4 h with Helium buffer

gas in the pipe in two different pressures. The results (Figure 7) were more sensitive

than the laser experiments of that time by roughly two orders of magnitude, but still

far from the theoretically motivated line (QCD axions).
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5.2. The Tokyo helioscope (Sumico)

In 1997, in the University of Tokyo, a second generation axion helioscope took data,

Sumico (Figure 6)[26]. A 2.3m long magnet which reaches a field of 4T, was mounted

on a platform that enabled it to follow the Sun for approximately half a day (!). PIN

photodiodes were used as X-ray detectors. Data were taken for one week with the magnet

bores under vacuum conditions. The system was upgraded in 2000, when for one month

measurements were taken with Helium gas in the magnetic pipes. When combining these

two periods of measurement, an upper limit on the axion-to-photon coupling constant

was derived for ma<0.27 eV/c2 [27]. Recently, the Sumico collaboration presented results

for 34 mass settings around 1 eV/c2. These measurements give the most stringent limit,

so far, on the axion coupling for masses 0.84 < ma < 1.00 eV/c2 (Figure 7) [28].

5.3. The CERN Axion Solar Telescope (CAST)

CAST [29–31, 66] represents the third generation of axion helioscopes (Figure 6). In

fact, it outscores the previous ones in many of the important parameters, starting with

the key feature, the magnet, as can be seen in Table 1. It uses a decommissioned LHC

prototype magnet which reaches a field of 9T inside two parallel pipes of length 9.26m

and aperture 14.5 cm2 each. This feature makes CAST the most sensitive helioscope

built so far. The magnet is mounted on a moving platform which allows it to follow the

Sun for approximately 2×1.5 h per day. Currently CAST uses 3 Micromegas X-ray de-

tectors and an X-ray mirror optics coupled with a CCD camera at its focal plane (X-ray

telescope). The latter system distinguishes CAST’s performance from any other axion

helioscope (see section 4). The coherence condition restricts the CAST sensitivity to

ma ≤ 0.02 eV/c2 when the magnetic pipes are under vacuum (Figure 3). The CAST re-

sult is, up to now, the most restrictive experimental limit on the axion-photon coupling

constant for this mass range. Moreover, it competes with the previous astrophysical

limit based on the Helium-burning lifetime of HB stars. Subsequently, CAST extended

its sensitivity to ma ≤0.4 eV/c2 using 4He inside the magnet pipes. Replacing the 4He

by 3He, CAST can cover the axion rest mass range up to ∼1.2 eV/c2.

According to (7), the sensitivity of an axion helioscope is determined by the following

parameters: the strength of the magnetic field B, its length L, the effective axion-

sensitive magnetic aperture A and the time of measurement t. Table 1 shows a

comparison of the axion helioscopes based on these characteristics. The figure of merit,

the product (BL)2, which plays the most important role, is given in the first column. The

next columns enhance the comparison with the additional information of the aperture

and the axion exposure time. Sumico and CAST are the first ‘direct-search’ experiments

that can probe the QCD axion model strip near the eV range in the gaγγ-ma parameter

space.
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Table 1. Comparison of figures of merit of the axion helioscopes. B is the strength

of the magnetic field, L its length, A the effective, axion-sensitive magnetic aperture

and t the tracking time per day (for the orbiting telescopes see [55, 71]).

Helioscope (BL)2 (BL)2 A (BL)2 At

T2 m2 T2 m4 T2 m4 hours

RBF 16 ∼ 3×10−2 ∼ 1×10−2

Sumico 85 ∼10×10−2 ∼120×10−2

CAST 6946 2000×10−2 6000×10−2

In orbit 324 20000×10−2 –

5.4. Orbiting X-ray telescopes

The same working principle as the one of the above mentioned axion helioscopes can be

applied with orbiting detectors sensitive to hard X-rays (see for example [72, 73] for the

case of the RHESSI solar X-ray observatory, with a threshold above ∼3 keV). Axion-to-

photon conversion may occur either in the terrestrial magnetic field [71], or in the one

near the solar atmosphere [55]. Despite the big differences between the two schemes,

their sensitivity can compete with the best earth bound helioscope (see next section),

but only for an axion rest mass range (far) below 10−4eV/c2. Furthermore, following the

present article, solar X-ray telescopes in space may operate as the most sensitive solar

axion antennas for more massive axions (ma > 10−3eV/c2) by utilizing, complementarily,

the solar magnetic fields near the photosphere. One is inclined to (Erroneously) consider

such a scheme as an indirect method in axion helioscopy. The so obtained results can

be equally significant, and eventually with a better built-in sensitivity, compared to the

direct axion-detection techniques using axion helioscopes.

6. Photosphere: the resonant-coherent axion-photon converter?

In this second part, we move from the short man-made to large, natural occurring axion-

photon converters near the solar surface. A rather large coherence length (>1-10 km) can

be at work thanks to the low density and low Z solar gas. Indeed, in a specific layer of the

continuously varying density, the resonance condition ~ωpl ≈ mac
2 can restore coherence,

provided the axion rest mass is above ∼meV/c2. A first, rough comparison between

the temperature of the solar plasma (∼ 5800K) and the well studied one of the infant

Universe (Figure 8, upper left), of a rather similar temperature (∼3000K), is interesting

due to the striking contrast between the perfect cosmic blackbody distribution and

the equivalent one from the Sun (Figure 11). To put it differently: if the predicted

and measured tiniest fluctuations of the cosmic plasma of ∆T/T ∼ 10−5 provide(d)

fundamental new physics, one is even more tempted to conclude that the unpredictable

and huge solar atmospheric fluctuations (∆T/T ∼ 103) might be the imprints of hidden

new physics.

There is a fundamental difference between both plasmas under comparison: it
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Figure 8. The changing brightness of the Sun in soft X-rays in different periods of

its mysterious 11-year cycle was measured with the X-Ray Telescope of the Japanese

Yohkoh mission (1991-2001). The solar atmospheric temperature fluctuations are huge

(∆T/T∼ 103). The (quiet) Sun X-rays are conservatively unexpected, and this is the

solar coronal heating problem (since 1939), which remains “one of the most perplexing

and unsolved problems in astrophysics to date” [74]. For comparison, in the insert

(upper left) the temperature fluctuations ∆T/T of the infant cosmic plasma are shown

(at the 10−5 level, as they have been measured by WMAP). The temperature of

both is similar: 5800K versus 3000K. One difference to be noticed is the quasi zero

magnetic field in the cosmic plasma versus the varying solar magnetic fields in the

Tesla scale. Remarkably, solar X-ray emission, above its steady component, follows

spatio-temporally magnetic activity. Courtesy M. DiMarco/HAO & NCAR [75].

is only the solar plasma, which is permeated with unpredictable, huge-sized and

∼Tesla strong magnetic fields. Is this already a hint for axions, following the previous

sections? We follow this simplified question in this second part of the article, which is

observationally motivated.

6.1. General considerations

In the following, firstly, we suggest atypical solar axion signatures, even though the

observed strong X-ray intensities cannot be reproduced rigorously within the QCD-

inspired axion picture, i.e. only via the coherent inverse Primakoff effect; this

is suggestive of other exotica with similar properties, or another axion-to-photon

conversion process (our preference at present), or both. The Primakoff effect is at present

the process behind the working principle of almost all axion experiments. Monte Carlo

simulation has been performed, to follow the propagation of magnetically converted

axions, that is, the created X-rays, near the solar surface. Secondly, we argue how

puzzling solar behaviour can be the manifestation of axions, revising the so far widely

accepted picture [55], which predicts a bright X-ray spot from coherently converted
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pseudoscalars that can show-up only at the solar disk centre. The reasoning of this

previous work is actually not wrong. We only arrive to different conclusions after

comparing simulation results with solar X-ray observations which, since they originate

from the whole magnetic surface, point tentatively rather at the photosphere or the

(lower) chromosphere as the axion-to-photon conversion layer than the outer atmosphere

as it was concluded in [55].

R
el

at
iv

e 
In

te
n

si
ty

Energy [keV]
10

10-3

10-2

10-1

100

101

102

103

Figure 9. Qualitative drawing of the usually observed photon analog spectrum from

solar activities like microflares (see also [77]). A similar trend towards lower energies

has been observed above 0.8 keV very recently for the extreme quiet Sun [78].

Summarizing the previous sections we notice that axion helioscopes à la Sikivie

[18] (e.g. the running Sumico and CAST [26–31]) utilize strong transverse macroscopic

magnetic fields in order to force radiatively decaying particles, like the celebrated axions,

to coherently transform to photons. This working principle raises the question as to

whether and how it could have escaped one’s attention that axion conversion does

happen already at the Sun’s ubiquitous surface magnetic fields. In fact, there are still

conventionally unexplained solar phenomena, from the largest flares to the weakest

transient or almost steady brightening (e.g. the hot solar corona), which are surprisingly

associated with X-ray activity and solar magnetic fields. The primary process behind

the X-ray flares, for a cool star like our Sun, is still missing [76]. Therefore, we follow

such observations further, as possible candidates of solar axion signatures, which can

be as direct as those earth bound helioscopes search for, but eventually more sensitive,

for whatever reason. In the past, the various solar X-ray activities may not have been

considered of axion origin, “simply” because:

(i) the shape of any measured or reconstructed solar analog photon spectrum decreases

rapidly with energy instead of showing at least a kind of a bump around 4-5 keV

like in Figure 2 (see also Figures 9 and 10),
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(ii) the topology of the emitted X-rays does not resemble a spot-like structure that

should be located at the solar disk centre covering ∼ 2% of the solar disk [55].

If the coherent inverse Primakoff effect occurs far above the surface, there is a

perfect collinearity between the outstreaming axion and the emerging photon. The

axion source (=solar core), the intervening surface transverse magnetic field, and

the Earth X-ray observer define a straight line +. To put it differently, such axion

related solar X-rays point away from the Earth, if their conversion place is OFF

the solar disc centre,

(iii) a signature from a dark matter particle candidate should be, by default, extremely

faint.

Generally speaking, only if the above given three quasi prejudices against the axion

involvement in the X-ray bright Sun can be overcome, will this revise the picture of our

nearest star. Then, the huge sized solar surface magnetic fields should act, somehow,

temporally as an efficient axion-to-photon catalyst due to a spatio-temporally occurring

parameter fine-tuning. The question is, however, how does this happen? With Figure

3 in mind, a possibility would be if the plasma density of a sufficiently large volume,

which is also sufficiently magnetized [24], is occasionally ‘tuned’ to the axion rest mass,

enhancing the axion conversion efficiency. This could explain, in principle, some of the

(transient) solar X-ray emission, in particular if its intensity shows a B2 dependence,

which seems to be often the case [84–86].

6.2. Axion(-like) signatures in solar observations

6.2.1. The hot corona Following the above-mentioned three reasons, even the quiet

Sun X-ray luminosity, which is the famous solar corona problem that has challenged

astronomers since its discovery in 1939 by Walter Grotrian (Figures 10 and 11) ∗,

should be naturally excluded from further consideration: the mean photon energy of

the Sun’s corona is only about 100 eV (its temperature is a few MK), and its spectral

shape is a steep exponential one (Figure 10). In addition, its birth place is not at all

confined near the disk centre, but it covers the whole Sun (corona). Its intensity is only

10−7 of the solar luminosity, but still quite strong and easily observable. How the Sun

+ The solar disk centre was clearly distinguished in [55], i.e. axion related X-rays from the Sun should

show up only near the disk centre. This is actually contrary to everyday experience with the solar X-ray

data from the active and quiet Sun alike (Figure 13). The reasoning of [55] applies to low rest mass

pseudoscalars with a relatively large coupling constant for a QCD-inspired axion, which are assumed

to convert high in the upper chromosphere or beyond. Such a signature has been searched for since

long time. The scenario of this article might give a reason for this non-observation. Both approaches

do not contradict each other, since the axion rest mass is a crucial parameter (ma< 10−4eV/c2 in [55],

and ma> 10−3eV/c2 in this work).
∗ One should note that there is no short of reported solutions of the solar coronal heating problem.

Indicatively, in the highly valued journal SCIENCE, the almost solution of the old puzzle has been

announced twice [87], over a time interval of a decade, while concluding recently that “the question of

why the Corona is hot remains unanswered”.
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Figure 10. Reconstructed solar photon spectrum below 10 keV from the Active

(flaring) Sun from accumulated observations (black line). Active Regions are associated

with strong magnetic fields near the solar surface [79]. The dashed line is the converted

solar axion spectrum. Two degraded spectra due to multiple Compton scattering

are also shown for column densities above the initial conversion place of 16 g/cm2

and 64 g/cm2, respectively, which actually agree with the observed spectral shape

(simulated spectra are not to scale). The same interpretation picture could apply to

the reconstructed spectrum of the non-flaring Quiet Sun at solar minimum (grey line),

provided the conversion occurs deeper into the photosphere. This is also supported by

the recent findings [79] that in the Quiet Sun regions stronger magnetic fields occur in

deeper layers than in the Active Regions. The unknown energy source of the quiet Sun

soft X-ray spectrum reflects the solar corona problem. Note, the Geant4 code photon

threshold is at 1 keV (reconstructed solar photon spectra from [80]).

increases its temperature within a very short distance from 5800K to a few MK (Figure

12) is the mystery behind the solar corona heating.

Previous axion work was motivated by the very steep transition region (Figure 12)

separating the chromosphere and the corona [88–90]. It addressed the steady solar X-

ray emission as coming from gravitationally trapped massive axions of the Kaluza-Klein

type; their spontaneous decay near the Sun results to a self-irradiation of the whole

solar atmosphere, which implies an inwardly directed radiation pressure. Along with

X-rays expected to be emitted radially outwards from converted axions in magnetized

places near the surface (see next), the balance between the two axion-related radiation

pressures could explain otherwise nagging problems with the Transition Region (see

also [91]), also reconciling results which contradict robust helioseismological data. For

example, following the axion scenario, the anomalous elemental abundances can be only

a surface effect, evading contradiction with the inner Sun properties.

Interestingly, the quiet Sun corona is hotter during solar maximum (T∼2.2MK)

than during solar minimum (T∼1.3MK) [92]. This meets actually the reasoning of
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Figure 11. The solar irradiance spectrum for two periods in the 11-year sunspot cycle.

The excess at low wavelengths (soft to hard X-rays) above the thermal distribution of

a solar surface of 5800K is conventionally unexpected (see also Figures 10 and 12).

Courtesy M. DiMarco/HAO & NCAR [75].

this work, since the magnetic Sun follows the 11-year cycle and magnetically converted

axions can in addition heat-up the atmosphere. More specifically, the solar corona above

non-flaring Active Regions (ARs) reaches even flaring temperatures (∼4-10MK) [93–

96]. Remarkably, the AR corona can be largely heated to temperatures >5MK only

where the photospheric magnetic fields are the strongest [95]. In addition, the recent

observation of a hot core (T>10MK) above a quiescent AR fits this work too [97].

6.2.2. Quiet Sun observations with RHESSI It is argued that the reported quiet Sun

X-ray emission [98] in the 3-6 keV range, which is no longer considered as an upper limit

([73]), has been explained conventionally as the high energy tail of an X-ray emitting

hot solar plasma. Alternatively, following the axion scenario of this work, the suggested

spectral degradation for the flaring Sun (see MC simulations below) could be at work

even stronger in the quiet Sun, which implies lower energy escaping photons due to

enhanced Compton scattering (Figure 10). Recently, it has been observed that the

stronger the surface magnetic field, the smaller the magnetic effects in the deeper layers

and vice versa [79]. Then the extrapolation to higher energies will be different between

the assumed thermal distribution [77] and the one following the squeezed axion-related

X-ray spectrum towards low energies (this work).

6.2.3. Extreme Quiet Sun observations with SphinX The recently launched space

mission with the SphinX detectors has already provided the first (preliminary) light

curves in soft X-rays (Eγ >0.8 keV) for extreme quiet Sun conditions [78]. The observed

power-law spectral shape resembles, at least qualitatively, the corresponding one given
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Figure 12. Atmospheric temperature distribution near the solar surface. The very

existence of the ∼MK hot solar corona has challenged astronomers since its discovery

in 1939 by Walter Grotrian [81]. Ironically, the Sun’s interior is better understood

than its outer atmosphere. Why the temperature is rising in this way is one of the

most challenging questions in astrophysics. Also the heating of the chromosphere

[82] is a long-standing puzzle in solar physics. Courtesy M. Weinberg/University of

Massachusetts [83].

in Figure 10 (grey line). Also this observation fits the axion scenario, and we consider

it -at least- as an additional, independent piece of experimental evidence from the quiet

Sun at its present 11-year minimum phase. The estimated X-ray luminosity above

0.8 keV is ∼ 5 × 1021 erg/s. Extrapolating the measured spectrum [78] towards lower

energies (grey line of Figure 10), the total soft X-ray luminosity becomes ∼ 5×1024 erg/s

≃ 10−9L⊙. Even if these excess X-rays (from both RHESSI and SphinX [78, 98]) are due

to a thermal distribution, e.g, from a ∼10MK plasma, the question about the origin of

its actual heating source remains, since this is just the solar corona problem. Combining

the energy distribution and the topology of the excess events will allow to distinguish

between diffuse [88, ?, 90] and transient brightenings (this work).

6.2.4. Solar 2D spectra with YOHKOH/XRT In addition to the mentioned quiet Sun

steady X-ray luminosity [78, 98], a further enhanced solar X-ray activity (at all levels)

is occasionally observed, which is spatio-temporally correlated with the solar magnetic

activity, and covers a relatively wide band in solar latitude (±35◦). Both magnetic and

X-ray activity appear equally in all longitudes between the west and east solar limb

(Figure 13), with no trace of an enhanced activity near the disk centre [55]. A solar

axion scenario must account for the surface topology of the X-ray distribution and the

power-law spectral shape; the bulk of the emitted intensity is in soft X-ray emission,

in agreement with this work (see below). Recent observations by the HINODE mission
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found that the quiet Sun consists of a network of horizontal magnetic fields [101]. This

makes then also the quiet Sun a potential axion-to-photon coherent converter, which

gives rise to the observed soft X-rays surface distribution (Figures 13 and 10). Taking

into account that the observed soft X-ray luminosity of the extreme quiet Sun [78]

is ∼ 10−9L⊙, there is no need to invent any enhancement factors as required for the

largest flares (see section 6.3). One can always distinguish, however, between a diffuse

contribution and individual X-ray sources from magnetic places.

Figure 13. Solar images at photon energies from 250 eV up to a few keV from the

Japanese X-ray telescope Yohkoh (1991–2001). The following is shown: On the left, a

composite of 49 of the quietest solar periods during the solar minimum in 1996. On

the right, solar X-ray activity during the last maximum of the 11-year solar cycle. The

drawn circles indicate the region of the expected X-ray brightening spot near the disk

centre, according to [55]. Both images show no sign of an X-ray bright spot at the disk

centre (see text and [55]). On the contrary, most of the X-ray solar activity (right)

occurs at a wide bandwidth of ±35◦ in latitude, being homogeneous in longitude. Note

that ∼95% of the solar magnetic activity covers this bandwidth [99] (see also a similar

topology for microflares measured with RHESSI [100]). This X-ray topology matches

this work for a ∼10meV/c2 solar axion or axion-like particle involvement.

6.3. First estimates

If one takes the experimentally derived upper limits for the axion-to-photon coupling

strength (see e.g. [31]), a solar X-ray luminosity from converted QCD-inspired axions

should be around 20 orders of magnitude below that of the visible Sun (3.8×1033 erg/s),

i.e. extremely small. Therefore, to explain (large) X-ray flares, whose trigger remains

a mystery, an enhancement by as much as ∼ 109 is required, even under favourable

conditions (see footnote ‖). In other words, an unforeseen mode of interaction remained

unnoticed so far, avoiding in this way any contradiction with observationally derived

couplings, by ADMX, CAST and Sumico. As an example, we mention the concept

suggested by Guendelman [102] about the axion interaction with magnetic field and
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field gradients♯. This field configuration has never been taken into account in an

axion experiment previously, at least not a priori. Surprisingly, solar X-ray activity

is associated with places of strong magnetic field gradients [104]. Then, both the actual

interaction and the very nature of the solar exotica in question may be different from

the -otherwise inspiring- QCD axions. To put it differently, it is not improbable that we

are not yet aware of every process occurring in the Sun, which goes beyond our standard

solar axion picture and we may have not predicted yet all relevant particle candidates.

Remarkably, as we subsequently show, the actual solar X-ray spectral shape and emission

topology, resemble the standard solar axion scenario (though strongly modified, only if

a near to the photosphere magnetized layer is the axion-to-photon converter). All this

might explain why such solar axion signatures remained overlooked for such a long time,

as well as why space weather is unpredictable.

In this part of the article, we focus on the magnetic/X-ray active Sun. In spite

of the otherwise completely unfavourable observational picture for axions, following the

reasoning of [55], we aim to explain how the solar axion scenario does apply. This will

also allow to explain how such unnoticed solar signals for axions could leave the X-

ray Sun covered with a veil of mystery since decades. The reader should know that

although we are not solar experts, it is encouraging that solar X-ray missions like

RHESSI and HINODE have implemented axions in their work [73]. Then, the insisting

enigmatic behaviour of the Sun leaves room for novel and exotic phenomena. Solar

X-ray observatories including YOHKOH a posteriori are the novel axion helioscopes in

space, thus opening new windows of opportunity.

7. Isotropic X-ray emission from converted solar axions (simulation)

A simulated propagation of converted axions to X-rays near the photosphere has been

performed. The novelty is that magnetically converted axions can be visible even from

the whole solar disk for an Earth X-ray observer. Moreover, the measured analog photon

spectrum can, naturally, be completely different from the original axion spectrum,

being shifted towards lower energies. Remarkably, all expectations derived from the

♯ At the solar surface, we have the appearance of magnetic flux tubes, whose diameter is taken 100km

and the length some thousands of km. The interior magnetic field is taken to be 0.2T. These tubes

resemble the geometry of a solenoid. For this simple geometry recently [after submission of this article]

E. Guendelman [103] has performed a calculation for the conversion probability of axions to photons, if

they enter perpendicularly to the axis of the solenoid. Surprisingly, the conversion probability for such

a solar flux tube is of the order of 50%. More interestingly, if instead of 100km, one takes a diameter

equal to 10km and 1 km, the conversion probability drops to ∼ 10−2 and ∼ 10−6, respectively. Needless

to say, also these last two conversion probabilities are still very large, compared to the estimated yield

of 10−12 (see footnote ‖). Note that there are many such flux tubes at the Sun, which may explain a

very wide band of solar X-ray emission. In addition, if plasma resonance effects are required, in order

to enhance the conversion probability, coherence lengths of ∼ 1 to 10 km are actually reasonable to

consider for the active Sun, taking as reference the static density distribution below the solar surface.

These estimates may show how the next generation axion magnetic helioscopes (and haloscopes?) will

look like.
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Monte Carlo simulation fit solar X-ray observation (Figures 9, 10 and 13). In fact, the

depth of the actual conversion region is the only ‘free’ parameter, which can be derived

individually or through combining: the slope (=power law index) of the X-ray spectrum,

the spatial extension of the emitting region, and the mean photon energy. Statistically,

also the obtained degree of erasure of the initial photon directivity is dependent on the

axion conversion depth in the photosphere (Figure 14).
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Figure 14. Simulation with the CERN / Geant4 code. The angular distribution

of X-rays from converted solar axions inside the magnetized solar surface for two

atmospheric column densities above the axion-conversion place is given. The

photoelectric effect has been inactivated, thus resembling free plasma electrons. The

initial radial axion trajectory direction is taken at Θ=0◦. In a vacuum, all solar X-

rays from the assumed inverse Primakoff effect would also escape at Θ=0◦. Simulated

converted axion events N0=16415. Number (N) of not interacting X-rays at Θ=0◦:

N=1422 or 8.7% for 4 g/cm2, and N=18 or 1.1� for 16 g/cm2.

7.1. A qualitative estimate

In order to divert an X-ray in the ∼1-10 keV energy range from its collinear direction

of propagation with the converted axion trajectory, one or even the only possibility is

via the isotropic Compton scattering. For this to happen, a thick plasma above the

axion conversion place is required, suppressing the photoelectric effect. In fact, also

a self-photoionization can start with converted axion-like exotica near the magnetized

solar sub-surface, which can irradiate and transform an overlying neutral layer to a

plasma. Appropriate environmental conditions, e.g. plasma density resonance effects

over extended regions, can considerably enhance the axion interaction. ††

†† If converted axions are the only source of ionization, this might last for some time. The estimated

time to photoionize, e.g. ∼2 g/cm2 above the flare trigger place is of the order of 103 s, assuming an

integrated axion originated solar X-ray surface brightness of 10−2L⊙ to be the energy source. This
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Figure 15. Simulation of the non-linear energy degradation due to multiple Compton

scattering of hard X-rays, which start inside the photosphere with a solar plasma

column density above 49 g/cm2 (left) and 100g/cm2 (right). The initial energy

distribution (thin line histogram in blue) is that of the solar axion spectrum (Figure

2). The strong change of the initial analog spectrum depends on the photon’s random

path. The steepness of the distributions depends sensitively on the initiation depth,

i.e. on the axion-to-photon conversion place, where the otherwise unexpected X-rays

are assumed to be emitted radially outwards inside the relatively cool photosphere

(T<10 000K). For the same density, the depth can vary in the dynamic Sun.

Surprisingly, these otherwise colourless spectral shapes reflect solar observations

(Figures 9, 10), with the emitted photon spectra dominating exponentially towards

lower energies (see also Figure 16).
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Figure 16. The same as in Figure 15, assuming the X-rays are created at a depth

of 500km into the photosphere. This Monte Carlo simulation shows that the shape of

the expected analog spectrum does not depend on the relative angle of observation,

which is actually counterintuitive. Note, that the Geant4 photon threshold is at 1 keV,

and therefore the turndown around ∼1 keV is an artefact.

requirement is in principle possible, even though extreme (however, the appearance of a large solar

flare is also an extreme and relatively rare event). It cannot be excluded that some other conventional
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In any case, a more or less bright X-ray flaring region, whatever the trigger process,

remains as a fully ionized plasma until it starts cooling down to ambient pre-flaring

temperatures. X-rays from converted exotica undergo Compton scattering with the

surrounding plasma electrons. A scattering probability [107], say, of about 50%, requires

an (ionized) column density of 1-2 g/cm2. Surprisingly, such column densities do exist

near the solar surface. For example, some column densities for the static Sun are

[108]: a) ∼4.4 g/cm2 at the surface of the photosphere increasing rapidly underneath,

and b) ∼1 g/cm2 and ∼10−3 g/cm2 at +200 km and +1000 km into the chromosphere,

respectively. Note that the plasma density in the solar corona changes dynamically by

a factor of 10-100 at any given time [109]; this actually holds, at a lower degree, for

both chromosphere and photosphere [110]. This implies that the isotropic Compton

scattering of X-rays from converted axions occurring even higher in the atmospheric

plasma can still be quite considerable, i.e. it might happen even at larger heights than

those anticipated for the static atmosphere.

Consequently, if the actual flaring trigger place is (far) below the Transition Region

(Figure 12), the initially radially and outwardly emitted X-rays from outstreaming and

converted axions can keep the intervening neutral gas above ionized. It is simply this

plasma above the actual flaring trigger place, which acts as the intervening Compton

X-ray scatterer. Thus, a kind of a dynamic ‘solar surface effect’ can be at work, whose

thickness is only of the order of 1000 km across the solar surface. Then, it is this thin

layer underneath and above the photosphere surface, which is ‘distinguished’ within our

axion approach, since it allows for a self-tuning that enhances the axion conversion,

provided mγ=ma ∼ 10−2eV/c2. The disk centre region for axions with such a rest mass

is no more peculiar as it was concluded for very light pseudoscalars in [55]. In the past

∼13 years, the conclusions from [55] might have been misleading the axion ID in solar

X-rays. Axions with ma & 10−2eV/c2 result finally to an isotropic X-ray emission, due

to the intervening Compton scatterer, which makes the whole magnetized solar disk a

potential axion-to-photon converter, visible to an outside observer (Figure 13).

7.2. Monte Carlo Simulation

In the simulation with the CERN Geant4 code, the photoelectric effect was inactivated

in order to mimic the propagation of X-rays in a thick plasma (> few g/cm2), which after

(multiple) scattering and a ‘random walk’ escape into free space. The derived isotropic

X-ray re-emission from this simulation for two column densities (Figure 14) supports

quantitatively the basic idea behind this work. This means that the information about

reaction mechanism is in synergy, like the celebrated reconnection of opposite magnetic fields. This

implies a magnetic field gradient across the neutral line, which is, surprisingly, linked to solar X-ray

activity. In the quiet Sun, only the tiny layer below the transition region to the deep photosphere is

actually not fully ionized. Moreover, even for large X-ray flares, the surface brightness does not actually

exceed the quiet Sun luminosity. The flare region is heated up to 10-30MK [104, 106], remarkably close

to that of the core ∼ 700 000km underneath. Within the so defined solar axion ID, the X-ray sun

reveals its otherwise hidden face.
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Figure 17. 2D and 3D shower development simulation of an initial pencil-like beam

of hard X-rays that started at a depth of 500km underneath the solar surface. Their

initial energy distribution resembles that of the solar axion spectrum (Figure 2).

When they escape from the solar surface after many Compton scattering in a random

walk, they give rise to a characteristic lateral distribution, which resembles that of

a microflare (see [105]). Combining this information with their spectral shape (see

Figures 15 and 16), the initial place of the X-rays can be constrained.

the direction of the initial axion trajectory, which is transferred entirely to the first

photon emerging in the coherent inverse Primakoff effect, is already erased with the

very first Compton scattering.

In addition, in the same Monte Carlo simulation, we have also studied the photon

energy degradation. The next surprising results are shown in Figures 10, 15 and 16.

The original X-ray spectrum undergoes a tiny but non-linear energy redshift after each

Compton scattering due to the energy dependence defined by the Compton kinematics.

This is the reason behind the resulting power law spectral shapes, as they are given in

Figures 15 and 16, being strikingly similar to those observed from active and quiet Sun

alike (Figures 9 and 10).

To cross-check the suggested axion scenario, Figure 17 shows the statistical 3D

and 2D ‘shower’ development accumulating many X-ray events; their initial energy

distribution was taken to follow the shape of the standard solar axion spectrum (Figure

2). Interestingly, the steepness of the spectrum of the escaping photons depends

critically on the depth into the photosphere at which the axion-photon conversion

originates. The plasma density at the initiating conversion place provides input on

the axion rest mass (Figure 3). In addition, within the axion scenario of this work,

the spatial extension of the escaping X-rays (Figure 17) allows as well to independently

derive the depth at which the propagation of the initial X-rays have started. At the

current stage of this work, it is also encouraging that the derived surface size (Figure 17)

fits observations with microflares (Figure 3 in [105]). This additional feature in favour
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of the axion scenario supports this work, even though no firm conclusion can be derived

on the role of the magnetic field B, or the magnetic field gradient ∂B/∂z, or both.

8. Conclusions and Outlook for the Future

The present status and the performance of the two operational state-of-the-art axion

helioscopes (Sumico and CAST), including their possible future upgrades are discussed

in this work. Both have the potential to directly detect solar axions or other exotica

with similar properties in a mass range below ∼1-2 eV/c2. In the next 2-3 years, they

will provide at least the best limits for the interaction of axions with matter, if: a) the

incoherent Primakoff effect is the main source of axion creation inside the hot solar core,

and b) axions all stream freely out of the Sun isotropically, reaching the earth bound

magnetic helioscopes when they are pointing at the Sun.

In addition, we studied whether the working principle of the axion helioscopes

applies already near the dynamic photosphere, but was unnoticed before. Since magnetic

fields are ubiquitous in the outer Sun, and, partly -if not entirely- permeating the inner

Sun, this suggested to reconsider solar data from the solar axion point of view of the

present work. This has been done, arguing in particle physics manner, with the help of

a Monte Carlo simulation of both the active/flaring and the quiet Sun. The considered

solar observations can be reconciled with the axion scenario taking place near the solar

surface. The derived rest mass for the axion(-like) particle is ma ∼10meV/c2, assuming

that plasma resonance effects are at work near the photosphere. Then the photosphere

itself or the near (lower) chromosphere is the actual catalyst for the axion conversion.

We note that magnetic fields are in the conventional picture somehow the energy

reservoir for X-ray activity, but, in the axion scenario they are the self-catalyst for

the axion-to-photon oscillation to occur, with the energy resources being outstreaming

axions from the hot core instead. In reality, conventional and new physics might

coexist, being complementary and not excluding each other. This makes it certainly

more difficult to disentangle the axion contribution as an explanation of the solar

activity [104, 111]. The magnetically created hard X-rays from axions undergo near

the photosphere multiple Compton scattering, following an outwards random walk,

whose non-linear energy loss dependence changes drastically the original spectral shape.

Its properties like mean energy, steepness, lateral size, etc. have almost nothing in

common with the conventionally expected solar axion picture, at least not at first

glance. However, the striking similarities of the simulated features with the directly

measured or the observationally reconstructed ones (Figures 9, 10, 13, 14), cannot be

ignored, because the estimate of the X-ray emission, within the conventional solar axion

scenario, is rather qualitative. After all, such or other exotica in question might interact

via other channels, and/or their properties do not match that much the standard axions.

A generic example for this to happen is certainly the suggested interaction of axions with

magnetic field gradients. This scheme is supported by the solar observations which find

that enhanced X-ray activity correlates not only with magnetic active regions (sunspots),
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Figure 18. New magnets for an upgraded axion helioscope. Left: a magnet dipole,

16m long, with 9 T and 140mm aperture. Right: a quadruple magnet with a maximum

magnetic field of ∼10T and magnetic field gradient up to ∼2.5T/cm (see text).

Courtesy: Stephan Russenschuck / CERN.

but also with places with magnetic field gradients [112, 113].

If an overlooked novel mode of conversion occurs, e.g. in magnetic field gradients,

this avoids contradiction between the present limits on the axion coupling strength and

the observed level of solar X-ray emission from magnetized places, since all magnetic

axion detectors use instead dipole fields. Therefore, a future upgrade of present

axion helioscopes implies a larger and more powerful magnet (Figure 18), lowest noise

detectors, focusing devices, and much lower energy threshold. Inspired by the solar

X-ray activity observations, some first measurements with quadruple magnets (Figure

18) are in place, leaving room for surprises.
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